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Abstract 13

The detection of ancient gene flow between human populations is an important issue in 14

population genetics. A common tool for detecting ancient admixture events is the 15

D-statistic. The D-statistic is based on the hypothesis of a genetic relationship that 16

involves four populations, whose correctness is assessed by evaluating specific 17

coincidences of alleles between the groups. 18

When working with high throughput sequencing data calling genotypes accurately is 19

not always possible, therefore the D-statistic currently samples a single base from the 20

reads of one individual per population. This implies ignoring much of the information in 21

the data, an issue especially striking in the case of ancient genomes. 22

We provide a significant improvement to overcome the problems of the D-statistic by 23

considering all reads from multiple individuals in each population. We also apply 24

type-specific error correction to combat the problems of sequencing errors and show a 25

way to correct for introgression from an external population that is not part of the 26

supposed genetic relationship, and how this leads to an estimate of the admixture rate. 27

We prove that the D-statistic is approximated by a standard normal. Furthermore 28

we show that our method outperforms the traditional D-statistic in detecting 29

admixtures. The power gain is most pronounced for low/medium sequencing depth 30

(1-10X) and performances are as good as with perfectly called genotypes at a sequencing 31

depth of 2X. We show the reliability of error correction on scenarios with simulated 32

errors and ancient data, and correct for introgression in known scenarios to estimate the 33

admixture rates. 34

Introduction 35

An important part in the understanding of a population’s history and its genetic 36

variability is past contacts with other populations. Such contacts could result in gene 37

flow and admixture between populations and leave traces of a population’s history in 38

genomic data. In fact, the study of gene flow between populations has been the basis to 39

uncover demographic histories of many species, including human and archaic human 40

populations [2–5,8, 12–15,22,23,33]. 41

The study of the history of human populations using both modern and ancient 42

human genomes has become increasingly topical with the recent availability of new 43
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high-throughput sequencing technologies [6], such as Next Generation Sequencing 44

(NGS) technologies [7]. These technologies have made it possible to obtain massive 45

quantities of sequenced DNA data even from ancient individuals, such as an 46

Anzick-Clovis individual from the Late Pleistocene [8], a Neandertal individual [2] and a 47

Paleoamerican individual [9]. 48

There are many different methods for inferring and analyzing admixture events using 49

genome-scale data. Popular methods such as STRUCTURE [10] and ADMIXTURE [11] 50

estimate how much a sampled individual belongs to K clusters that often can be 51

interpreted as the individual’s admixture proportion to the K populations. However, 52

these approaches are not appropriate to detect ancient gene flow and do not work well 53

with a limited number of individuals per population. 54

A recent alternative to the above methods is the D-statistic. The D-statistic is based 55

on the di-allelic patterns of alleles between four groups of individuals, and provides a 56

way to test the correctness of a hypothetical genetic relationship between the four 57

groups (see Fig 1). A variant of the D-statistic (called the F4-statistic) was first used 58

in [12] to identify that subgroups of the Indian Cline group are related to external 59

populations in term of gene flow. Also the amount of gene flow might be estimated 60

using the F4-statistic [4]. 61

In the pivotal study [2] the D-statistic was used to show that 3 non-African 62

individuals are more genetically similar to the Neandertal sequence than African San 63

and Yoruban individuals are. Moreover, it has been shown that the Eastern Asian 64

populations have a higher amount of Neandertal shared genetic material [4]. 65

Using the D-statistic on many Old World and Native Americans it has been 66

suggested gene flow into some Native American populations, such as evidence of 67

admixture from Australasian populations into New World Populations [22, 33]. 68

In another study the affinity between the Anzick genome and the Native Americans 69

genome was analyzed with the D-statistic to compare different hypotheses regarding 70

their ancestry [8]. Using the D-statistic, it has been reported that the remains of an 71

individual from the Mal’ta population in south-central Siberia have contributed to the 72

gene pool of modern-day Native Americans, with no close affinity to east Asians [13]. 73

Fig 1. Tree topology for the D-statistic. Hypothesis of genetic relationship
between four populations H1,H2,H3,H4.

The first use of the D-statistic was based on a sampling approach that allowed to 74

perform the test without the need to call SNPs or genotypes [2]. This approach is still 75

widely used, and amongst the available computational tools implementing this approach 76

is the doAbbababa program of ANGSD [16] (supporting low depth NGS data) or the 77

fourpop program of TreeMix [17] (supporting di-allelic genotype data and 78

microsatellite data). The program qpDstat of ADMIXTOOLS [15] computes the 79

D-statistic from populations with multiple individuals from di-allelic genotype data. 80

The program doAbbababa relies on sampling one base from every locus, using the 81

sequenced reads to define the sampling probabilities. 82
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The D-statistic is often applied to scenarios involving ancient individuals, that are 83

commonly affected by deamination, i.e. the natural degradation of DNA after death of 84

the organism that leads to there being few molecules remaining in ancient specimens 85

and often results in a low sequencing depth. Furthermore, deamination can cause high 86

frequency of specific transitions of the bases, low quality of the SNPs and very low 87

depth of the data. The current methods for the D-statistic can be very ineffective and 88

unreliable when applied to ancient data, since both sampling and genotype calling 89

procedures are subject to high uncertainty. 90

The focus of this paper is to address the problems stated above. We propose a 91

D-statistic - implemented in the program doAbbababa2 of ANGSD - that supports low 92

depth NGS data and is calculated using all reads of the genomes, and therefore allows 93

for the use of more than one individual per group. We prove that the improved 94

D-statistic is approximated by a standard normal distribution, and using both 95

simulated and real data we show how this approach greatly increases the sensitivity of 96

gene-flow detection and thus improves the reliability of the method, in comparison to 97

sampling a single read. We also illustrate that it is possible to correct for type-specific 98

error rates in the data, so that the reads used to calculate the D-statistic will not bias 99

the result due to type-specific errors. Moreover, our improved D-statistic can remove 100

the effect of known introgression from an external population into either H1, H2 or H3, 101

and indirectly estimates the admixture rate. 102

Materials and Methods 103

This section introduces the traditional D-statistic and the theory that leads to its 104

approximation as a normal distribution. Thereafter we explain how to extend the 105

D-statistic to use multiple individuals per population, without genotype calling and still 106

preserving the same approximation property of the D-statistic. Lastly, we will show how 107

to deal with type-specific errors and introgression from a population external to the tree 108

topology. 109

Standard D-statistic 110

The objective of the D-statistic is to assess whether the tree of Fig 1 that relates four 111

present-day populations H1,H2,H3,H4, is correct. When H4 is an outgroup, the 112

correctness of the tree corresponds to the absence of gene-flow between H3 and either 113

H2 or H1. This objective is achieved by developing a statistical test based on the allele 114

frequencies and a null hypothesis H0 saying that the tree is correct and without gene 115

flow. We limit the explanation to a di-allelic model with alleles A and B to keep the 116

notation uncluttered; the extension to a 4-allelic model is fairly straightforward. 117

Population H4 is an outgroup, that splits off at the root of the tree from the other 118

branches. For each population Hj , j = 1,2,3,4, in the tree, we consider the related 119

allele frequencies xj . 120

For each population Hj , the observed data consists of a certain number of 121

individuals sequenced without error. At every locus i there are nij sequenced bases 122

observed from aligned reads. We consider only the M loci for which there is at least one 123

sequenced base from aligned reads in all four groups. Moreover, in this theoretical 124

treatment we allow the number M of loci to grow to infinity. Assume that at a locus i 125

the allele frequencies in the four groups of individuals xxxi ∶= (xi1, x
i
2, x

i
3, x

i
4) and let 126

x̂xxi ∶= (x̂i1, x̂
i
2, x̂

i
3, x̂

i
4) be an unbiased estimator of xxxi, such as the relative frequencies of 127

the allele A in each population. 128

The D-statistic focuses on di-allelic sites where the differences are observed within 129

the pairs (H1,H2) and (H3,H4). Consider a random allele drawn from each of the four 130
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groups of genomes and the resulting combination of the four alleles. We are interested 131

in two patterns: 132

• ABBA, meaning that we have the same allele in populations H1 and H4 and 133

another allele from the individuals in populations H2 and H3; 134

• BABA, where an allele is shared by individuals in populations H1 and H3 and the 135

other allele by individuals in populations H2 and H4. 136

The tree of Fig 1 is subject to independent genetic drifts of the allele frequencies
along each of its branches. Consequently the probabilities of ABBA and BABA patterns
conditionally to population frequencies would rarely be same. Therefore it is interesting
to focus on their expected values with respect to the frequency distribution:

P(ABBAi) = E[xi1x
i
4(1 − x

i
2)(1 − x

i
3) + (1 − xi1)(1 − x

i
4)x

i
2x
i
3] (1)

P(BABAi) = E[(1 − xi1)x
i
2(1 − x

i
3)x

i
4 + x

i
1(1 − x

i
2)x

i
3(1 − x

i
4)]. (2)

To verify that allele A is shared between genomes in H1,H3 as often as it happens 137

between genomes in H2,H3, we require as null hypothesis that at each i-th locus the 138

probability (1) equals the probability (2). This condition can be written as 139

H0 ∶ E[(xi1 − x
i
2)(x

i
3 − x

i
4)] = 0 for i = 1, . . . ,M, (3)

where the expectation is the difference between eq 1 and eq 2. 140

Using the empirical frequencies of the alleles as unbiased estimators for the 141

population frequencies, we define the D-statistic as the following normalized test 142

statistic 143

DM ∶=
X(M)

Y(M)
=

∑
M
i=1(x̂

i
1 − x̂

i
2)(x̂

i
3 − x̂

i
4)

∑
M
i=1(x̂

i
1 + x̂

i
2 − 2xi1x

i
2)(x̂

i
3 + x̂

i
4 − 2xi3x

i
4)
. (4)

The values X(M) and Y(M) are the numerator and denominator, respectively. Using 144

Y(M) to normalize the numerator leads to the interpretation of DM as difference over all 145

loci of the probabilities of having an ABBA or a BABA events, conditional to the event 146

that only ABBA or BABA events are possible. 147

Appendix 1 shows that, under the hypothesis H0, the test statistic can be 148

approximated by a standard normal variable. Specifically, the approximation holds with 149

a proper rescaling, since DM would narrow the peak of the Gaussian around zero for 150

large M (note that this rescaling is an embedded factor in the estimation of the 151

variance of DM using the block jackknife method [21] in the software implementation of 152

ANGSD). More generally the treatment could be extended to blockwise independence of 153

the allele counts to take into account linkage disequilibrium. 154

The convergence results of Appendix 1 apply to the following special cases of the 155

D-statistic: 156

1. the original D-statistic DM calculated by sampling a single base from the 157

available reads [2] to estimate the sampling probabilities, 158

2. the D-statistic DM evaluated by substituting the frequencies x̂ij with the 159

estimated population frequencies q̂ij defined in eq 5 for multiple individuals (see 160

Appendix 2). 161

3. the D-statistic DM evaluated only over loci where the outgroup is mono-allelic, 162

such as when the Chimpanzee is set as an outgroup to test for gene flow from the 163

Neandertal population into modern out-of-Africa populations [2]. 164
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Multiple individuals per group 165

The D-statistic defined in eq 4 is calculated using population frequencies. In case only 166

one individual per population is chosen, it is easy to get an estimator of the populations’ 167

frequencies by simply counting observed bases. In what follows we are interested in 168

getting a meaningful estimate of the frequencies in the case we want to use all the 169

available sequenced individuals without calling genotypes. 170

This is done using a weighted sum of the estimated allele frequencies for each 171

individual in every group. Assume that given the allele frequency xij , j = 1,2,3,4, at 172

locus i for the jth population, we model the observed data as independent binomial 173

trials with parameters nij and xij , where nij is the number of trials. We take the 174

frequency of allele A in the reads of each jth population as an unbiased estimator of the 175

population frequency. Let Nj be the number of individuals in population j. For the `th 176

individual within the jth population, let xij,` be the frequency of allele A at locus i, with 177

estimator x̂ij,` the frequency of allele A for ` = 1, . . . ,Nj . Define q̂ij as the weighted sum 178

q̂ij ∶= ∑
Nj

`=1
wij,` ⋅ x̂

i
j,`, (5)

where each wij,` is a weight, that is proportional to a quantity depending on nij,`, the 179

number of sequenced bases at locus i for individual `: 180

wij,` ∝
2nij,`

nij,` + 1
. (6)

The estimator q̂ij in eq (5) is an estimator for the jth population frequency at locus i 181

with minimal variance (see Appendix 2). Substituting the estimated population 182

frequencies in eq (4) with the weighted estimators determined by eq (5), it is possible to 183

account for multiple individuals per population. Since the weighted estimator is also 184

unbiased, it does not affect the approximation of the D-statistic with a standard normal 185

distribution. 186

A first application of this method has been the estimation of population frequencies 187

to reveal signatures of natural selection [18]. The weights have a strong impact on loci 188

with low number of reads, where they assume a low value, leading to a stronger impact 189

of population frequency estimated from high-depth individuals in each group. 190

Error estimation and correction 191

The study of genetic relationships between populations often involves the use of ancient 192

genomes that are subject to high error-rates. We introduce error correction following 193

the idea illustrated in [19] to take errors into account and to obtain a more reliable 194

D-statistic. 195

The estimation of the type specific error rates is possible using two individuals (one 196

affected by type-specific errors, and one sequenced without errors) and an outgroup, 197

denoted by T, R and O, respectively. Those individuals are considered in the tree 198

((T,R),O) (see Appendix 3). 199

After the error matrix is estimated for each individual it is possible to obtain 200

error-adjusted frequencies of alleles in locus i through the following matrix-vector 201

product: 202

pppiG = eee−1pppiT . (7)

where pppiG and pppiT are the true and observed vectors of allele frequencies locus i, 203

respectively, and (eee(a, b))a,b is considered to be invertible. Note that estimating 204

(eee(a, b))a,b and correcting the allele frequencies is a process best applied before the 205

calculation of weighted allele frequencies for multiple individuals. 206
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Using error-corrected estimators of the population frequencies to calculate the 207

D-statistic does not prevent it to be approximated by a standard normal, because the 208

error-corrected estimators are unbiased for the true population frequency (see Appendix 209

3). 210

According to eq (7) one is able to perform the error correction at every locus for 211

every individual. In this way it is possible to build a weighted frequency estimator for 212

each population after the error correction. However the implementation of eq (7) 213

involves the inversion of a matrix and a matrix-vector multiplication at every locus for 214

each individual in all populations. Moreover, as a consequence of the error estimation, 215

there might be negative entries of the inverse eee−1, which might cause the product of 216

eq (7) to result in negative entries in the vector pppiG. 217

Consequently we have decided to implement a less precise version of the error 218

correction that is applied to each whole group of individuals instead of every single 219

individual. Assume that the populations’ frequencies have been estimated from eq (5), 220

and that it is possible to estimate the probabilities of the 256 alleles combinations 221

AAAA, AAAC, . . . , TTTT between the four populations. 222

In each jth population of individuals, let eee(j) be the mean of their error matrices. 223

Then build the error matrix for the four groups, EEE. This has dimension 256 × 256 and 224

its entry (a1∶4, b1∶4), where a1∶4 = (a1, a2, a3, a4) and b1∶4 = (b1, b2, b3, b4) are two possible 225

allele patterns of the four populations, is defined as the probability of observing b1∶4 226

instead of a1∶4, assuming independence of the error rates between the four populations: 227

EEE(a1∶4, b1∶4) = eee1(a1, b1) ⋅ eee2(a2, b2) ⋅ eee3(a3, b3) ⋅ eee4(a4, b4). (8)

The equation states that the change from pattern a1∶4 to b1∶4 happens with a probability 228

that is the product of the error rates of each population. Note that each error rate is the 229

sum of the error rates of each individual in that population, and so does not take into 230

account how every individual is weighted according to the frequency estimator of eq (5). 231

Let PPP error be the vector of length 256 that contains the estimated probabilities of 232

observing allele patterns between the four populations, affected by type-specific errors. 233

Denote by PPP corr the vector containing the estimated probabilities of patterns not 234

affected by errors. With an approach similar to the one leading to eq 7 it holds that 235

PPP corr =EEE
−1PPP error. (9)

Using the error-corrected estimated probabilities of combinations of alleles of the type 236

ABBA and BABA it is then possible to calculate numerator and denominator of the 237

D-statistic. This procedure is fast but has the drawback that in every group the error 238

matrix takes into account every individual within a population without its associated 239

weight of eq 6. This means that the portion of alleles related to individuals with lower 240

weights might undergo an excessive error correction. 241

Correction for introgression from an external population 242

The improved D-statistic proves to be very sensitive to introgression, but a hypothesized 243

genetic relationship might be rejected because of an admixture involving a population 244

not part of the considered tree. We propose a way to correct this issue and obtain an 245

estimate of the amount of introgression when the source of gene-flow is available. 246

