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Abstract	

RNA-protein	binding	is	critical	to	gene	regulation,	controlling	fundamental	processes	

including	splicing,	translation,	localization	and	stability,	and	aberrant	RNA-protein	

interactions	are	known	to	play	a	role	in	a	wide	variety	of	diseases.	However,	molecular	

understanding	of	RNA-protein	interactions	remains	limited,	and	in	particular	identification	

of	the	RNA	motifs	that	bind	proteins	has	long	been	a	difficult	problem.	To	address	this	

challenge,	we	have	developed	a	novel	semi-automatic	algorithm,	SARNAclust,	to	

computationally	identify	combined	structure/sequence	motifs	from	immunoprecipitation	

data.	SARNAclust	is,	to	our	knowledge,	the	first	unsupervised	method	that	can	identify	RNA	

motifs	at	full	structural	resolution	while	also	being	able	to	simultaneously	deconvolve	

multiple	motifs.	SARNAclust	makes	use	of	a	graph	kernel	to	evaluate	similarity	between	

sequence/structure	objects,	and	provides	the	ability	to	isolate	the	impact	of	specific	

features	through	the	bulge	graph	formalism.	SARNAclust	includes	a	key	method	for	

predicting	RNA	secondary	structure	at	CLIP	peaks,	RNApeakFold,	which	we	have	verified	to	

be	effective	on	synthetic	motif	data.	We	applied	SARNAclust	to	30	ENCODE	eCLIP	datasets,	

identifying	known	motifs	and	novel	predictions.	Notably,	we	predicted	a	new	motif	for	the	

protein	ILF3	similar	to	that	for	the	splicing	factor	hnRNPC,	providing	evidence	for	

interaction	between	these	two	proteins.	To	validate	our	predictions,	we	performed	a	

directed	RNA	bind-n-seq	assay	for	two	proteins:	ILF3	and	SLBP,	in	each	case	revealing	the	

effectiveness	of	SARNAclust	in	predicting	RNA	sequence	and	structure	elements	important	

to	protein	binding.	Availability:	https://github.com/idotu/SARNAclust		
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Background	

RNA-protein	binding	is	a	fundamental	biological	interaction	vital	to	the	diverse	functions	of	

RNA,	including	key	roles	in	RNA	splicing,	translation,	localization	and	stability	(Hafner	et	al.	

2010;	Lukong	et	al.	2008;	Sanford	et	al.	2009;	Yeo	et	al.	2009).	However,	the	sequence	

features	that	determine	affinity	to	RNA-binding	proteins	(RBPs)	are	unknown	for	most	

RBPs,	including	the	vast	majority	of	the	hundreds	of	RBPs	in	the	human	proteome.	

Moreover,	even	for	RBPs	with	known	binding	motifs,	existing	sequence	motifs	are	only	

weakly	predictive	of	which	RNA	regions	will	be	bound.	Deciphering	these	RNA	binding	

features	is	crucial	for	mechanistic	understanding	of	RNA-protein	binding.	The	development	

of	quantitative	models	that	predict	RBP	targets,	the	strength	of	binding,	and	the	sequence	

regions	that	control	such	binding	will	be	paramount	for	understanding	how	RNA	regulation	

impacts	human	health.	RNA-protein	interactions	are	already	known	to	play	a	role	in	a	wide	

variety	of	diseases	including	muscular	dystrophy,	fragile	X	syndrome,	mental	retardation,	

Prader-Willi	syndrome,	retinitis	pigmentosa,	spinal	muscular	atrophy,	and	cancer	(Hafner	

et	al.	2010;	Lukong	et	al.	2008;	Sanford	et	al.	2009;	Wurth	2012;	Yeo	et	al.	2009).		

	

To	date,	the	RNA	features	that	determine	the	binding	of	an	individual	protein	have	been	

studied	primarily	from	the	perspective	of	short	individual	motifs.	For	example,	the	5	nt	

motif	GGAGA	is	considered	the	canonical	description	for	the	RNA	motif	interacting	with	the	

human	LIN28	protein	(Wilbert	et	al.	2012,	28).	In	the	RBPDB	database	(Cook	et	al.	2011)	

which	compiles	RNA-protein	interaction	motifs	based	on	previous	experimental	findings,	

this	type	of	short	single	motif	is	the	standard	descriptor	for	a	binding	element.	

Unfortunately,	such	short	nucleotide	motifs	for	RNA-protein	interactions	have	often	had	

poor	predictive	power.	As	an	example,	Hogan	et	al	identified	transcripts	bound	to	40	yeast	

RBPs,	and	then	searched	UTR	regions	of	these	transcripts	for	overrepresented	motifs	
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(Hogan	et	al.	2008).	They	were	able	to	find	statistically	significant	motifs	for	only	21	RBPs,	

and	in	many	cases	previously	known	motifs	could	not	be	found.	This	issue	of	poor	

predictive	power	for	single	motifs	has	continued	even	with	finer	resolution	assays	such	as	

CLIP-seq,	which	can	localize	binding	sites	to	within	a	few	nucleotides.(Chi	et	al.	2009;	Zhang	

and	Darnell	2011).	Wilbert	et	al.	used	CLIP-seq	to	find	LIN28–RNA	interaction	sites	in	

human	somatic	and	embryonic	stem	cells	(Wilbert	et	al.	2012,	28).	Target	transcripts	were	

found	to	have	3.5	binding	sites	on	average,	with	sites	typically	~35	nt	or	shorter	and	often	

>50	nt	apart	on	transcripts.	The	GGAGA	sequence	motif	was	the	most	overrepresented	

motif	in	these	sites,	yet	less	than	13%	of	the	sites	contained	it.		

	

Computational	approaches	for	RNA	motif	detection	have	had	moderate	success.	RNA	motif	

analysis	has	often	been	carried	out	by	repurposing	DNA	motif	finder	tools	such	as	MEME	

(Bailey	et	al.	2006),	PhyloGibbs	(Siddharthan	et	al.	2005)	or	cERMIT	(Georgiev	et	al.	2010),	

but	a	fundamental	limitation	of	these	methods	is	that	they	cannot	take	into	account	RNA	

secondary	structure.	DNA-based	tools	have	been	partially	successful	because	most	known	

RBPs	bind	to	single	stranded	RNA	(ssRNA),	but	it	remains	unclear	how	much	secondary	

structure	impacts	binding.	Some	motif	identification	methods	have	incorporated	aspects	of	

RNA	structure,	e.g.	by	biasing	for	single	stranded	regions	(Hiller	et	al.	2006;	Wang	et	al.	

2011)	or	searching	over	a	limited	set	of	structural	contexts	(paired,	loop,	unstructured,	

miscellaneous)	(Bahrami-Samani	et	al.	2015;	Fukunaga	et	al.	2014;	Kazan	et	al.	2010).	

However,	the	predictive	power	of	these	methods	remains	low,	likely	because	of	the	limited	

number	of	considered	contexts	compared	to	the	diversity	of	possible	RNA	structures.	For	

example,	Kazan	et	al.	tested	their	algorithm	on	9	RBP-interaction	sets	and	found	an	average	

AUC	value	of	only	0.64	(Kazan	et	al.	2010).	More	recently,	new	approaches	that	consider	

these	structural	contexts	have	arisen,	using	probabilistic	machine	learning	algorithms	such	
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as	Support	Vector	Machines	(Livi	and	Blanzieri	2014),	Hidden	Markov	Models		(Weyn-

Vanhentenryck	and	Zhang	2016;	Zhang	et	al.	2013)	or	even	Deep	Learning	(Alipanahi	et	al.	

2015;	Pan	and	Shen	2017;	Zhang	et	al.	2016).		Still,	none	of	these	latest	methods	are	

unsupervised	(i.e.	they	rely	on	a	training	set	of	true	binding	sites),	they	do	not	consider	

multiple	RNA	motifs,	and	they	abstract	structural	constraints	rather	than	considering	exact	

stable	structures.	

	

More	relevantly,	Maticzka	and	colleagues	developed	the	graph	kernel-based	GraphProt	and	

applied	it	to	learn	motifs	from	CLIP-seq	data	(Maticzka	et	al.	2014).	They	found	motifs	that	

were	predictive	of	binding	for	the	protein	PTB,	and	the	certainty	of	predicted	motifs	

correlated	with	measured	RBP	affinities.	However,	the	efficiency	of	this	method	is	untested	

for	RBPs	that	bind	to	double	stranded	RNAs,	and	it	is	unknown	whether	the	effectiveness	of	

the	method	would	depend	on	the	specific	types	of	structures	to	which	individual	proteins	

bind.	Moreover,	GraphProt	is	not	designed	to	deal	with	an	RBP	capable	of	binding	several	

distinct	RNA	motifs.	GraphProt	reports	at	most	one	motif	and	classifies	the	remaining	data	

as	noise.	A	more	general	approach	would	be	to	use	clustering	to	allow	for	multiple	possible	

binding	motifs.	A	related	method	is	GraphClust	(Heyne	et	al.	2012),	which	uses	a	

sequence/structure	graph	kernel	approach	to	cluster	RNAs.	However,	it	is	tailored	to	

cluster	non-coding	RNAs	into	families,	and	it	is	unknown	if	such	an	approach	would	be	

effective	for	the	clustering	of	CLIP-seq	sites.	