In this section we analyze the case in which the null hypothesis might be rejected in 247

favour of the alternative hypothesis, but the cause of rejection is not the presence of 248

gene flow between H3 and either H1 or H2, but instead gene flow between an external 249

population H5 and either H2 or H1. Consider the case of Figure S6A, where the null 250

hypothesis might be rejected because of introgression from an external population H5 251

into H2 with rate α. We assume that the external sample for H5 represents the 252
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population that is the source of introgression. Consider H2 being the population subject 253

to introgression from H5, and define H ′
2 the same population when it has not undergone 254

admixture. 255

The four population subtrees of interest (see Supplementary Figure 7) are 256

T1∶4 = (((H1,H2)H3)H4), which includes the 4-population tree excluding the admixing 257

population, Tout = (((H1,H5)H3)H4), where the population source of introgression 258

replaces the admixed population, and Tun = (H1(H
′
2(H3,H4))), in which H2 has not 259

yet undergone admixture and therefore reflects the null hypothesis H0. 260

Consider the patterns of four alleles for the three subtrees mentioned above, whose 261

estimated probabilities are respectively denoted as p1∶4, pout and pun. Using the 262

frequency estimators of eq (5) it is possible to estimate p1∶4 and pout, but not pun since 263

H ′
2 is not an observed population. 264

Assume that testing with the D-statistic on the tree T1∶4 leads to a rejection of H0 265

because the allele frequencies of H2 are altered by the gene flow from H5. In fact, any 266

combination of four alleles observed in T1∶4 has probability 267

p1∶4 = (1 − α)pun + αpout. (10)

By solving for pun it follows that

pun =
1

1 − α
(p1∶4 − αpout). (11)

Note that if the admixture proportion α is known, then admixture correction is possible. 268

If α is not known and we assume the tree is accepted for E[Dun] = 0, where Dun is the 269

D-statistic related to the tree Tun, then α can be estimated. In this case, pun has to be 270

determined for all values of α, and the correct one will be the value for which 271

E[Dun] = 0. In this way an estimate of the admixture rate is obtained for the topology 272

of Supplementary Figure 7A. 273

Simulations 274

Different scenarios have been generated using msms [20] to reproduce the trees of 275

Fig 2A, Fig 2B and Fig 2C, in which times are in units of generations. Each topology 276

has been simulated 100 times for a constant population size of Ne = 104. Mutation and 277

recombination of the simulations are consistent with human data [20]. Migrations and 278

admixtures, respectively, for the scenarios of Fig 2A and Fig 2C, were simulated with 279

specific options of msms. For each simulation we generated 200 regions of size 5MB for 280

each individual and considered only variable sites, except for the case of Fig 2B, where 281

the null hypothesis is affected by type-specific error on some of the individuals. We used 282

a type-specific error of eA→G = 0.005 in populations H1,H3. 283

As a second step, the simulated genotypes from msms were given as input to 284

msToGlf, a tool that is provided together with ANGSD. Using msToGlf it is possible to 285

simulate NGS data from msms output files by generating the pileup files; that are used 286

as input for ANGSD. As parameters for msToGlf, we set up the depth as mean of a 287

poisson distribution and we hardcoded the error rates in the program when necessary 288

for the scenario of Fig 2B. 289
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t=20K
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�=0.1

t=4K
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A                            C

B

Fig 2. Simulated Scenarios. (A) Simulation of a tree in which migration occurs from
population H3 to H1. The variable m is the (rescaled) migration rate varying between 0,
8, 16, 24, 32, 40 up to 280 with steps of size 20. Expressed in percentage, the migration
rate varies between 0%, 0.02%, 0.04%, 0.06%, 0.08%, 0.1% up to 0.7%. Command:
msms -N 10000 -ms 40 200 -I 4 10 10 10 10 0 -t 100 -r 100 1000 -em 0.2 3

1 $m -em 0.201 3 1 0 -ej 0.5 1 2 -ej 0.75 2 3 -ej 1 3 4. (B) Simulation of a
tree in which no migration occurs, but type-specific errors on some individuals provide a
rejection when testing for correctness of the null hypothesis. Command: msms -N

10000 -ms 8 200 -I 4 2 2 2 2 0 -t 100 -r 100 1000 -ej 0.5 1 2 -ej 0.75 2

3 -ej 1 3 4. (C) Simulation of a tree in which H5 admix with H1 with an
instantaneous unidirectional admixture of rate α = 0.1. In this case we expect the null
hypothesis to be rejected since H5 will alter the counts of ABBA and BABA patterns,
but the alternative hypothesis does not involve gene flow with H3. Command: msms -N

10000 -ms 50 200 -I 5 10 10 10 10 10 0 -t 100 -r 100 1000 -es 0.1 1 0.9

-ej 0.2 6 5 -ej 0.25 1 2 -ej 0.5 2 3 -ej 0.75 3 4 -ej 30 4 5.
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Sequenced human populations 290

For the real data scenarios of Fig 3A, Fig 3B and Fig 3C we used Illumina sequenced 291

individuals from several human populations. See Table 1 for an overview of the data. 292

The depth of each individual has been calculated using the program doDepth of ANGSD. 293

The Peruvian individuals used in our study were unadmixed with proportion ≥ 0.95. 294

Estimation of the admixture proportions of these individuals was performed using 295

ADMIXTURE [11]. In every individual, only the autosomal regions of all individuals were 296

taken into consideration and bases were filtered out according to a minimum base 297

quality score of 20 and a mapping quality score of 30. Type-specific error estimates for 298

the Saqqaq, Mi’kmaq and French individuals were performed using the program 299

doAncError of ANGSD, where the Chimpanzee was used as outgroup and the consensus 300

sequence of human NA12778 as error-free individual (See Supplementary Figure 7 for 301

the barplot of the estimates of the type-specific error). 302

Peruvian Han Chinese Euro. Yoruban

outhwestern European A dmixture into CentrSaqqaq

Canadian

Dorset French Chimp

Hypothesis Involving A ncient Genomes. Tree repre

Han Chinese Dinka Yoruban Chimpanzee

Neandertal
�

1��

trogression from External Population. Tree representing t

Peruvian     Han           Euro.       Yoruban       Saqqaq   Canadian    French   Chimpanzee

                   Chinese                                                      Dorset                    

      Han         Dinka       Yoruban     Chimpanzee

      Chinese                                        

Neandertal

A                           B

              C

Fig 3. Real Data Scenarios. (A) Tree representing the southwestern European
migration into the Americas during the European colonization. (B) Tree representing
two independent migrations into northwestern Canada and Greenland. (C) Tree
representing the presence of Neandertal genome into a modern non-african population,
specifically the Han Chinese.
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Genome Population Depth Source

HG01923 Peruvian 6.3X [28]
HG01974 Peruvian 11.9X [28]
HG02150 Peruvian 7.3X [28]
HG02259 Peruvian 6.5X [28]
HG02266 Peruvian 3.8X [28]
NA18526 Han Chinese 6.6X [28]
NA18532 Han Chinese 7.3X [28]
NA18537 Han Chinese 2.9X [28]
NA18542 Han Chinese 7.3X [28]
NA18545 Han Chinese 6.2X [28]
NA06985 CEPH 12.8X [28]
NA06994 CEPH 5.5X [28]
NA07000 CEPH 9.4X [28]
NA07056 CEPH 4.9X [28]
NA07357 CEPH 5.7X [28]
NA12778 CEPH 6.9X [28]
NA18501 Yoruba 6.4X [28]
NA18502 Yoruba 4.9X [28]
NA18504 Yoruba 10.1X [28]
NA18505 Yoruba 6.1X [28]
NA18507 Yoruba 3X [28]

HGDP00778 Han Chinese 23.4X [29]
DNK02 Dinka 25.8X [30]

HGDP00927 Yoruban 28X [29]
AltaiNea Neanderthal 44.9X [2]
pantro2 Chimpanzee - [31]
saqqaq Saqqaq 15.7X [23]

MARC1492
ancient Canadian
Dorset Mi’kmaq
(New England)

1.1X [35]

HGDP00521 French 23.8X [29]

Table 1. List of the Genomes Used in Real Data Scenarios. The table
contains the genome identification number, the major population division, the depth
calculated using ANGSD and the study source of the data.