	

Here,	we	propose	a	method,	SARNAclust	(Semi-Automatic	RNA	clustering),	to	cluster,	as	

opposed	to	classify,	RNA	motifs	that	bind	to	a	given	RBP	from	CLIP-seq	data.	To	the	best	of	

our	knowledge,	this	is	the	first	approach	to	attempt	to	cluster	CLIP-seq	peaks	in	order	to	

discover	potentially	multiple	distinct	RNA	motifs	that	bind	to	a	given	RBP.	The	most	related	
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approach	we	know	of	is	AptaTrace	(Dao	et	al.	2016),	which	uses	clustering	to	identify	

multiple	possible	RNA	motifs	from	HT-SELEX	Experiments.	However,	AptaTrace	cannot	be	

applied	to	CLIP-seq	sites	since	it	relies	on	k-mer	context	information	during	evolution	of	a	

sequence	pool	over	multiple	SELEX	rounds,	while	CLIP-seq	provides	a	static	snapshot.	A	key	

strength	of	SARNAclust	is	that	it	is	fully	unsupervised,	an	important	feature	since	the	noise	

levels	in	CLIP	data	are	not	well-characterized.	

	

The	paper	is	organized	as	follows:	we	first	describe	the	algorithmic	basis	for	the	method	

and	pipeline;	we	then	perform	a	benchmarking	on	synthetic	data	and	present	results	from	

analysis	on	30	ENCODE	datasets;	next,	we	present	experimental	validations	of	the	results	

using	RNA	bind-n-seq	(Lambert	et	al.	2014)	and	gel	shift	assays;	and,	finally,	we	present	a	

discussion	and	conclusions.	

	

Results	

Overview	of	the	Algorithms	

Two	of	the	main	results	of	this	paper	are:	the	development	of	a	new	RNA	structure	

prediction	method	for	CLIP	peaks	that	we	refer	to	as	RNApeakFold;	and	the	development	of	

a	new	tool,	SARNAclust,	that	includes	RNApeakFold	as	part	of	a	complete	process	to	

determine	RNA	motifs	that	bind	to	a	given	RBP.	Our	overall	pipeline	provides	means	to	

process	data	files	coming	from	a	CLIP	experiment	(see	Methods)	as	well	as	source	code	for:	

(I)	calculating	potential	secondary	structure	of	the	peaks	using	RNApeakFold,	(II)	clustering	

of	peaks	according	to	sequence	only,	and	(III)	clustering	of	peaks	according	to	

sequence/structure	using	SARNAclust.	In	addition,	we	provide	a	protocol	for	experimental	

validation	of	candidate	motifs,	including	in	silico	design	of	instances	of	the	motif	using	

RNAiFold	(Garcia-Martin	et	al.	2013,	2015).	Figure	1	shows	the	flowchart	of	our	pipeline.	
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Supplementary	Figure	1	shows	the	flowchart	of	the	peak	analysis.	Details	of	the	

experimental	validation	protocol	can	be	found	in	the	Methods	section.		

Figure	1	
	

	
Legend:	SARNAclust	CLIPseq	motif	finding	pipeline.	Bam	files	for	sample	and	
control	are	processed	through	our	peak	detection	module.	The	structure	of	each	
peak	is	calculated	using	RNApeakFold.		The	peaks	are	then	transformed	into	
sequence/structure	objects	and	clustered..	
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Broadly	speaking,	SARNAclust	is	a	semi-automatic	approach	to	find	RNA	motifs	that	bind	to	

a	given	RBP.	The	key	elements	of	SARNAclust	are	a)	the	structure	calculation	for	CLIP	peaks	

(RNApeakFold),	and	b)	a	graph	transformation	that	allows	for	the	calculation	of	a	similarity	

value	between	pairs	of	sequence/structures.	These	similarity	values	provide	the	input	for	

the	clustering	of	CLIP	peaks.	Flexible	parameters	in	SARNAclust	allow	it	to	be	used	as	a	

guidance	system	to	identify	well-supported	motifs	and	test	their	key	features.		

	

RNApeakFold	

To	determine	RNA	secondary	structure	at	each	CLIP	peak	so	that	structure	can	be	

accounted	for	in	motif	detection,	we	have	developed	RNApeakFold,	which	calculates	the	

probable	secondary	structure	through	computational	folding.	RNApeakFold	first	computes	

base	pairing	probabilities	for	the	sequence	including	the	peak	and	+/-	100	flanking	

nucleotides	using	RNAfold	–p	(Hofacker	2009).	We	then	use	those	probabilities	as	energies	

in	an	implementation	of	Nussinov	folding	(Nussinov	and	Jacobson	1980)	to	determine	the	

most	probable	structure	of	the	peak	region	without	the	flanking	nucleotides.	As	described	

below,	this	choice	of	folding	approach	yields	superior	motif	detection.	Algorithmic	details	

are	available	in	the	Methods	section.	

	

SARNAclust	

Given	the	set	of	RNA	sequence/structures	calculated	using	RNApeakFold	(or	any	other	RNA	

structure	prediction	method),	SARNAclust	then	clusters	them.	Similarities	between	pairs	of	

sequence/structures	are	computed	using	the	graph	kernel	in	Eden	(Costa	and	De	Grave	

2010),	which	is	equivalent	to	that	used	in	GraphClust	(Heyne	et	al.	2012)	and	GraphProt	

(Maticzka	et	al.	2014).	To	use	the	graph	kernel	we	first	need	to	transform	the	

sequence/structures	into	graphs.	Our	pipeline	allows	for	several	different	transformations		
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Figure	2	

	
	
Legend:	Complete	graph	and	bulge	graph	sequence/structure	representations	used	
in	SARNAclust.	(top)	complete	graph	and	(bottom)	bulge	graph	for	example	
sequence/structure		
GGGGAAACCAACCUGU 
((((...))..))...	
In	the	complete	graph	(top)	nodes	are	nucleotides	and	edges	between	nodes	
correspond	to	either	base	pairing	(bp)	or	backbone	links	(bb).	In	the	bulge	graph	
(bottom)	the	structure	is	collapsed	into	structural	elements,	where	“h”	is	hairpin	
loop,	“i”	is	internal	loop	or	bulge	and	“s”	is	stem	(double	stranded).	“t”	stands	for	the	
three	prime	single	stranded	region.	
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based	on	either	the	complete	graph	or	the	bulge	graph	(Kerpedjiev	et	al.	2015)	(See	Figure	

2).	The	complete	graph	represents	the	secondary	structure	with	all	node	connections	

between	consecutive	nucleotides	and	base	pairs.	The	bulge	graph	is	a	condensed	

representation	similar	to	the	concept	of	abstract	RNA	shape	(Giegerich	et	al.	2004).	

SARNAclust	provides	the	following	options	for	graph	transformations	(see	Supplementary	

Figure	2):	

• Option	1:	GraphProt-like	consists	of	the	complete	graph	plus	a	hypergraph,	which	is	

a	less	condensed	version	of	the	bulge	graph.	

• Option	2:	GraphProt-like	where	the	hypergraph	is	substituted	by	the	bulge	graph.	

• Option	3:	Bulge	graph.	

• Option	4:	Bulge	graph	plus	corresponding	sequence	in	hairpin	loops.	

• Option	5:	Bulge	graph	plus	corresponding	sequence	in	internal	loops	and	bulges.	

• Option	6:	Bulge	graph	plus	corresponding	sequence	in	external	loops.	

• Option	7:	Bulge	graph	plus	corresponding	sequence	in	base	paired	regions.	

• Option	8:	Bulge	graph	plus	corresponding	sequence	in	hairpin	loops,	internal	loops	

and	bulges.	

• Option	9:	Bulge	graph	plus	corresponding	sequence	in	all	unpaired	regions.	

• Option	10:	Bulge	graph	plus	sequence	everywhere.	

• Option	11:	Bulge	graph	plus	complete	graph	where	sequence	in	base	paired	regions	

is	not	taken	into	account.	

We	have	provided	a	range	of	options	because	different	RNA-binding	proteins	will	vary	in	

their	dependence	on	different	structural	features,	and	in	many	cases	such	features	are	

known	based	on	the	domains	in	the	protein.	These	include	options	that	exhaustively	

consider	structure	but	may	be	more	sensitive	to	noise	(e.g.	option	1)	and	those	that	reduce	

the	set	of	considered	structural	contexts	based	on	prior	expectations	(e.g.	option	11).	For	
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example,	for	options	9	or	11	to	be	suitable,	one	would	hypothesize	that	the	key	binding	

element	in	the	RNA	tends	to	occur	in	unpaired	regions,	but	within	a	precise	structural	

context.	In	the	following	section	we	show	the	effect	of	these	transformations	when	applying	

our	methods	to	synthetic	data.	

	

Once	the	graph	transformation	has	been	applied,	SARNAclust	allows	the	user	to	apply	one	

of	several	clustering	algorithms	and	returns	the	clusters	along	with	a	consensus	

sequence/structure	for	each.	The	inputs	needed	to	run	the	clustering	module	are:	1)	the	file	

with	the	sequence/structures,	2)	dimension	and	3)	radius	from	Eden	(see	(Heyne	et	al.	

2012)),	4)	the	clustering	algorithm	and	its	parameters,	and	5)	the	graph	transformation	

option.	Detailed	description	of	the	pipeline,	manuals	and	source	code	are	available	at	

https://github.com/idotu/SARNAclust.	