Results and Discussion 303

In the study of our results we compare different implementations of the D-statistic on 304

simulated and real scenarios. We briefly define as Dext the extended D-statistic that we 305

implemented, D1base the D-statistic calculated by samplying 1 sequenced base per 306

locus [2] and Dgeno the D-statistic calculated with equation (4) using the allele 307

frequencies estimated from the true genotype (the true genotype is only available in the 308

case of simulated data). 309

The D-statistic is computed on blocks of 5Mb, to ensure that every block is not 310

subject to linkage disequilibrium from the other blocks, and that the number of loci in 311

each block is large enough to make the D-statistic approach the approximation by a 312

standard normal distribution (see Appendix 1). The use of blocks allows for estimation 313

of a proper normalization constant for the D-statistic using the m-block jack-knife 314

method [21]. The threshold for rejection of the null hypothesis is set to a p-value 0.001, 315

corresponding approximately to the two-tailed acceptance region [−3,3]. 316
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The formula for calculating the D-statistic is given in eq (4) and finds amongst its 317

current implementations, the ones in [15] and [16], with sampling of one base per locus 318

from only one individual in each population. Such an implementation is 319

computationally fast but has many drawbacks: 320

• when genomes are sequenced at low or medium depth (1X-10X), sampling one 321

base might lead to a process with high uncertainty; 322

• base transition errors might affect the sampling of the base adding more 323

uncertainty; 324

• only one individual per population is used; 325

• for a chosen individual chosen from a population, the reads are not used to 326

evaluate the D-statistic, but only to sample one base. 327

We have proposed a solution to these problems with the extended version of the 328

D-statistic Dext implemented in ANGSD and we will show in the following results how all 329

the problems mentioned above are addressed. 330

Comparison of Power Between the Different Methods 331

Using simulated and real data we compare the different types of D-statistics to study 332

their sensitivity to gene flow, and illustrate how the improved D-statistic Dext is not 333

affected by the issues faced by the current D-statistic D1base, and even reach the 334

performances of the D-statistic based on true genotype Dgeno at a rather low 335

sequencing depth. 336

To evaluate the power of the different methods we first simulated NGS data based 337

on coalescent simulations with mutation and recombination rates consistent with human 338

populations [20]. We simulated without sequencing error four populations with a 339

varying amount of migration from H3 to H1 (see Fig 2A) and applied the D-statistic 340

based on five individuals from each population for two different sequencing depths. 341

Fig 4A and Fig 4B show the power of the methods for depth 0.2X and 2X. Here power 342

is the rejection rate of the null hypothesis when there is a migration from H3 to H1 in 343

the tree (((H1,H2)H3)H4). 344

The extended D-statistic proves to be effective in detecting gene flow even when the 345

simulated depth is very low. For the scenario with sequencing depth 0.2X, D1base is not 346

able to detect almost any case of migration from H3, while Dext reacts with an 347

acceptable rejection rate already for a migration rate as low as m = 0.15%. Of course 348

such a very low depth does not allow the D-statistic to perform as well as Dgeno. In the 349

case of sequencing depth 2X, D1base does not always detect the alternative hypothesis 350

and has also a considerable delay in terms of the migration rate necessary to do that, 351

when compared to Dext. Furthermore Dext follows almost exactly the behaviour of the 352

power related to Dgeno. This means that with a depth above 2X we can expect the 353

D-statistic Dext to perform as well as knowing the exact genotypes of the data. 354

The power of Dext and D1base are compared in a real data scenario using Illumina 355

sequenced modern human populations from the 1000 Genomes Project with a varying 356

sequenced depth in the range 3-13X. We specifically used PEL=Peruvian, 357

CEU=European, CHB=Han Chinese and YRI=African Yoruban individuals to form 358

the tree (((PEL,CHB)CEU)YRI) shown in Fig 3A. This scenario represents the 359

southwestern European gene flow into the ancestors of the Native Americans [13]. Each 360

of the four populations consists of 5 sequenced individuals when evaluating Dext, and a 361

distinct one of those individuals when evaluating D1base five times (see Fig 4C). The 362

extended D-statistic Dext has much lower standard errors, that corresponds to a smaller 363
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p-value than in the case of D1base, and therefore a more significant rejection. See 364

Supplementary Table 2 for a better comparison of the values of the different D-statistics. 365

Error Impact and Correction 366

Sequencing or genotyping errors are known to have a large impact on the 367

D-statistic [19]. Using simulation we show that if the type-specific error rates are known 368

then we can correct the D-statistic accordingly. We simulate the tree under the null 369

hypothesis. However, we add base A→ G error rate of 0.005 in populations H1 and H3 370

in order to alter the observed number of ABBA and BABA combination of alleles, and 371

consequently lead to a possible rejection of the null hypothesis. 372

In the plot of Fig 5A are represented the estimated distributions of the Z-scores 373

related to Dext before and after error estimation and error correction, for 100 374

simulations of a tree (((H1,H2)H3)H4) without any gene flow, where we have also 375

introduced type-specific error for transitions from allele A to another allele for the 376

individuals in H1,H2,H3 at different rates. The test statistic has high values due to the 377

error while all simulations fall in the acceptance interval if we perform error correction. 378

The uncorrected D-statistic performs poorly because of the errors in the data that 379

cause rejection of the null hypothesis in all simulations. It is remarkable to observe that 380

Dext has good performances already at depth 0.5X. This means that even small error 381

rates in the data make the D-statistic very sensible to the rejection of H0. Therefore we 382

require to apply error correction to our data. The result is that the Z-scores fall into the 383

acceptance threshold and the null hypothesis is fulfilled. The distribution of corrected 384

Z-scores is not perfectly centered in 0 because of imperfect error correction. 385

The most obvious need for error correction in real applications is the use of ancient 386

genomes, which have a large amount of errors, especially transitions. To illustrate the 387

effect of errors in real data and our ability to correct for them we use two ancient 388

genomes which contain a high sequencing error rate due to post mortem deamination. 389

The tree (((Saqqaq,Dorset)French)Chimpanzee) of Fig 3B illustrates the migrations to 390

western Canada (Canadian Dorset Mi’kmaq genome) and southwestern Greenland 391

(Saqqaq genome). Due to the effect of deamination prior to sequencing [23,35], the two 392

ancient genomes have high type-specific error rates as shown in Supplementary Table 3 393

and Supplementary Figure 7. The error rates alter the counts of ABBA and BABA 394

patterns, which bias the uncorrected D-statistic. 395

We expect the tree to be true under the null since Saqqaq and Dorset have a recent 396

common ancestor [22]. In Fig 5B we compare the extended D-statistic Dext in four 397

cases: firstly using observed data, secondly removing all transitions which are related to 398

most of the errors, thirdly applying error correction and lastly combining error 399

correction and transitions removal. Note that the removal of transitions related to the 400

pairs of alleles A,C and G,T is the current standard technique to avoid high error rates 401

when calculating the D-statistic from damaged low-coverage data. The uncorrected 402

D-statistic rejects the null hypothesis whereas correction or transition removal gives a 403

non-significant test. Error correction performs better than transition removal, providing 404

a value of the D-statistic that is closer to 0 and has smaller standard deviation. 405

Supplementary Table 4 shows the values related to the four D-statistics in this scenario. 406

Supplementary Figure 9 illustrates the effect of increasing and decreasing the removal of 407

error for the base transition C → G and C → T for one of the Saqqaq, Dorset and 408

French genomes. This correspond to add a value to the estimated error rate matrix of 409

one of the individuals. Observe that the French individual is less affected by the 410

addition or removal of error than the first two individuals. Moreover all 3 individuals 411

are more sensible to the error rate in the case of transversion C → T . 412
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Correction for External Introgression 413

We use simulations of a scenario with external introgression to verify the performance of 414

correction for gene-flow in restoring a four-population tree configuration that lead to the 415

acceptance of the null hypothesis H0. In the simulation case we know the value of α, 416

that is the amount of introgression, therefore correction is possible. Thereafter we use a 417

known genetic relationship involving the Neandertal introgression into out-of-Africa 418

modern individuals in Europe and Asia [2, 4] to correct for the effect of admixture. In 419

addition we show that, if we assume the absence of gene flow in the tree topology, then 420

we can estimate the amount of introgression, and compare it with the estimation 421

involving the original D-statistic tools. 422

For some species there are introgression events from an external source which can 423

affect the D-statistic when performing test for admixture among the species. We 424

performed 100 simulations of the null hypothesis (((H1,H2)H3)H4) of Fig 2C, for 425

which an external population H5 is admixed with H2 with rate α = 0.1. The plot of 426