	

Benchmarking	on	Synthetic	Motif	Data	

Table	1:	Synthetic	motifs	used	to	test	SARNAclust	
	

Motifs	 	 	
special_structure	

NNNNNNNNNNNNNNNNNNNNNNNNNN	 Sequence	
((.((((..((...))..))..))))	 Structure	

AUG_in_Bulge	
NNNNAUGNNNNNNNNNNNNN	 Sequence	
((((...(((...)))))))	 Structure	

pyrimidine_tract	
NNNNNNNNNNNCCUCU	 Sequence	
((((...)))).....	 Structure	

GAGA_in_Hairpin	
NNNNNGAGANNNNN	 Sequence	
(((((....)))))	 Structure	

GGUCG_in_left_stem	
NNGGUCGNNNNNNNNNN	 Sequence	
(((((((...)))))))	 Structure	

GGUCG_in_right_stem	
NNNNNNNNNNGGUCGNN	 Sequence	
(((((((...)))))))	 Structure	

	
	

In	order	to	test	the	effectiveness	of	RNApeakFold	and	SARNAclust,	we	generated	100	

sequences	for	each	of	the	6	synthetic	motifs	in	table	1	plus	1000	random	sequences	to	act	as	
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noise.	Each	synthetic	motif	describes	the	RNA	motif	that	would	bind	a	potential	protein	

binding	domain.	The	6	motifs	chosen	correspond	to:		a	special	structure	with	no	sequence	

conservation	(special_structure)	or	a	conserved	sequence	within	a	certain	structural	context	

in	a	hairpin	loop	(GAGA_in_Hairpin),	in	a	bulge	(AUG_in_Bulge),	in	an	external	loop	

(pyrimidine_tract)	or	in	a	double	stranded	region	(GGUCG_in_left_stem	and	

GGUCG_in_right_stem).	Sequences	for	each	motif	were	generated	using	RNAdualPF	(Garcia-

Martin	et	al.	2016)	by	sampling	from	the	low	energy	ensemble	of	sequences	compatible	

with	the	given	structure	and	with	the	corresponding	sequence	constraints	(see	table	1).	The	

1000	random	sequences	were	generated	uniformly	randomly	(i.e,	sampling	each	nucleotide	

with	0.25	probability)	with	a	constant	length	comparable	to	the	range	of	lengths	of	the	

synthetic	motifs.	All	motif	and	random	sequences	can	be	found	in	Supplementary	Data	1.	

	

Table	2:	Comparison	between	RNAfold	and	RNApeakFold	for	structure	prediction	
of	synthetic	CLIP	peaks.	Values	indicate	the	number	of	structures	correctly	

predicted	by	each	method	for	each	synthetic	motif	type.	
	

motifs	 RNAfold	 RNApeakFold	 Total	
GAGA_in_Hairpin	 0	 77	 100	
GGUCG_in_left_stem	 0	 82	 100	
GGUCG_in_right_stem	 0	 76	 100	
pyrimidine_tract	 0	 12	 100	
AUG_in_Bulge	 0	 10	 100	
special_structure	 0	 0	 100	

	

First,	we	tested	RNApeakFold	on	synthetic	CLIP	peaks.	These	peaks	were	generated	by	

adding	20	nucleotides	uniformly	randomly	both	5’	and	3’	of	the	600	synthetic	sequences	

mentioned	above.	This	accounts	for	the	fact	that	experimental	CLIP	peaks	contain	additional	

nucleotides	flanking	the	true	binding	motifs.	RNApeakFold	was	used	to	predict	secondary	

structures	after	adding	+/-	100	uniformly	random	flanking	nucleotides.	Table	2	shows	the	

comparison	between	using	RNAfold	on	the	simulated	CLIP	peaks	and	RNApeakFold	in	terms	
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of	how	many	of	the	synthetic	sequences	had	a	correct	structure	prediction.	Note	that	

RNAfold	did	not	predict	a	single	structure	correctly,	while	RNApeakFold	performed	well	in	

multiple	motif	types,	especially	GAGA_in_Hairpin,	GGUCG_in_left_stem	and	

GGUCG_in_right_stem.	

	

Although	these	results	are	promising,	we	note	three	potential	limitations	of	the	method.	

First,	and	common	to	all	structure	prediction	methods,	if	the	real	motif	or	the	structural	

context	is	longer	than	the	peak	then	the	prediction	will	be	incorrect.	Second,	the	method	

may	be	prone	to	overestimating	structure.	That	is,	although	it	can	effectively	predict	

structured	regions,	it	might	also	predict	structure	where	single	strandedness	is	correct.	And	

third,	it	assumes	that	the	relevant	structure	is	stable	enough	to	be	robustly	found	despite	

the	random	flanking	sequence.	The	method	will	not	be	suitable	if	the	structure	requires	a	

specific	(unknown)	context	around	it.	We	observed	signs	that	the	method	is	affected	by	

structural	stability,	as	shown	in	the	results	in	Table	2.		The	structures	of	the	motifs	that	are	

inherently	more	stable	(for	instance	GAGA_in_Hairpin)	are	predicted	more	accurately,	while	

those	that	are	inherently	unstable	(special_structure)	are	not.	

	

Next,	in	order	to	test	the	motif	identification	aspects	of	SARNAclust,	we	performed	

clustering	with	all	1600	sequences.	To	cluster	we	used	the	EdEN	graph	kernel	surveying	

over	possible	values	for	the	threshold	parameter,	which	specifies	the	minimal	similarity	for	

two	data	points	to	be	in	the	same	cluster.	Figure	3	shows	the	different	Fowlkes-Mallows	

(FM)	index	(Fowlkes	and	Mallows	1983)	values	for	each	graph	transformation	and	each	

threshold	value.	The	Fowlkes-Mallows	index	computes	the	similarity	between	the	clusters	

returned	by	the	clustering	algorithm	and	the	benchmark	classifications,	with	higher	FM	

values	indicating	greater	similarity.	It	can	be	computed	using	the	formula:		
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TP	is	True	Positives	(all	non	random	sequences	clustered	in	the	same	cluster;	however	if	2	

non	random	motifs	are	clustered	together	then	those	are	considered	as	FNs).	FP	is	False	

Positives	(all	random	sequences	that	appear	in	clusters).	FN	is	False	Negatives	(all	the	non	

random	sequences	that	do	not	appear	in	consistent	clusters).	True	Negatives	are	the	

random	sequences	that	do	not	appear	in	any	cluster.	Complete	statistics	for	each	choice	of	

graph	transformation	can	be	found	in	Supplementary	Data	2.	

	

Figure	3	
	

	
	
Legend:	Fowlkes-Mallows	index	at	different	threshold	values	for	each	of	the	graph	
transformation	options.	
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As	can	be	seen,	option	11	achieves	the	best	FM	value	at	threshold	0.6,	followed	by	option	6	

at	low	thresholds	and	option	9	also	at	threshold	0.6.	The	main	conclusions	of	this	analysis	

are	the	following	(see	also	Supplementary	Data	2):	

• GraphProt-like	options	perform	relatively	well	at	high	threshold	values,	but	cannot	

successfully	cluster	at	low	thresholds.	This	is	due	to	the	excess	information	(i.e.	

number	of	features)	specified	in	this	graph	transformation,	making	it	difficult	to	find	

clusters	of	sequence/structures	unless	the	instances	are	nearly	identical.	Option	2	

contains	slightly	fewer	features	than	option	1	and	thus	performs	slightly	better.	

• Each	graph	transformation	finds	its	corresponding	motif	at	low	to	mid	threshold	

values	before	suffering	an	increase	in	False	Positives	as	threshold	increases.	For	

instance,	option	4	finds	the	GAGA_in_hairpin	motif	easily	at	low	thresholds.	

• Results	for	option	6	are	misleading	since	it	profits	from	the	fact	that	most	motifs	do	

not	have	external	loops.		So	for	most	motif	instances	it	will	only	be	able	to	use	the	

bulge	graph	features	to	discriminate	motif	instances	from	one	another.	At	the	same	

time	it	prevents	False	Positives	from	the	random	sequences	that	do	have	external	

loops.	

• Option	3	is	one	of	the	few	capable	of	clustering	peaks	of	the	special	structure	motif,	

but	its	performance	is	poor	in	general.	

• Option	10	is	one	of	the	few	capable	of	clustering	peaks	with	the	GGUCG	in	the	stem	

region.	It	presents	comparable	results	to	the	GraphProt-like	options	while	also	

yielding	successful	clustering	at	low	thresholds.	

• Option	9	has	one	of	the	best	results	and	is	capable	of	finding	almost	all	motifs	with	

relatively	low	false	positive	rates.	

• Option	11	performs	the	best	among	all	options.	However,	this	option	specifies	more	

features	than	option	9,	and	therefore	it	will	be	more	affected	by	noise	within	the	
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motifs,	an	issue	similar	to	overfitting.	We	prognosticate	that	against	real	noisy	data	

the	performance	would	drop	significantly.	

	

For	all	these	reasons,	we	believe	that	option	9	at	threshold	0.6	is	the	best	option	moving	

forward.	However,	option	11	needs	to	also	be	considered	and	option	10	is	appropriate	if	we	

have	reason	to	believe	there	is	a	sequence	constraint	in	a	double-stranded	region.	The	rest	

of	the	options	can	be	used	if	the	structural	context	of	the	motif	is	known	beforehand.	For	

instance,	if	we	expect	our	motif	would	be	found	in	an	external	loop,	then	we	could	use	

option	6.	

	

Identification	of	RNA	motifs	in	ENCODE	CLIP	Data	

In	order	to	test	our	pipeline	and	new	tools	we	analyzed	data	from	ENCODE.	ENCODE	is	

conducting	ongoing	assays	of	RNA	crosslinking	immunoprecipitation	that	are	expected	to	

eventually	cover	>200	known	human	RNA	Binding	Proteins	using	the	most	recent	CLIP	

experimental	protocol:	eCLIP	(Van	Nostrand	et	al.	2016).	We	downloaded	a	set	of	30	RBPs	

from	ENCODE	eCLIP	experiments	at	www.encodeproject.org,	each	with	2	replicates	and	a	

control.		For	proteins	with	more	than	one	experimental	cell	type,	we	used	the	data	from	the	

K562	female	cell	line.	We	started	from	the	ENCODE	bam	files	and	called	peaks	as	indicated	

in	the	methods	section.	