Fig 6A shows the estimated distribution of the Z-scores related to the observed and 427

admixture-corrected Dext. The observed D-statistic is positive and has Z-scores that 428

reject the null hypothesis. Applying eq (11) we are able to remove the effect of gene 429

flow from H2. The result of removal of the gene flow’s effect is that the estimated 430

probabilities of ABBA and BABA combinations of alleles are altered and the resulting 431

calculated values of the D-statistic lead to acceptance of the null hypothesis H0. 432

For human populations it is problematic to use the D-statistics when applied to both 433

African and non-African populations because of ancient gene-flow from other hominids 434

into non-Africans. Therefore, H0 might not fulfilled for any tree (((H1,H2)H3)H4) 435

where an ingroup consists of both an African and a non-African population. This leads 436

to rejection of the tree and to the natural conclusion that there is gene flow between 437

H3,H2 (resp. H3,H1). However, if there is known external admixture from a 438

population H5, it is possible to correct for admixture from this external contribution. 439

We illustrate the problem and our ability to correct for it using the tree shown in 440

Fig 3C, which shows introgression of the Neanderthal genome into the ancestors of the 441

Han Chinese population. The correction is performed for the admixture proportion α in 442

the range [0,0.05] in steps of 0.01. The value of α for which the Dext is closest to 0 443

might be considered as an estimate of the admixture rate. We choose these populations 444

because we can compare our result with the estimate from previous studies of the same 445

populations [2,4]. Green et al. [2] estimated α to be in the range [0.01, 0.04], while Wall 446

et al. [4] estimated it as being α = 0.0307 with standard deviation 0.0049. The result is 447

shown in Fig 6B for the tree (((Han Chinese,Dinka)Yoruban)Chimpanzee) for different 448

admixture rates α used to correct for the introgression of the Neandertal population 449

into the Han Chinese population. The red polygon is the interval in which α is 450

estimated to be [2]. The black dot coincides with the value of α = 0.0307 calculated 451

in [4]. The blue polygon is 3 times the standard deviation of Dext. For almost the whole 452

range of reported admixture proportions, the tree is not rejected after adjustment for 453

admixture, indicating that the uncorrected D-statistic concluded the presence of gene 454

flow. When Dext is 0, we estimate α = 0.03 with standard deviation 0.0042, which is 455

similar to previous estimates. 456

In both the cases of simulated and real data we have thus been able to distinguish 457

the case in which the alternative hypothesis is due to an external introgression and not 458

to admixture from H3. In our simulations, the admixture correction seems not to suffer 459

from the effect of drift, which is not modelled in the correction. In fact the branch 460

leading to H5 splits 8000 generations in the past and admixes 4000 generations in the 461

past on the branch leading to H1. Thus there is a drift affecting gene frequencies of 462

both the admixing and admixed populations. 463

In the case of real data the exact amount of admixture α is not previously known. 464
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Therefore we calculated the D-statistic for the tree (((Han 465

Chinese,Dinka)Yoruban)Chimpanzee) using admixture-corrected values of the 466

probabilities of allele patterns, considering values of the admixture rate falling in the 467

interval estimated in [2]. Without admixture correction, the obvious conclusion would 468

have been that for the tree (((Han Chinese,Dinka)Yoruban)Chimpanzee) there is gene 469

flow between the Yoruban and Dinka populations. 470

Conclusions 471

In summary we have implemented a different D-statistic that address the drawbacks of 472

the current implementations of the D-statistic, but still preserve the approximation as a 473

standard normal distribution (see Appendix 1) that allows for a statistical test. The 474

extended D-statistic Dext allows for multiple individuals per population and instead of 475

sampling one base according to the estimated allele frequencies, uses all the available 476

sequenced bases. 477

Using both simulations and real data we have shown that 478

1) the extended D-statistic Dext has more power than the alternative methods, with 479

an increased sensibility to admixture events; 480

2) the performance of the extended D-statistic is the same as when true genotype is 481

known for a depth of at least 2X, 482

3) we can accomodate type-specific errors to prevent that en eventually wrong 483

acceptance or rejection of the null hypothesis is caused by error-affected allele 484

frequencies. The error estimation and correction reveal to be especially suited in the 485

case of ancient genomes, where error rates might be high due to chemical treatments 486

prior to sequencing and degradation over time; 487

4) we can calculate the D-statistic after correcting for admixture from an external 488

known population, such as in the case of Neandertal gene flow into the Han Chinese 489

population. 490

The extended D-statistic Dext is especially effective compared to the standard 491

D-statistic D1base when applied to data with low/variable depth, multiple individuals 492

and ancient DNA. 493
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Fig 4. Detection of Admixture and Migration. (A,B) Rejection rate of the null
hypothesis as a function of the migration rate in the tree (((H1,H2)H3)H4), where a
migration from H3 to H1 occurs. The yellow and blue solid lines represent respectively
the power of the method related to Dext and D1base. The yellow dashed line represents
the rejection rate when the genotypes of the 5 individuals in each population are known
and thus eq (4) can be applied. The blue dashed line illustrates the power of the
method when only one genome per population has known genotypes. Dext performs
almost as well as knowing the true genotypes already with depth 2X. (C) Value of Dext

(black square) and values of D1base (black circles) using respectively 5 genomes per
population and one of them from each population. Each D statistic shows its associated
standard deviation multiplied by 1 and 3. On the left side of the graph, the stickmen
represent for each column the composition of the group by number of individuals.
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Fig 5. Effect of Error Estimation and Correction. (A) Estimated distributions
of the Z-scores related to Dext for the null hypothesis (((H1,H2)H3)H4) in which
H1,H3 and H2 has probability 0.005 and 0.01 of transition from base A, respectively.
The blue polygon represents the interval where a Z-score would accept the null
hypothesis. The red line represents the distribution of Z-scores before type-specific
errors are corrected. In blue we have the Z-scores after correction. (B) Values of Dext in
four different cases for the tree (((Saqqaq,Dorset)French)Chimpanzee). The black circles
are the values of the uncorrected D-statistic, removal of ancient transitions, error
correction, error correction and ancient transitions removal. The red and blue lines
represent the standard deviations and the value they need to reach the threshold of
∣Z ∣ = 3, respectively.

Fig 6. Effect of Correction from External Introgression. (A) Estimated
distribution of the Z-scores related to Dext from the 100 simulations of the null
hypothesis (((H1,H2)H3)H4) with introgression of rate α = 0.1 from an external
population H5 into H2. The Z-scores of the observed tree are far off the acceptance
interval because of the admixture from H5. Once the portion of genome from the
external population is removed from H2, the tree fulfills the null hypothesis and the
Z-scores all fall in the acceptance interval defined by ∣Z ∣ ≤ 3. (B) Behaviour of the Dext

of the tree (((Han Chinese,Dinka)Yoruban)Chimpanzee) as a function of the admixture
rate α used to correct for the introgression of the Neandertal population into the Han
Chinese population. The red polygon is the interval in which [2] estimates α to fall in.
The black dot coincides with the value of α = 0.0307 calculated by [4] using the tree
(((Han Chinese,Yoruban)Neandertal)Chimpanzee), with standard deviation 0.0049. The
blue polygon is 3 times the standard deviation of Dext. When Dext is 0, we estimate
α = 0.03 with standard deviation 0.0042.
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Appendices 494

The setup of the theoretical treatment consists of four sampled genomes representing 495

four populations H1,H2,H3,H4, for which we assume the relationship illustrated in 496

Fig 1. Each genome is considered to have M di-allelic loci. We will consider the 497

situation in which M grows to infinity. Each locus i consists of a certain number nij of 498

alleles A and B, where j = 1, 2, 3, 4, is the index of the jth genome. Moreover we assume 499

independence between the loci. 500

Assume that at a locus i the allele frequencies in the four groups of individuals 501

xxxi ∶= (xi1, x
i
2, x

i
3, x

i
4) follow a locus-dependent distribution Fi(xxx), i = 1, . . . ,M and let 502

x̂xxi ∶= (x̂i1, x̂
i
2, x̂

i
3, x̂

i
4) be an unbiased estimator of xxxi at locus i, such as the relative 503

frequencies of the allele A in each population. The populations’ frequencies are 504

considered to be a martingale process. 505

The null hypothesis that the tree of Fig 1 is correct can be rewritten as follow:

H0 ∶ E[(xi1 − x
i
2)(x

i
3 − x

i
4)] = 0 for i = 1, . . . ,M,

where the expectation is done on the difference between the probabilities of ABBA and
BABA events deduced in eq (1) and eq 2. Using the empirical frequencies as proxies for
the expected values, we build the following normalized test statistic, also known as
D-statistic:

DM =
∑
M
i=1(x̂

i
1 − x̂

i
2)(x̂

i
3 − x̂

i
4)

∑
M
i=1(x̂

i
1 + x̂

i
2 − 2xi1x

i
2)(x̂

i
3 + x̂

i
4 − 2xi3x

i
4)
,

where the values

X(M) = ∑
M

i=1
(x̂i1 − x̂

i
2)(x̂

i
3 − x̂

i
4),

Y(M) = ∑
M

i=1
(x̂i1 + x̂

i
2 − 2xi1x

i
2)(x̂

i
3 + x̂

i
4 − 2xi3x

i
4)

are the numerator and denominator of the D-statistic, respectively. 506

Appendix 1 Convergence of the D-Statistic. In this paragraph we prove that
the D-statistic defined as

DM =
X(M)

Y(M)

converges in distribution to a standard normal variable up to a constant. 507

Rewrite the numerator and denominator as

X(M) = ∑
M

i=1
Xi

Y(M) = ∑
M

i=1
Yi,

where the values Xi and Yi are defined for each i = 1, . . . ,M by

Xi = (x̂i1 − x̂
i
2)(x̂

i
3 − x̂

i
4),

Yi = (x̂i1 + x̂
i
2 − 2xi1x

i
2)(x̂

i
3 + x̂

i
4 − 2xi3x

i
4).

Consider the series of independent variables Xi in the numerator of DM , having means 508

µi. Every term Xi of the numerator is an unbiased estimate of (xi1 − x
i
2)(x

i
3 − x

i
4), 509

assuming the observed allele counts are binomially distributed [12]. We show in the 510

following proposition that every term of the numerator of the D-statistic has 511

expectation µi = 0 for i = 1, . . . ,M by calculating the expectation of (xi1 − x
i
2)(x

i
3 − x

i
4). 512

Theorem 1. Given the tree topology of Fig 1, it holds that E[(x11 − x
i
2)(x

1
3 − x

i
4)] = 0 513

for i = 1, . . . ,M . 514
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Proof. Let xi1∶2, xi1∶3 and xi1∶4 be the frequencies of the ancestral populations of (xi1, x
i
2),

(xi1, x
i
2, x

i
3) and the root of the tree, respectively, as illustrated in Fig 1. Let X be the

set of those three frequencies. Using the martingale properties of the frequencies it
follows that

E[(xi1 − x
i
2)(x

i
3 − x

i
4)] = E[E[(xi1 − x

i
2)(x

i
3 − x

i
4)∣X ]] (12)

= E[E[xi1 − x
i
2∣X ]E[xi3 − x

i
4∣X ]] (13)

= E[E[xi1 − x
i
2∣x1∶2]E[xi3 − x

i
4∣X ]] (14)

= E[0 ⋅E[xi3 − x
i
4∣X ]] = 0 (15)

515

Therefore Xi has mean 0 for all i = 1, . . . ,M . 516

To prove convergence of the D-statistic for large M we assume the following: 517

1. Let σ2
i be the variance of every term Xi. Denote with vM the sum ∑

M
i=1 σ

2
i , then 518

vM →∞ for M →∞. (16)

2. Let Yi, i = 1, . . . ,M, be the series of independent variables in the denominator of 519

DM , having means γi. Then 520

1

M
∑

M

i=1
γi → γ for M →∞. (17)

3. Denote with τ2i the variance of Yi. Then 521

1

M2∑
M

i=1
τ2i → 0 for M →∞. (18)

If the numerator and denominator are sums of iid variables, conditions (16), (17) 522

and (18) are fullfilled. In fact, if every term Xi has variance σ2, the sum of variances is 523

vM =Mσ2 and eq (16) holds. If every term Yi has mean and variance γ and τ2, 524

respectively, eq (17) is still valid because the arithmetic mean is done on identical 525

values. Moreover, eq (18) holds because 526

1

M2∑
M

i=1
τ2 =

1

M
τ2, (19)

that converges to zero for M →∞. 527

The convergence of the D-statistic DM is proved in steps, analyzing separately the 528

numerator and the denominator. We begin by stating all the necessary theorems. 529

Firstly, we consider an extension of the central limit theorem (CLT) [24], that will be 530

applied to the numerator X(M). Subsequently we state the law of large number 531

(LLN) [25] for not iid variables that is used for the denominator Y(M) of the D-statistic. 532

Thereafter we enunciate one of the consequences of Slutsky’s theorem [26,27]. The last 533

step is a theorem for the convergence of the D-statistic, proved by invoking all the 534

previous statements, applied to the specific case of the D-statistic. 535

Theorem 2 (CLT for independent and not identically distributed variables). Let 536

{Xi}
M
i=1 be a sequence of independent (but not necessarily identically distributed) 537
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variables with zero mean and variances σ2
i . Define vM as ∑

M
i=1 σ

2
i . Consider the 538

following quantity 539

Λε(M) ∶= ∑
M

i=1
E
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

Xi
√
vM

⎞

⎠

2

I
⎛

⎝

RRRRRRRRRRR

Xi
√
vM

RRRRRRRRRRR

≥ ε
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (20)

where I(⋅) defines the indicator function. If for any ε > 0 it holds that 540

limM→∞ Λε(M) = 0, then the normalized sum UM = ∑
M
i=1Xi/

√
vM converges in 541

distribution to a standard normal N(0,1). 542

Theorem 3 (LLN for independent and not identically distributed variables). Let 543

{Yi}
M
i=1 be a sequence of uncorrelated random variables. Define ȲM as the empirical 544

average 1
M ∑

M
i=1 Yi. Denote with γi and τ

2
i the expectation and variance of each variable. 545

If conditions (17) and (18) are fulfilled, then for each ε > 0 546

lim
M→∞

P(∣ȲM −
1

M
∑

M

i=1
γi∣ ≥ ε) = 0. (21)

Equivalently the empirical average ȲM converges in probability to limM→∞
1
M ∑

M
i=1 γi = γ. 547

Theorem 4 (Slutsky’s Theorem). Let X(M) and Y(M) be two sums of not iid random 548

variables. If the former converges in distribution to X and the latter converges in 549

probability to a constant γ for M →∞, then the ratio X(M)/Y(M) converges in 550

distribution to X/γ. 551

The last step is a theorem for the convergence of the D-statistic, proved by invoking 552

all the previous statements, applied to the specific case of the D-statistic. 553

Theorem 5 (Convergence in distribution of the D-statistic). Consider the D-statistic
defined by

Dn =
X(M)

Y(M)
=
∑
M
i=1Xi

∑
M
i=1 Yi

∈ [−1,+1],

where numerator and denominator are sum of independent (but not necessarily 554

identically distributed) variables. Under the assumptions of (16), (17) and (18), the 555

D-statistic converges in distribution to a standard normal if rescaled by the constant: 556

cMDM
d
Ð→N(0,1) forM →∞. (22)

The arrow denotes the convergence in distribution and cM is defined as 557

cM ∶= γ
M

√
vM

. (23)

Here vM is the sum of the variances of the first M terms of the numerator, and γ is the 558

convergence value of thee aritmetic mean of the denominator’s expectations for M →∞. 559

Proof. First consider Theorem 2 applied to the rescaled numerator UM =X(M)/
√
vM .