	

We	first	assessed	the	percentage	of	peaks	that	fall	into	each	type	of	genomic	region:	Coding	

Region,	5’UTR,	3’UTR,	intronic	region	or	non-coding	RNA.	Figure	4	shows	the	region	

distribution	for	the	union	of	CLIP	sites	for	all	RBPs	(Fig.	4A),	as	well	as	the	distribution	

values	averaged	across	RBPs	(Fig.	4B).	These	two	measures	yield	similar	results,	and	both	

show	that	most	peaks	fall	into	intronic	regions.	Potential	explanations	are	that	most	
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proteins	are	involved	in	splicing,	RNA	structure	or	localization;	that	RBPs	bind	

promiscuously;	and/or	that	eCLIP	is	noisy	and	that	such	peaks	are	due	to	non-specific	signal	

from	intronic	RNA.		

Figure	4	
A	

	
B	

	
	
Legend:	Pie	chart	of	ENCODE	eCLIP	peaks	composition.	Regions	are	divided	into	
intronic,	non-coding,	5’	UTR,	CDS	and	3’UTR.	In	a)	peaks	from	all	RBPs	are	pooled	
together	in	order	to	calculate	the	global	composition.	In	b)	compositions	are	
calculated	for	each	RBP,	and	the	pie	chart	shows	the	average	across	RBPs.	
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As	an	initial	analysis	of	motifs	in	the	ENCODE	data,	we	searched	for	common	k-mers	in	the	

peaks	in	each	set.	This	approach	ignores	RNA	structure,	providing	a	comparison	to	the	

sequence/structure	clustering	approach.	We	performed	k-mer	analysis	as	in	(Yeo	et	al.	

2009,	2)	for	k	=	4,5,6,7,8,9.	Significant	k-mers	(Z-score	>	2.5)	are	shown	in	Supplementary	

Data	3.	For	comparison,	we	applied	SARNAclust	but	without	incorporating	structural	

information.	For	each	of	the	ENCODE	RBPs,	we	calculated	the	best	motif	from	the	k-mer	

analysis	and	from	this	SARNAclust	structureless	analysis	(Table	3).	Motifs	that	have	been	

previously	reported	for	these	proteins	as	found	in	RBPDB	and	ATtRACT	(Giudice	et	al.	

2016),	as	well	as	the	RNA	binding	domain	type,	are	also	shown	in	Table	3	for	comparison.	

For	each	protein,	the	best	k-mer	was	chosen	as	the	one	that	maximizes	the	quantity	(Z-

score)*k.	

	

Table	3:	Known	and	predicted	motifs	for	selected	RNA	binding	proteins.		For	each	
RBP,	the	known	binding	domain,	literature	known	k-mer,	SARNAclust	prediction,	k-

mer	prediction,	and	k-mer	z-score	are	shown.	
	

RBP	 domain	 Known	k-mer	 Best	Clusters	 Best	k-mer	 Zscore	
AGGF1	 -	 -	 CACACA	 CACACA	 50.76	
AKAP8L	 C2H2	(2)	 -	 CACACA	 ACACAC	 19.99	
AUH	 RNA-binding	 -	 GGGGG	 GGGG	 4.59	
CPSF6	 RRM	 -	 GGA*,	AAG*	 GAAGA	 16.09	
DKC1	 PUA	 -	 GUGUGUGUGUG

U	 GUGUGUGUG	 54.85	
EFTUD2	 tr-type	G	 -	 GUGUGUGU	 GUGUGUGUG	 10.02	
EIF4G2	 MIF4G	 -	 GU*,	UGGA*	 GUGUGUGUG	 81.27	
HLTF	 DEGH	box,	

Ring-type	ZF	 -	 GAAGAA	 GAAGA	 45.84	
HNRNPC	 RRM	 UAUUAGUAGA,UUUUU	 UUUUUUGAGA	 UUUUGAGA	 126.58	
HNRNPK	 RGG-box,	KH	(3)	 UGUCCCCUGAAAAACUGA	 CCUCCU	 UCCC	 56.72	
IGF2BP1	 RRM	(2),	KH	(4)	CAU,	AAGCACCCGUU	 GUGUGUGUGU	 GUGUGUGUG	 79.44	
ILF3	 DZF,	DRBM	(2)	 -	 UUUUUGAGA,	

GU*,UCC*	 UUUUUGAGA	 8.61	

KHSRP	 KH	(4)	 UAUUUAUw;	UwUAUUUw;	
nUGUrUrU;	CnsCyUCC	 UUGUUGUU	 UGUGU	 102.85	

NKRF	 R3H	 -	 GGGCGGG	 GGGG	 65.97	
NONO	 RRM	(2)	 AGGGA,	GAGAGGAAC	 UGUGUGUG	 UCCUGG	 3.25	
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PCBP2	 KH	(3)	 +	 UCCCUCCC	 UCCC	 155.15	
PTBP1	 RRM	(4)	 UCUU	 UCUCUCUC	 UCUCU	 95.78	
PUM2	 PUM-HD	 UGUANAUA	 UAUGUAUA	 UGUACA	 21.91	
RPS5	 -	 -	 GUGUGUGU	 UGCAUG	 22.98	
SAFB2	 SAP,	RRM	 -	 -	 GGGG	 49.31	
SLBP	 RNA-binding	 +	 CUUUUC	 CCAAG	 3.43	
SMNDC1	 Tudor	 -	 GUGUGUGU	 UGUCUG	 3.07	
SRSF7	 RRM,	CCHC-

type	ZF	 GAGA	 GUGUGUGUGU	 GUGUGUGUG	 30.13	

TAF15	 RRM,	RanBP2-
type	ZF	 -	 UGUGUGU	 AGGG	 57.07	

TARDBP	 RRM	(2)	 UGUGUGUG,	GAAUG	 GUGUGUGU	 UGUGUGUGU	 176.64	
TBRG4	 RAP	 -	 GUGUGUGUGU	 GUGUGUGUG	 4.92	
TRA2A	 RRM	 GAA*	 GAA*,	GGA*	 GAAGA	 28.82	
TROVE2	 Trove	 -	 GUGUGUGU	 GGGG	 20.77	
U2AF1	 RRM,	C3H1-

type	ZF	 UUU(UUUU/CCCC)UNUAGGU	 UUCCUUCC	 UUUCC	 32.97	
U2AF2	 RRM	(3)	 UUU(UUUU/CCCC)UNUAGGU	 UUUUCC	 UUCC	 94.72	
	

There	are	several	conclusions	we	can	extract	from	this	table:	

● Most	of	the	RBPs	selected	for	this	study	have	motif	predictions	dominated	

by	low	complexity	k-mers.	Many	are	G-rich,	GU	repeats,	GGA	repeats,	or	GAA	

repeats,	possibly	indicating	experimental	noise	or	promiscuous	binding.	For	the	

RBPs	with	a	significant	k-mer,	the	k-mer	with	the	best	score	is	often	a	subsequence	

of	a	longer	statistically	significant	k-mer	with	a	worse	score.	

● In	most	of	the	cases,	SARNAclust	finds	motifs	similar	to	the	best	k-mer.	

However,	SARNAclust	yields	these	without	requiring	one	to	survey	over	values	of	k.	

● Some	RBPs	show	binding	to	CU	rich	regions,	matching	prior	literature	

descriptions	(Song	et	al.	2012;	Toyoda	et	al.	2007;	Yuan	et	al.	2002).	

● Four	RBPs	show	binding	to	CA	repeats,	even	though	they	do	not	share	the	

same	RNA	binding	domains.	

● In	general,	there	is	no	correlation	between	RNA	binding	domain	class	and	

the	number	of	significant	k-mers.	

● Several	proteins	yield	specific	motif	predictions,	previously	known	or	

otherwise,	such	as	ILF3,	HNRNPC,	SLBP	and	PUM2.	
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We	also	found	that	recalculating	clusters	after	removing	intronic	peaks	did	not	alter	the	

results	significantly.	Therefore	intronic	peaks	are	not	unusual	and	they	do	not,	in	general,	

dominate	k-mer	or	cluster	analysis.	

	

Next,	we	analyzed	the	effect	of	adding	RNA	structure	to	the	motif	identification	process.	To	

do	this	we	used	RNApeakFold	to	calculate	the	secondary	structure	around	each	peak	and	

applied	SARNAclust	with	graph	transformations	9,	10	or	11	at	similarity	threshold	0.6,	

based	on	our	calibrations	from	the	synthetic	data.	However,	we	expected	that	for	real	data	

there	would	be	more	noise	and	false	positives.	Noisy	data	in	general	cause	SARNAclust	to	

yield	more	low	information	content	clusters,	i.e.	clusters	that	cannot	be	coherently	grouped	

by	sequence	or	structure.	

	

Table	4:	SARNAclust	results	for	RBPs	that	yielded	significant	clusters.	Y/N	indicate	
whether	the	motif	was	detected	with	each	option	choice.	Nucleotides	in	italic	indicate	they	

are	base	paired.	[	indicates	start	or	end	of	a	stem.	+	from	(Battle	and	Doudna	2001)	
	

RBP	 Motif	 option	
9	

option	
10		

option	
11	 Known	motifs	

AGGF1	 CCAUU	
CA*	

Y	
Y	

Y	
Y	

N	
N	 	

AKAP8L	 CA*	 Y	 Y	 N	 	

CPSF6	 GAN*	
[GGGUGGU]	

Y	
N	

Y	
N	

N	
Y	 	

DKC1	 GU*	 Y	 Y	 Y	 	
EIF4G2	 GU*	 Y	 Y	 Y	 	
HLTF	 [A-rich]	 N	 Y	 N	 	

HNRNPC	
UUUUUUUGNN	
UUUUUGANA	
UUGAGA	

N	
Y	
N	

Y	
N	
N	

N	
N	
Y	

UUUUU	

HNRNDK	 [CCC]	 Y	 N	 N	 	
IGF2BP1	 GU*	 Y	 Y	 N	 	

ILF3	
UUUNGAGA	
CU-rich	
UUUUNNGA	
GU*	

Y	
Y	
Y	
Y	

Y	
Y	
Y	
N	

N	
N	
N	
N	

	

NKRF	 [GA-rich]	 Y	 N	 N	 	
PCBP2	 CU-rich	 Y	 Y	 Y	 CU-rich	
PTBP1	 CU-rich	 Y	 Y	 Y	 CU-rich	
SAFB2	 [[A*]A]	 Y	 N	 N	 	
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SLBP	 GGNNCUUUUCAGNGCC	 N	 Y	 Y	 GCUCUUUUCAGAGC+	
TAF15	 [GA-rich]	 Y	 N	 N	 	
TARDBP	 GU*	 Y	 Y	 Y	 GU*	,	GAAUGU/G	

TRA2A	 CA-rich	
CNAUCCA	

Y	
Y	

Y	
N	

N	
N	 GA-rich	

U2AF1	 CU-rich	 Y	 Y	 N	 	
U2AF2	 CU-rich	 Y	 Y	 N	 UUUUUU/CC	

	

Table	4	shows	SARNAclust	results	for	all	the	ENCODE	RBPs	which	yielded	significant	

clusters.	RBPs	not	in	this	table	either	yielded	no	clusters	or	only	low	information	content	

clusters.	Most	RBPs	show	motifs	similar	to	either	their	known	motifs	or	the	ones	found	in	

the	pure	sequence	analysis.	Also,	as	expected,	option	11	was	less	effective	at	finding	

significant	clusters,	and	option	9	was	the	clear	winner.	Interestingly,	option	10	yielded	a	

strong	prediction	for	the	SLBP	motif,	coinciding	with	the	literature-known	motif	(Battle	and	

Doudna	2001).	This	prediction	indicated	that	sequence	conservation	within	the	base	paired	

region	of	the	RNA	site	is	important	for	SLBP	protein	binding.	Another	interesting	

observation	was	the	identification	of	a	motif	for	ILF3.	This	motif	was	similar	to	that	found	

when	no	structural	information	was	used,	and	it	was	also	similar	to	the	known	motif	for	

splicing	involved	RBP	HNRNPC	(Zarnack	et	al.	2013).	In	addition,	table	4	indicates	a	variety	

of	other	results,	such	as	the	frequent	importance	of	GU*	(GU	repeats)	for	several	RBPs,	

novel	motifs	for	CSPF6	and	SAFB2,	and	alternate	predicted	motifs	for	TRA2A.		

	

Experimental	validation	of	SARNAclust	prediction	for	SLBP	

As	described	above,	SARNAclust	yielded	a	clear	prediction	for	the	RNA	motif	of	SLBP,	

matching	the	literature-annotated	version	of	the	motif	(Battle	and	Doudna	2001).	

Moreover,	part	of	the	signal	for	this	motif	arose	from	sequence	conservation	in	the	double	

stranded	region.	To	determine	if	SARNAclust	could	effectively	predict	the	importance	of	

features	within	motifs,	we	performed	additional	experiments	of	SLBP-RNA	binding	using	

designed	sequences	in	a	RNA	bind-n-seq	(RBNS)	validation	protocol.		To	do	this,	we	first	
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used	RNAiFold	(Garcia-Martin	et	al.	2015)	(See	Methods)	to	design	four	different	types	of	

sequences	as	illustrated	in	Table	5.	These	sequences	were	chosen	to	determine	whether	

sequence	conservation	is	necessary	in	both	the	loop	region	and	the	stem	region	of	the	motif,	

and	also	if	the	occurrence	of	sequence	of	the	loop	region	in	a	different	structural	context,	

i.e.,	in	a	bulge,	could	still	lead	to	protein-RNA	binding.	We	then	performed	RBNS	using	

purified	GST-SBP-SLBP	to	pull	down	the	designed	RNA	sequences	(Lambert	et	al.	2014).	As	

a	nonspecific	binding	control,	we	also	performed	RBNS	with	the	same	RNA	against	purified	

GST-SBP.	RBNS	was	performed	in	duplicate	for	each	protein	tested.	Each	of	these	proteins	

were	expressed	in	E.	coli	and	affinity	purified	to	sufficient	purity	(Supplementary	Figure	3).	

RNA	pulled	down	by	each	protein	was	reverse	transcribed	with	a	primer	containing	a	10	

nucleotide	random	sequence	to	collapse	PCR	duplicates	during	data	analysis.	The	resulting	

cDNA	was	then	PCR	amplified	to	attach	Illumina	sequencing	primers	and	indices.	

	

Table	5:	Four	different	classes	of	designed	sequences	used	for	the	RNA	Bind-N-Seq	
validations	for	SLBP.	

	
Name	 	 	

consensus	
.....((((((....))))))..... Structure	
CCAAAGGYYYUUYUNARRRCCACCCA Sequence	

consensusLoopOnly	
.....((((((....))))))..... Structure	
DDBBBHHRRRVUYUNBYYYDDBDDDB Sequence	

LooStOnly	
.....((((((....))))))..... Structure	
DDBBBHHRRRVVRVNBYYYDDBDDDB Sequence	

loopInBulge	
....(((((((((....))))....))))).... Structure	
NNNNNNNNNNNNNNNNNNNNNUYUNNNNNNNNNN Sequence	

	

Figure	5	shows	the	shift	in	percentage	of	reads	of	each	type	and	its	difference	between	GST-

SBP	RBNS	and	GST-SBP-SLBP	RBNS.		Only	the	consensus	motif	from	(Battle	and	Doudna	

2001)	has	a	clear	shift	from	the	control,	indicating	that	the	motif	definition	is	specific	and	

that	the	variant	versions	of	the	motif	have	decreased	binding.	To	assess	p-values,	we	used	

DEseq	(Anders	and	Huber	2010)	to	compare	the	readcounts	(Supplementary	Data	4)	of	all	
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sequences	in	the	pool	to	the	controls.		Here	an	increased	normalized	ratio	of	counts	in	the	

SLBP	pulldown	relative	to	the	control	indicates	increased	binding.	This	analysis	showed	

that	only	sequences	from	the	consensus	motif	bind	to	SLBP	significantly.	Moreover,	all	but	7	

of	these	consensus	sequences	are	significantly	overrepresented	in	the	SLBP	bound	pool	

(Adjusted	p-val	>	0.01).	These	results	indicate	that	disruption	of	any	of	the	elements	in	the	

SARNAclust	prediction	for	the	SLBP	motif	decrease	binding.	Furthermore,	Supplementary	

Figure	4	shows	the	sequence	logos	for	all	the	consensus	sequences	that	bind	or	do	not	bind	

significantly,	respectively.		The	logos	indicate	that	long	stretches	of	U’s	near	the	apical	

region	of	the	hairpin	loop	compromise	binding	affinity,	which	is	to	be	expected	since	they	

are	energetically	unfavorable	and	therefore	prone	to	render	the	hairpin	unstable.	

Figure	5	

	
	
Legend:	Percentage	shift	in	the	sequences	retrieved	in	samples	versus	control	for	
SLBP	sequences.	
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To	further	validate	these	results	we	performed	several	gel	shift	experiments	(Figure	6).	We	

incubated	6	RNA	probes	selected	from	the	RBNS	data	with	purified	GST-SBP-SLBP.		

Supplementary	Data	4	shows	the	6	selected	sequences	highlighted	in	red.	These	include	2	

from	the	consensus	binding	group,	one	with	strong	binding	affinity	in	the	RBNS	assay	

(consensus	A)	and	one	with	no	significant	binding	affinity	(consensus	B).	There	are	also	4	

extra	sequences	from	the	remaining	types	where	the	RBNS	binding	signal	was	not	

significant.	As	expected,	only	the	consensus	A	sequence	shows	binding	to	SLBP,	confirming	

our	conclusions	from	the	p-value	analysis	and	validating	the	RBNS	protocol.		

Figure	6	(gel	shift	for	SLBP)	
	

	
	
Legend:	Gel	shift	results	for	select	probes	tested	in	the	RBNS	when	incubated	with	
purified	GST-SBP-SLBP.	The	Consensus	A	(CA)	probe	shows	more	binding	relative	to	
Consensus	B	(CB),	Consensus	Loop	Only	A	(CLA),	Consensus	Loop	Only	B	(CLB),	
Loop	In	Bulge	(LIB)	and	Loop	Stem	Only	(LST).	Sequences	for	each	probe	and	their	
RBNS	results	can	be	found	in	Supplemental	Data	4.	
	

Identification	of	a	Novel	Motif	for	ILF3	

We	next	used	the	RBNS	approach	to	test	a	newly	predicted	motif	for	the	protein	ILF3,	which	

was	predicted	by	SARNAclust	to	have	a	motif	similar	to	one	previously	described	for	the	

protein	HNRNPC	(Zarnack	et	al.	2013).	In	particular,	we	used	RBNS	to	test	the	binding	of	the	

predicted	motifs	with	ILF3	and	whether	it	requires	a	specific	RNA	structure.	
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Table	6:	Four	different	classes	of	designed	sequences	used	for	the	RNA	Bind-N-Seq	
validations	for	ILF3.	