It is necessary to prove that for any ε > 0 it holds that limM→∞ Λε(M) = 0 to ensure the
convergence in distribution. First observe that ∣Xi∣ ≤ 1 for any index i. Consequently we
have the inequality

Λε(M) ≤ (
1

√
vM

)
2

∑
M

i=1
E[I

⎛

⎝

RRRRRRRRRRR

1
√
vM

RRRRRRRRRRR

≥ ε
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(24)

=
1

vM
P(∣Xi∣ ≥ ε

√
vM) ≤

1

vM

E[Xi]

ε
√
vM

≤
1

vM

1

ε
√
vM

, (25)
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where Markov’s inequality is applied to the last line of the equation. Thus UM 560

converges in distribution to a standard normal N(0,1) 561

Since conditions (17) and (18) are fulfilled by assumption, it is possible to invoke 562

Theorem 3 to state that the empirical average of the denominator Y(M)/M converges in 563

probability to a constant γ, which is positive since every term of the denominator is 564

positive. 565

Finally, we apply Theorem 4 using the proper constants that follows from Theorems 566

2 and 3 applied to the numerator and denominator, respectively. We proved that the 567

sum X(M)/
√
vM converges in distribution to a standard normal N(0,1) and Y(M)/M 568

converges in probability to the constant γ, that is the limit of the arithmetic mean of 569

eq 17. Thus the ratio 570

M
√
vM

X(M)

Y(M)
(26)

converges in distribution to a gaussian N(0,
√
γ−1). The convergence in distribution of 571

DM to a standard normal variable is accomplished by rescaling by the following 572

multiplicative constant 573

cM = γ

√
vM

M
. (27)

574

The results of this proof apply also in the following cases of the D-statistic: 575

1. the original D-statistic DM calculated by sampling a single base at each site from 576

the available reads [2] to estimate the sampling probabilities. In this case every 577

term on the numerator has possible values −1, 0, +1. Each population frequency 578

xij is parameter of a binomial distribution Bin(1, xij), and is estimated by the 579

frequency of the observed base A at locus i in population j, 580

2. the D-statistic is evaluated using the estimated population frequencies q̂ij defined 581

in eq 5 for multiple individuals in a population (see Appendix 2). In fact, the 582

estimator for multiple individuals is still an unbiased estimate for the population 583

frequency [18], therefore every term of the numerator is still an unbiased estimate 584

for the difference between the probabilities of ABBA and BABA events. 585

3. the D-statistic is evaluated only over loci with allele frequency x4 = 1 for 586

population H4. This special case of D-statistic has been used, for example, to 587

assess the presence of gene flow from the Neandertal population into modern 588

out-of-Africa individuals, setting a Chimpanzee as outgroup, and considering only 589

loci where the outgroup showed uniquely allele A [2]. in fact, Theorem 1 still 590

holds because in eq (12) the term E[xi1 − x
i
2∣x1∶2] is zero, independently of which 591

values xi4 assumes. 592

Appendix 2 Multiple Genomes. We assume a di-allelic model with alleles A and 593

B and the four populations H1,H2,H3,H4 that consist each of a number of distinct 594

individuals Nj , j = 1, 2, 3, 4, where j indexes the populations. Given the allele frequency 595

xij , j = 1,2,3,4, at locus i, we model the observed data as independent binomial trials 596

with parameters nij and xij for j = 1,2,3,4, where nij is the number of trials. One 597

possible unbiased estimator of the population frequency is 598

x̂ij ∶=
ni,Aj

nij
, (28)

where ni,Aj is the total number of As and nij the total number of bases observed for the 599

selected population and locus. 600
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For locus i denote the allele frequency of individual ` in population j as xij,`. We use 601

as its unbiased estimator 602

x̂i` ∶=
ni,Aj,`

nij,`
, (29)

namely the ratio between the number of observed As and the total number of observed
alleles at locus i in genome `. The idea is to condense all the quantities x̂i` into a single
value q̂ij that minimizes the variance of the sum of the estimated individuals’ frequencies
w.r.t. a set of normalized weights

{wij,`}
Nh

`=1, ∑
Nh

`=1
wij,` = 1

such that 603

q̂ij ∶= ∑
Nh

`=1
wij,` ⋅ x̂

i
j,`. (30)

The estimated population frequency q̂ij is an unbiased estimator of the frequency of 604

population j at the ith locus [18]. The aim of the weight estimate is to determine the 605

set of weights that minimizes the variance of q̂ij . To do this, we first determine the 606

variance of each individual’s frequency. 607

Consider a genome ` in population j. We approximate the frequency estimator of 608

genome ` in population j, namely x̂ij,`, defining 609

Y ij,` ∶=
∑
ni
j,`

m=1 Im

nij,`
, (31)

where nij,` is the total number of reads for individual ` and Im ∽ Bin(1, xij) for 610

m = 1, . . . , nij,`. Note that the Binomial variables are parametrized by xij and not by xij,`. 611

The variance of Y ij,` is 612

V[Y ij,`] =
1

(nij,`)
2

⎛

⎝
∑

ni
j,`

m=1
V[Im] + 2∑

ni
j,`

r<t
Cov[Ir, It]

⎞

⎠
. (32)

The variance of the indicator function Im 613

V[Im] = xij(1 − x
i
j). (33)

It remains to find the covariance 614

Cov[Ir, It] = E[IrIt] −E[Ir]E[It] = E[IrIt] − x
i
j

2
, (34)

where, marginalizing on the underlying genotype G and assuming HWE, it follows that 615

E[IrIt] = ∑
g∈{AA,AB,BB}

P(IrIt = 1,G = g)

= P(IrIt = 1∣G = AA)P(G = AA)

+ 2P(IrIt = 1∣G = AB)P(G = AB)

+ P(IrIt = 1∣G = BB)P(G = BB)

= 0 +
1

2
⋅
1

2
⋅ 2xij(1 − x

i
j) + 1 ⋅ xij

2
=

1

2
xij(1 − x

i
j) + x

i
j

2
.

(35)

Considering that the sum over r < t in equation (32) is made over 1
2
nij,`(n

i
j,` − 1) equal 616

21/29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/127852doi: bioRxiv preprint 

https://doi.org/10.1101/127852
http://creativecommons.org/licenses/by-nc-nd/4.0/


expectations, we can write 617

V[Y ij,`] =
1

(nij,`)
2
[nij,`x(1 − x) + 2

nij,`(n
i
j,` − 1)

2

1

2
xij(1 − x

i
j)]

=
1

(nij,`)
2
[nij,`x

i
j(1 − x

i
j) + 2

nij,`(n
i
j,` − 1)

2

1

2
xij(1 − x

i
j)]

=
nij,` + 1

2nij,`
xij(1 − x

i
j) = R

i
j,`x

i
j(1 − x

i
j),

(36)

where for practical purposes we have defined, for each `th individual, Rij,` as the ratio 618

nij,` + 1

2nij,`
. (37)

Consider at this point the approximation of the variance of the weighted 619

“pseudo-individual”, having estimated frequency q̂ij ∶= ∑
Nj

`=1w
i
j,` ⋅ x̂

i
j,`. 620

V[x̂ij] =
Nj

∑
`=1

(wij,`)
2V[x̂ij,`] ≈

Nj

∑
`=1

(wij,`)
2V[Y ij,`]. (38)

Our objective is to perform a Lagrange-constrained optimization w.r.t. the weights, 621

being sure to find a minimum since eq (38), as function of the weghts, is convex. This is 622

easily done since the Lagrange-parametrized function is 623

L(wij,1∶Nj
, λ) =

Nj

∑
`=1

(wij,`)
2xij(1 − x

i
j)R

i
j,` − λ(

Nj

∑
`=1

wij,` − 1) (39)

and it originates a linear system of equations of the form 624

2 ⋅wij,1 ⋅xij(1 − x
i
j)R

i
j,1 −λ= 0

⋮ ⋮ = ⋮

2 ⋅wij,Nj
⋅ xij(1 − x

i
j)R

i
j,Nj

−λ= 0

∑
Nj

`=1
wij,` −1= 0

(40)

whose solution provides us with the minimum values of the weights as follows 625

∀` ∈ { 1, . . . ,Nj}: 626

wij,` =
∏
Nj

m=1,m≠`R
i
j,m

∑
Nj

k=1∏
Nj

m=1,m≠kR
i
j,m

=
(Rij,`)

−1

∑
Nj

k=1(R
i
j,k)

−1
. (41)

Appendix 3 Error estimation and correction. Estimation of the type-specific 627

errors follows the supplementary material of [19]. Assume having one observed 628

sequenced individuals affected by base-transition errors. This individual has an 629

associated 4x4 error matrix (eee(a, b))a,b, such that the entry eee(a, b) is the probability of 630

having sequenced allele b instead of allele a. Consider the tree ((T,R),O), in which the 631

leaves are sequenced genomes affected by type-specific errors (T), an individual without 632

errors, used as reference for the error correction (R), and an outgroup individual (O). 633

Assume that loci are independent and that the errors between pairs of alleles are 634

independent given a base o in the outgroup and the error matrix (eee(a, b))a,b. Then the 635

likelihood of the base t in the observed individual can be decomposed as a product 636

through the loci: 637

P(T = t∣O = o,eee) =∏
M

i=1
P(Ti = ti∣Oi = oi,eee). (42)
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Marginalize any ith factor of the above equation over the true alleles before error
gi ∈ {A,C,G,T} of the underlying true genotype:

P(Ti = ti∣Oi = oi,eee) = ∑
gi∈{A,C,G,T}

P(Ti = ti,Gi = gi∣Oi = oi,eee) (43)

= ∑
gi∈{A,C,G,T}

P(Ti = ti∣Gi = gi,Oi = oi,eee)P(Gi = gi∣Oi = oi) (44)

= ∑
gi∈{A,C,G,T}

eee(gi, ti)P(Gi = gi∣Oi = oi), (45)

where the true genotype gi is independent of the error rates for each i = 1, . . . ,M . One 638

can approximate the probability of observing gi conditionally to oi with the relative 639

frequency of the base gi in the error-free individual R, for loci where the outgroup is oi, 640

that is 641

P(Gi = gi∣Oi = oi) = P(Ri = gi∣Oi = oi). (46)

It is possible to perform a maximum likelihood estimation by numerical optimization to 642

obtain an estimate of the error matrix. Note that every entry eee(gi, ti) is the same over 643

all loci. 644

The rationale behind the error correction is that the count of each base in the 645

genomes T and R should be the same, otherwise an excess of counts in T is due to 646

error.This approach to error estimation has been applied in [19] to study type-specific 647

errors in ancient horses’ genomes. 648

Assume that the error matrix eee` has been estimated for every individual ` in each
jth group. For a specific genome ` we have the following equation for each locus i

P(Ti = ti∣eee`) = P(Ti = ti∣eee`,G→ ti)eee`(ti, ti) (47)

+∑t̃i≠ti
P(Ti = ti∣eee`,G = t̃i)eee`(t̃i, ti). (48)

The same equation can be expressed in matrix form as follows: 649

pppiT = eee`ppp
i
G, (49)

where pppiT and pppiG are the vectors of probabilities of observing alleles at locus i, 650

respectively in the T and R genome. If the error matrix e` is invertible, we can find the 651

error corrected allele frequencies as 652

pppiG = eee−1` ppp
i
T . (50)

The correction performed in eq (50) makes the estimated allele frequencies unbiased. 653

The unbiasedness allows the numerator of the D-statistic to have mean zero, and makes 654

the D-statistic calculated with error-corrected frequencies convergent to a standard 655

normal distribution (see Appendix 1). In fact, consider for a certain locus the di-allelic 656

scenario with alleles A and B. Let n be the number of observed bases. The number of 657

alleles A in absence of errors is 658

m ∼ Bin(n,x), (51)

where x is the population frequency. Let εA,B and εB,A be the probabilities of having a 659

transition from A to B and from B to A, respectively. Then the total number of 660

observed A alleles is given by the sum of the two following variables: 661

m0 ∼ Bin(m,1 − εA,B),

m1 ∼ Bin(n −m, εB,A).
(52)

The expected population frequency is given by 662

1

n
E[m0 +m1] =

1

n
E[E[m0∣m]] +

1

n
E[E[m1∣m]]

= x(1 − εA,B) + (1 − x)εB,A.
(53)
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The error matrix and its inverse for the di-allelic case are expressed as follows: 663

eee = [
1 − εA,B εB,A
εA,B 1 − εB,A

] , eee−1 =
1

C
[
1 − εB,A −εB,A
−εA,B 1 − εA,B

] , (54)

where C = (1 − εA,B)(1 − εB,A) − εA,BεB,A is the constant arising from the inversion of a 664

2 × 2 matrix. 665

The formula in eq (50) is rewritten as 666

[
x̂

1 − x̂
] =

1

C
[
1 − εB,A −εB,A
−εA,B 1 − εA,B

] [
ẑ

1 − ẑ
] , (55)

where x̂ is the estimator of the error-corrected population frequency, while ẑ is the 667

estimated population frequency prior to error correction: 668

ẑ =
m0 +m1

n
. (56)

From eq (55) it is possible to deduce the following equality: 669

E[x̂] =
1

C
(1 − εB,A)E[ẑ] −

1

C
(1 −E[ẑ])εB,A

=
1

C
x(1 − εB,A − εA,B) = x.

(57)

This proves that the error-corrected estimators of the allele frequencies are again 670

unbiased, therefore calculating the D-statistic using error-corrected allele frequencies 671

leaves the convergence results unchanged. 672

Supplemental Data. 673

The Supplemental Data contains two tables with numeric results related to a real data 674

scenario, and three figures regarding the estimates of type-specific errors, the behaviour 675

of the D-statistic and the correction for external introgression. 676

Table 2. European Introgression into Native American Individuals. The 677

table contains the values of the different types of D-statistics used to create the plot of 678

Fig 5C, reporting the D-statistic for the tree (((PEL,CHB)CEU)YRI). The first column 679

denote if we are illustrating either the extended D-statistic, Dext, or the D-statistic that 680

uses a sampled base, D1base. The column denoted by D is the D-statistic over all blocks 681

of loci, used to estimate the standard deviation (third column) by bootstrapping. The 682

Z-score represents the D-statistic normalized by its standard deviation. The last column 683

represents the ratio between the estimated standard deviations of D1base and Dext.

D-statistic D stdev(D) Z-score σ1base

σext

Dext -0.032638 0.002449 -13.114101 -
D1base -0.038171 0.006164 -6.223641 2.51
D1base -0.032786 0.006244 -5.253267 2.54
D1base -0.030950 0.006708 -4.602315 2.74
D1base -0.038730 0.006480 -5.999972 2.64
D1base -0.033640 0.006244 -5.353646 2.55

684

Table 3. Estimated Error Rates. Estimated type-specific error rates for the 685

ancient individuals Saqqaq and Canadian Dorset Mi’kmaq used in the tree of Figure 3B. 686
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Individual A→ C A→ G A→ T C → A C → G C → T

Saqqaq 1.90e-04 6.08e-04 3.27e-04 7.52e-04 1.22e-04 6.32e-04
Dorset 8.86e-05 1.15e-03 1.62e-04 2.04e-04 8.52e-05 5.22e-03

G→ A G→ C G→ T T → A T → C T → G
Saqqaq 6.35e-04 1.26e-04 7.52e-04 3.28e-04 6.08e-04 1.91e-04
Dorset 5.21e-03 9.01e-05 2.06e-04 1.64e-04 1.15e-03 9.04e-05

Table 4. Extended D-Statistic in Real Data Scenario with Ancient 687

Genomes. Table comparing the extended D-statistic with the application of error 688

correction and/or transition removal for the tree of Figure 3B, where the ancient 689

individuals Saqqaq and Canadian Dorset Mi’kmaq are affected by high type-specific 690

error rates.

Correction Dext sd(Dext) Z − score p − value

None -5.26e-2 5.4e-3 -9.81 0
Trans.Rem. 1.01e-2 7.1e-3 1.41 1.57e-1
Error.Corr. 5.64e-3 6.1e-3 0.93 3.51e-1

Err.Corr & Tr.Rem 8.77e-4 7.3e-3 0.12 9.04e-1

691

Figure 7. Subtrees of interest in a scenario subject to external 692

introgression. (A) Case of a 4-population tree subject to introgression from an 693

external population H5. Consider H2 being the population subject to introgression from 694

H5. (B) The subtree T1∶4 includes the 4-population tree excluding the admixing 695

population. (C) The subtree Tout replaces the admixed population with the population 696

source of introgression. (D) The subtree Tun, where H ′
2 represents H2 when it has not 697

yet undergone admixture, reflects the null hypothesis of correctness for the genetic 698

relationship between four populations.
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Figure 8. Estimates of Type-Specific Errors for Ancient Genomes. 700

Estimated type-specific error rates for the Saqqaq, Mi’qmak and French genomes of the 701

real data scenario illustrated in Fig 4B. 702

Type specific error rates for the individuals in H1, H2, H3
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Figure 9. Behaviour of the D-Statistic in Function of the Type-Specific 703

Error. Effect of increasing and decreasing the removal of error for the base transitions 704

C → G and C → T for one of the Greenlandic Saqqaq, Canadian Dorset and French 705

genomes. This corresponds to the addition of a value in the entry eee(G,C) or eee(T,C) of 706

the estimated error matrix of one of the individuals, as if the estimated error rate was 707

higher or lower. In solid lines are represented the values of Dext for which the correction 708

is performed. The dashed lines represent the analogous values where ancient transitions 709

are not considered. 710
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