	
Name	 	 	

uuuugaga	Unpaired	
.............................. Structure	
UUUUUUUUUUGAGANNNNNNNNNNNNNNNN Sequence	

uuuugaga	Paired	
..........(((((((...)))))))... Structure	
UUUUUUUUUUGAGANNNNNNNNNNNNNNNN Sequence	

gu	Repeats	
(((((((((((((...))))))))))))) Structure	
KKKKKKKKKKKKKNNNNNNNNNNNNNNNN Sequence	

cu	Rich	
(((((((((((((...))))))))))))) Structure	
YYYYYYYYYYYYYNNNNNNNNNNNNNNNN Sequence	

	
	

Using	RNAiFold	we	generated	sequences	for	4	different	perturbations	of	the	motif	as	shown	

in	Table	6.	Similarly	to	SLBP,	we	performed	RBNS	with	purified	GST-SBP-ILF3	using	an	RNA	

pool	based	on	the	motifs	in	Table	6	(Supplementary	Figure	3).	Figure	7	shows	the	shift	in	

percentage	of	reads	of	each	type	and	its	difference	between	GST-SBP-1,	GST-SBP-2	controls	

and	ILF3-1,	ILF3-2	samples.	It	can	be	seen	that	only	the	motif	uuuugaga-paired	has	a	shift	

from	the	control.	This	indicates	that	the	novel	motif	is	real.	We	also	used	DEseq	to	analyze	

differential	representation	of	sequences	in	the	ILF3	bound	and	unbound	pools	

(Supplementary	Data	5).	Only	sequences	from	the	uuuugaga-paired	motif	bind	to	ILF3	

significantly,	confirming	and	specifying	the	computationally	discovered	motif.		These	results	

indicate	that	ILF3	binds	to	an	UUUUGAGA	motif	with	most	nucleotides	in	double-stranded	

regions.	This	supports	a	relationship	between	ILF3	and	HNRNPC,	which	has	been	reported	

to	have	a	very	similar	motif.	Our	experimental	finding	that	the	motif	is	likely	to	occur	in	a	

double	stranded	region	is	novel,	as	this	motif	has	not	been	previously	reported	for	ILF3.	We	

note	that	the	SARNAclust	result	for	ILF3	showed	some	indications	of	double	strandedness,	

but	not	decisively	so.	It	is	worth	mentioning	that	SARNAclust	also	predicted	a	separate	GU	

repeat	motif	for	ILF3	(gu-repeats	motif	in	Table	6),	but	the	motif	did	not	show	enriched	

binding.	GU-rich	motifs	were	predicted	for	many	other	ENCODE	RBPs	as	well,	and	we	
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speculate	that	the	presence	of	such	sequences	in	CLIP	data	may	be	due	to	experimental	

noise.	

Figure	7	

	
	
	
Legend:	Percentage	shift	in	the	sequences	retrieved	in	samples	versus	control	for	
ILF3	sequences.		
	

Discussion	

SARNAclust	is	a	novel	computational	method	that	can	effectively	process	and	analyze	data	

from	CLIP	experiments	in	order	to	predict	RNA	motifs	likely	to	bind	individual	proteins.		A	

key	novelty	of	SARNAclust	is	that	it	can	assess	RNA	binding	motifs	at	the	level	of	the	
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complete	RNA	structure,	rather	than	only	taking	into	account	abstractions	of	structural	

context.	SARNAclust	makes	use	of	RNApeakFold,	which	we	have	developed	and	tuned	to	

estimate	structure	at	CLIP	sites.	This	is	a	key	component	of	the	pipeline,	as	other	structure	

prediction	approaches	such	as	RNAfold	do	not	correctly	recapitulate	the	structures	in	our	

synthetic	data.	Even	without	using	structure	information,	we	have	shown	that	SARNAclust	

is	able	to	identify	motifs	as	effectively	as	k-mer	analysis,	and	when	structural	information	is	

added	SARNAclust	is	able	to	further	identify	known	motifs	and	previously	unknown	motifs.	

The	SARNAclust	approach	of	clustering	rather	than	classifying	distinguishes	it	from	prior	

methods,	allowing	it	to	identify	motifs	even	without	training	data.	This	is	an	important	

aspect	for	CLIP-seq,	for	which	the	specificity	of	experimental	measurements	is	not	well	

understood	due	to	diverse	effects	such	as	multiple	binding	modalities	and	sources	of	noise.	

	

From	the	analysis	of	the	ENCODE	data	with	SARNAclust	and	RNA	Bind-n-Seq,	we	can	make	

several	observations	about	RNA-protein	binding.	First,	although	a	great	number	of	CLIP	

peaks	fall	in	intronic	regions,	motif	predictions	are	not	substantially	biased	by	them.	This	

suggests	many	intronic	regions	contain	real	motif	instances.	Second,	there	are	a	great	

number	of	G-rich	and	GU	repeats	in	the	motifs	of	different	RBPs,	suggesting	these	may	be	

non-specific	signals.	For	ILF3	we	were	able	to	experimentally	verify	binding	to	a	newly	

predicted	UUUUGAGA	motif,	but	not	to	repetitive	GU	motifs,	supporting	the	idea	that	those	

repetitive	sequences	are	not	true	binding	sequences.	Third,	we	observed	no	relationship	

between	protein	binding	domain	and	motif,	indicating	substantial	protein-specificity	in	

binding	behavior.		Fourth,	SARNAclust	allowed	us	to	investigate	the	relative	importance	of	

structure,	which	has	been	challenging	for	RNA-protein	interactions,	and	we	found	that	

structure	significantly	affected	the	Bind-N-Seq	results	for	both	SLBP	or	ILF3.		Structural	
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changes	to	each	of	several	components	of	the	SLBP	motif	reduced	binding,	and	the	new	

motif	for	ILF3	exhibited	a	bias	for	double-strandedness.		

	

The	similarity	of	the	new	ILF3	motif	to	that	for	HNRNPC	is	intriguing,	as	it	was	shown	in	

(Zarnack	et	al.	2013)	that	HNRNPC	competes	with	another	protein	U2AF2	for	binding	of	3’	

splice	sites	to	regulate	the	inclusion/exclusion	of	exons.	They	concluded	that	HNRNPC	

prevents	inclusion	of	cryptic	exons	while	U2AF2	promotes	it,	with	RBP	binding	often	

occurring	in	antisense	Alu	elements.	Based	on	this	competition,	we	would	expect	U2AF2	to	

have	a	similar	binding	site	to	HNRNPC.	However,	the	predicted	motif	for	HNRNPC	is	much	

more	similar	to	that	for	ILF3	than	it	is	to	the	predicted	U2AF2	motif	(Tables	3	and	4).	This	

suggests	that	ILF3	might	compete	with	either	HNRNPC	or	U2AF2	for	binding	of	similar	

regions.	Supplementary	Figure	5	shows	the	overlap	of	binding	sites	between	ILF3	and	both	

HNRNPC	and	U2AF2.	The	overlap	with	HNRNPC	is	greater	than	that	of	U2AF2.	Moreover,	if	

we	restrict	the	sites	to	those	that	overlap	with	anti-sense	Alu	elements,	this	difference	is	

amplified	(Supplementary	Figure	6).	This	might	indicate	that	ILF3	is	competing	with	

HNRNPC	for	binding	in	anti-sense	Alu	regions.	This	hypothesis	is	further	supported	by	the	

large	overlap	of	both	HNRNPC	peaks	and	ILF3	peaks	with	anti-sense	Alu	regions,	while	

there	is	less	overlap	of	U2AF2	peaks	with	the	anti-sense	Alu	regions	(Supplementary	Figure	

7).	Further	experimental	studies	will	be	needed	to	ascertain	this	hypothesis.	

	

In	summary,	we	have	introduced	a	new	pipeline	SARNAclust	for	analyzing	CLIP	data	in	

order	to	cluster	CLIP	peaks	into	different	binding	motifs.	We	have	also	extensively	analyzed	

30	recent	eCLIP	experiments	performed	by	ENCODE,	both	with	traditional	k-mer	analysis	

and	using	our	new	algorithms.	We	have	verified	the	effectiveness	of	SARNAclust	on	

synthetic	data	and	used	RNA	Bind-n-Seq	to	experimentally	validate	predictions	for	new	and	
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known	binding	motif	predictions	in	the	ENCODE	data.	In	the	future,	and	as	more	eCLIP	data	

sets	for	double-stranded	binding	RBPs	become	available,	we	expect	SARNAclust	will	be	a	

valuable	tool	to	discover	new	motifs,	probe	the	combinatorial	interactions	of	RNA-binding	

proteins,	and	elucidate	their	functional	importance.	SARNAclust	is	available	on	Github	at	

https://github.com/idotu/SARNAclust	.	
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Methods	

a.	ENCODE	data	

ENCODE	data	(www.encodeproject.org)	correspond	to	a	set	of	CLIP	experiments	described	

as	enhanced	CLIP	(eCLIP),	which	modifies	the	iCLIP	method	to	include	improvements	in	

library	preparation	of	RNA	fragments.	See	(Van	Nostrand	et	al.	2016)	for	details.	All	data	

were	downloaded	through	the	ENCODE	Project	website.	

	

b.	Bam	to	peaks	file	processing	

We	calculated	the	set	of	clusters	or	peaks	for	each	RBP	by	running	pyicoclip	on	the	ENCODE	

bam	files	(2	replicates	each).	The	software	pyicoclip	is	part	of	the	pyicoteo	software	for	

analysis	of	high-throughput	sequencing	data	(Althammer	et	al.	2011)	(available	at	

https://bitbucket.org/regulatorygenomicsupf/pyicoteo).	Pyicoclip	implements	the	

modified	False	Discovery	Rate	approach	proposed	in	(Yeo	et	al.	2009,	2)	to	determine	

significant	clusters	in	a	list	of	genomic	regions.	Pyicoclip	implementation,	together	with	the	

pyicoteo	software,	offers	a	flexible	and	effective	framework	for	the	processing	and	analysis	

of	different	types	of	CLIP-Seq	data,	with	or	without	associated	controls.	We	chose	pyicoteo	

for	its	speed	and	because	its	modular	architecture	allowed	us	to	adapt	the	CLIP-Seq	

analyses	for	data	standardization.	In	order	to	generate	a	final	set	of	peaks	for	each	RBP,	we	

used	peaks	that	overlapped	both	replicates	and	subtracted	peaks	overlapping	with	the	

control.	We	chose	this	approach	rather	than	using	enrichment	thresholds	in	order	to	

minimize	noise	from	any	systematic	measurement	biases.	For	each	peak	we	tracked	the	

gene	it	overlapped,	the	type	of	region	within	the	gene,	and	the	genomic	sequence	in	the	+/-	

100	flanking	nucleotides.	

	

c.	Structure	Prediction	
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Given	an	RNA	sequence	S	(of	length	n)	of	a	peak	along	with	+/-	100	flanking	nucleotides,	we	

calculate	the	structure	of	the	peak	following	Nussinov	recursions:	

	

Init	(for	i	in	1	to	n)	

	 Nii	=	0	and	Nii-1	=	0	

Recursion	(for	i,j	in	1	to	n)	

	 															Nij- 1	

	 Nij	=	max	

	 											Maxk		 Nik-1	+	Nk+1j-1	+	E(Sk	,	Sj)	

	

E(Sk	,	Sj)	is	the	base	pairing	probability	as	calculated	using	RNAfold	–p	from	the	Vienna	

package	[31]	on	the	complete	sequence	(peak	+/-	100	flanking	nucleotides).	

	

d.	Clustering	algorithm		

The	clustering	algorithm	is	the	main	component	in	our	pipeline.	Given	a	set	of	RNA	

sequences	along	with	their	predicted	secondary	structures,	it	identifies	clusters	of	similar	

RNAs	by	encoding	both	sequence	and	structure	as	a	graph,	and	using	the	EDeN	kernel	

similarly	as	in	GraphClust.	The	pipeline	accepts	several	parameters	to	control	both	the	

graph	transformation	and	the	clustering.	It	also	allows	for	the	use	of	only	sequence	

information	in	a	sliding	window	fashion.		The	clustering	algorithms	supported	are:	K-

means,	Mean	Shift,	DB-Scan,	Affinity	Propagation	and	Spectral	Clustering	from	sklearn	

package	(http://scikit-learn.org/stable)	and	Density	Clustering	(Rodriguez	and	Laio	2014)	

in	an	in-house	implementation.	A	full	implementation	is	available	at	the	Github	site.	For	the	

clustering	of	the	synthetic	motif	data	we	used	the	EdEN	graph	kernel	with	DB-SCAN,	
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surveying	over	possible	values	for	the	DB-Scan	parameter	threshold	(http://scikit-

learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html),	which	specifies	the	

minimal	similarity	for	two	data	points	to	be	in	the	same	cluster.		Other	parameter	choices	

were	radius	=	2	and	distance	=	2	with	min_samples	=	10		(see	(Heyne	et	al.	2012)),	

	

e.	RNAiFold	to	generate	candidates	

In	order	to	generate	candidate	RNA	sequences	for	our	RBNS	experimental	validation	we	

used	the	RNA	inverse	folding	software	RNAiFold	(Garcia-Martin	et	al.	2015).	Given	a	

sequence/structure	RNA	motif,	we	generated	thousands	of	sequences	that	fold	into	the	

given	secondary	structure	and	maintain	the	given	sequence	constraints.	Sequences	

generated	by	RNAiFold	were	used	in	the	design	of	the	RBNS	pool.	Moreover,	we	used	

RNAiFold	to	generate	sequences	corresponding	to	perturbations	of	the	SLBP	and	ILF3	

motifs.	This	was	done	by	altering	constraints	and	re-running	RNAiFold,	e.g.	for	SLBP	we	

moved	a	sequence	motif	from	a	stem	loop	to	a	bulge	to	generate	a	pool	of	sequences	that	

would	test	whether	location	of	the	sequence	motif	within	the	structure	affected	binding.	

	

f.	Experimental	Protocols	

In	vitro	protein	expression	and	purification	

A	previously	generated	pGEX6P1-based	expression	vector	containing	streptavidin	binding	

peptide	(SBP)-tagged	ILF3	was	used	for	ILF3	binding	experiments.	For	SLBP	experiments,	

the	protein	coding	sequence	for	SLBP	was	codon	optimized	for	E.	coli	expression	using	the	

IDT	Codon	Optimization	Tool	and	Gibson	assembled	into	pGEX6P1-SBP,	which	enhanced	

solubility	compared	to	the	human	sequence.	Each	plasmid	was	transformed	into	

Rosetta(DE3)	pLysS	E.	coli.	Protein	expression	was	induced	with	1mM	

isopropylthiogalactoside	(IPTG)	and	grown	for	4	hours	at	16°C.	Soluble	protein	was	
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extracted	from	the	bacteria	using	the	Qproteome	Bacterial	Protein	Prep	Kit	(QIAGEN).	The	

proteins	were	then	affinity	purified	using	Glutathione	Sepharose	4B	and	eluted	in	a	buffer	

containing	0.2%	Triton	X-100	and	concentrated	using	Corning®	Spin-X®	UF	with	a	10	kDa	

molecular	weight	cutoff	(MWCO).	Proteins	were	then	equilibrated	into	RBNS	binding	buffer	

(25mM	Trish	ph	7.5,	150mM	KCl,	0.1%	Tween,	0.5	mg/mL	BSA,	3mM	MgCl2,	1mM	DTT)	

using	Zeba	desalting	columns	7KDa	MWCO.	Purified	proteins	were	then	frozen	at	-80°C	for	

short-term	storage.		Protein	concentrations	were	obtained	using	Pierce™	BCA	Protein	Assay	

Kit.	Protein	purity	was	assessed	using	SDS-PAGE.		

	

RNA	pool	generation	for	RNA	Bind-N-Seq	

Oligonucleotide	sequences	were	ordered	from	CustomArray	Inc.	in	a	12,472	oligo	pool.	PCR	

was	used	to	amplify	the	ILF3	pool	(5’-	CCCATAATACTTGTCCCG	

-3’	and		5’-	TAATACGACTCACTATAGGG-3’)	and	the	SLBP	pool	(5’-	

CTTGACTGCGAGCTGTTGA-3’	and	5’-	TAATACGACTCACTATAGGTCACGTC-3’).	In	vitro	

transcription	of	the	oligo	pool	was	performed	using	a	AmpliScribe™	T7	High	Yield	

Transcription	Kit.	The	RNA	was	purified	by	lithium	chloride	precipitation	and	resuspended	

in	RBNS	binding	buffer.		

	

RNA	Bind-N-Seq	

RBNS	was	performed	as	described	in	(Lambert	et	al.	2014).	27	nM	of	each	protein	was	

incubated	with	750	pM	of	RNA.	RNA	was	reverse	transcribed	using	SuperScript®	III	

Reverse	Transcriptase	and	a	primer	containing	a	10	nucleotide	barcode	for	SLBP	(5’-	

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNCTTGACTGCGTGCTGTTGA	-

3’)	and	ILF3	(5’-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNCCCATAATACTTGTCCCG-
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3’).	PCR	was	performed	to	amplify	cDNA	derived	from	the	RBNS	RNAs	and	attach	Illumina	

flow	cell	binding	sequences	and	indices	(5’-	AATGATACGGCGACCACCGAGATCTACAC-

i5_index-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’	and	5’-	

CAAGCAGAAGACGGCATACGAGAT-i7_index-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’).	DNA	was	sequenced	on	a	Miseq	using	a	

200	cycle	paired	end	kit.	

	

RBNS	data	analysis	

FLASH	was	used	to	join	paired	end	reads	which	intersected,	which	is	expected	for	each	of	

the	sequences	tested	(Magoc	and	Salzberg	2011).	Reads	that	contained	the	anticipated	

primer	sequences	were	aligned	using	HISAT2	(Kim	et	al.	2015).	Reads	aligning	to	the	same	

sequence	and	containing	the	same	10	nucleotide	random	sequence	were	collapsed	into	one	

read	using	a	custom	python	script.	The	resulting	counts	were	input	to	DEseq	for	analysis	

(Anders	and	Huber	2010).	

	

g.	Gel	Shift	Experiments	

Probes	were	in	vitro	transcribed	and	biotinylated	using	the	Pierce	RNA	3’	end	biotinylation	

kit.	1	nM	of	biotinylated	probe	was	incubated	with	either	320	nM	GST-SBP-SLBP	in	binding	

buffer	consisting	of	10	mM	HEPES	(pH	7.3),	20	mM	KCl,	1	mM	MgCl2,	20	mM	DTT,	5%	

glycerol.	The	incubation	period	was	30	minutes,	followed	by	gel	electrophoresis	on	a	native	

TBE	4%	polyacrylamide	gel	and	transfer	to	a	nylon	membrane,	all	at	4°C.	

	

Acknowledgements	

JHC	was	supported	by	NIH	grants	R21	HG007554	and	R01	NS094637.	EMR	and	EE	were	

supported	by	the	MINECO	and	FEDER	(BIO2014-52566-R),	AGAUR	(SGR2014-1121),	and	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2017. ; https://doi.org/10.1101/127878doi: bioRxiv preprint 

https://doi.org/10.1101/127878


the	Sandra	Ibarra	Foundation	for	Cancer	(FSI2013).	The	authors	thank	Gene	Yeo	for	

assistance	with	the	ENCODE	CLIP-seq	data,	Chris	Burge	and	Daniel	Dominguez	for	sharing	

constructs	and	experimental	advice,	and	Brent	Graveley	for	discussions.	

	

Disclosure	Declaration	

The	authors	have	no	conflicts	to	declare.	

	

	 	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2017. ; https://doi.org/10.1101/127878doi: bioRxiv preprint 

https://doi.org/10.1101/127878


References	
	

Alipanahi	B,	Delong	A,	Weirauch	MT,	Frey	BJ.	2015.	Predicting	the	sequence	
specificities	of	DNA-	and	RNA-binding	proteins	by	deep	learning.	Nat	
Biotechnol	33:	831–838.	

Althammer	S,	Gonzalez-Vallinas	J,	Ballare	C,	Beato	M,	Eyras	E.	2011.	Pyicos:	a	
versatile	toolkit	for	the	analysis	of	high-throughput	sequencing	data.	
Bioinforma	Oxf	Engl	27:	3333–3340.	

Anders	S,	Huber	W.	2010.	Differential	expression	analysis	for	sequence	count	data.	
Genome	Biol	11:	R106.	

Bahrami-Samani	E,	Penalva	LOF,	Smith	AD,	Uren	PJ.	2015.	Leveraging	cross-link	
modification	events	in	CLIP-seq	for	motif	discovery.	Nucleic	Acids	Res	43:	95–
103.	

Bailey	TL,	Williams	N,	Misleh	C,	Li	WW.	2006.	MEME:	discovering	and	analyzing	
DNA	and	protein	sequence	motifs.	Nucleic	Acids	Res	34:	W369–373.	

Battle	DJ,	Doudna	JA.	2001.	The	stem-loop	binding	protein	forms	a	highly	stable	and	
specific	complex	with	the	3’	stem-loop	of	histone	mRNAs.	RNA	N	Y	N	7:	123–
132.	

Chi	SW,	Zang	JB,	Mele	A,	Darnell	RB.	2009.	Argonaute	HITS-CLIP	decodes	microRNA-
mRNA	interaction	maps.	Nature	460:	479–486.	

Cook	KB,	Kazan	H,	Zuberi	K,	Morris	Q,	Hughes	TR.	2011.	RBPDB:	a	database	of	RNA-
binding	specificities.	Nucleic	Acids	Res	39:	D301–308.	

Costa	F,	De	Grave	K.	2010.	Fast	neighborhood	subgraph	pairwise	distance	kernel.	In	
Proceedings	of	the	26th	International	Conference	on	Machine	Learning,	pp.	
255–262,	Omnipress.	

Dao	P,	Hoinka	J,	Takahashi	M,	Zhou	J,	Ho	M,	Wang	Y,	Costa	F,	Rossi	JJ,	Backofen	R,	
Burnett	J,	et	al.	2016.	AptaTRACE	Elucidates	RNA	Sequence-Structure	Motifs	
from	Selection	Trends	in.	Cell	Syst	3:	62–70.	

Fowlkes	EB,	Mallows	CL.	1983.	A	method	for	comparing	two	hierarchical	
clusterings.	J	Am	Stat	Assoc	78:	553–569.	

Fukunaga	T,	Ozaki	H,	Terai	G,	Asai	K,	Iwasaki	W,	Kiryu	H.	2014.	CapR:	revealing	
structural	specificities	of	RNA-binding	protein	target	recognition	using	CLIP-
seq	data.	Genome	Biol	15:	R16.	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2017. ; https://doi.org/10.1101/127878doi: bioRxiv preprint 

https://doi.org/10.1101/127878


Garcia-Martin	JA,	Bayegan	AH,	Dotu	I,	Clote	P.	2016.	RNAdualPF:	software	to	
compute	the	dual	partition	function	with	sample	applications	in	molecular	
evolution	theory.	BMC	Bioinformatics	17:	424.	

Garcia-Martin	JA,	Clote	P,	Dotu	I.	2013.	RNAiFOLD:	a	constraint	programming	
algorithm	for	RNA	inverse	folding	and	molecular	design.	J	Bioinform	Comput	
Biol	11:	1350001.	

Garcia-Martin	JA,	Dotu	I,	Clote	P.	2015.	RNAiFold	2.0:	a	web	server	and	software	to	
design	custom	and	Rfam-based	RNA	molecules.	Nucleic	Acids	Res	43:	W513–
521.	

Georgiev	S,	Boyle	AP,	Jayasurya	K,	Ding	X,	Mukherjee	S,	Ohler	U.	2010.	Evidence-
ranked	motif	identification.	Genome	Biol	11:	R19.	

Giegerich	R,	Voss	B,	Rehmsmeier	M.	2004.	Abstract	shapes	of	RNA.	Nucleic	Acids	Res	
32:	4843–4851.	

Giudice	G,	Sanchez-Cabo	F,	Torroja	C,	Lara-Pezzi	E.	2016.	ATtRACT-a	database	of	
RNA-binding	proteins	and	associated	motifs.	Database	J	Biol	Databases	
Curation	2016.	

Hafner	M,	Landthaler	M,	Burger	L,	Khorshid	M,	Hausser	J,	Berninger	P,	Rothballer	A,	
Ascano	M,	Jungkamp	A-C,	Munschauer	M,	et	al.	2010.	PAR-CliP--a	method	to	
identify	transcriptome-wide	the	binding	sites	of	RNA	binding	proteins.	United	
States.	

Heyne	S,	Costa	F,	Rose	D,	Backofen	R.	2012.	GraphClust:	alignment-free	structural	
clustering	of	local	RNA	secondary	structures.	Bioinforma	Oxf	Engl	28:	i224–
232.	

Hiller	M,	Pudimat	R,	Busch	A,	Backofen	R.	2006.	Using	RNA	secondary	structures	to	
guide	sequence	motif	finding	towards	single-stranded	regions.	Nucleic	Acids	
Res	34:	e117.	

Hofacker	IL.	2009.	RNA	secondary	structure	analysis	using	the	Vienna	RNA	package.	
Curr	Protoc	Bioinforma	Chapter	12:	Unit12.2.	

Hogan	DJ,	Riordan	DP,	Gerber	AP,	Herschlag	D,	Brown	PO.	2008.	Diverse	RNA-
binding	proteins	interact	with	functionally	related	sets	of	RNAs,	suggesting	
an	extensive	regulatory	system.	PLoS	Biol	6:	e255.	

Kazan	H,	Ray	D,	Chan	ET,	Hughes	TR,	Morris	Q.	2010.	RNAcontext:	a	new	method	for	
learning	the	sequence	and	structure	binding	preferences	of	RNA-binding	
proteins.	PLoS	Comput	Biol	6:	e1000832.	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2017. ; https://doi.org/10.1101/127878doi: bioRxiv preprint 

https://doi.org/10.1101/127878


Kerpedjiev	P,	Honer	Zu	Siederdissen	C,	Hofacker	IL.	2015.	Predicting	RNA	3D	
structure	using	a	coarse-grain	helix-centered	model.	RNA	N	Y	N	21:	1110–
1121.	

Kim	D,	Langmead	B,	Salzberg	SL.	2015.	HISAT:	a	fast	spliced	aligner	with	low	
memory	requirements.	Nat	Methods	12:	357–360.	

Lambert	N,	Robertson	A,	Jangi	M,	McGeary	S,	Sharp	PA,	Burge	CB.	2014.	RNA	Bind-n-
Seq:	quantitative	assessment	of	the	sequence	and	structural	binding	
specificity	of	RNA	binding	proteins.	Mol	Cell	54:	887–900.	

Livi	CM,	Blanzieri	E.	2014.	Protein-specific	prediction	of	mRNA	binding	using	RNA	
sequences,	binding	motifs	and	predicted	secondary	structures.	BMC	
Bioinformatics	15:	123.	

Lukong	KE,	Chang	K,	Khandjian	EW,	Richard	S.	2008.	RNA-binding	proteins	in	
human	genetic	disease.	Trends	Genet	TIG	24:	416–425.	

Magoc	T,	Salzberg	SL.	2011.	FLASH:	fast	length	adjustment	of	short	reads	to	improve	
genome	assemblies.	Bioinforma	Oxf	Engl	27:	2957–2963.	

Maticzka	D,	Lange	SJ,	Costa	F,	Backofen	R.	2014.	GraphProt:	modeling	binding	
preferences	of	RNA-binding	proteins.	Genome	Biol	15:	R17.	

Nussinov	R,	Jacobson	AB.	1980.	Fast	algorithm	for	predicting	the	secondary	
structure	of	single-stranded	RNA.	Proc	Natl	Acad	Sci	U	S	A	77:	6309–6313.	

Pan	X,	Shen	H-B.	2017.	RNA-protein	binding	motifs	mining	with	a	new	hybrid	deep	
learning	based	cross-domain	knowledge	integration	approach.	BMC	
Bioinformatics	18:	136.	

Rodriguez	A,	Laio	A.	2014.	Machine	learning.	Clustering	by	fast	search	and	find	of	
density	peaks.	Science	344:	1492–1496.	

Sanford	JR,	Wang	X,	Mort	M,	Vanduyn	N,	Cooper	DN,	Mooney	SD,	Edenberg	HJ,	Liu	Y.	
2009.	Splicing	factor	SFRS1	recognizes	a	functionally	diverse	landscape	of	
RNA	transcripts.	Genome	Res	19:	381–394.	

Siddharthan	R,	Siggia	ED,	van	Nimwegen	E.	2005.	PhyloGibbs:	a	Gibbs	sampling	
motif	finder	that	incorporates	phylogeny.	PLoS	Comput	Biol	1:	e67.	

Song	Z,	Wu	P,	Ji	P,	Zhang	J,	Gong	Q,	Wu	J,	Shi	Y.	2012.	Solution	structure	of	the	
second	RRM	domain	of	RBM5	and	its	unusual	binding	characters	for	different	
RNA	targets.	Biochemistry	(Mosc)	51:	6667–6678.	

Toyoda	H,	Franco	D,	Fujita	K,	Paul	AV,	Wimmer	E.	2007.	Replication	of	poliovirus	
requires	binding	of	the	poly(rC)	binding	protein	to	the	cloverleaf	as	well	as	to	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2017. ; https://doi.org/10.1101/127878doi: bioRxiv preprint 

https://doi.org/10.1101/127878


the	adjacent	C-rich	spacer	sequence	between	the	cloverleaf	and	the	internal	
ribosomal	entry	site.	J	Virol	81:	10017–10028.	

Van	Nostrand	EL,	Pratt	GA,	Shishkin	AA,	Gelboin-Burkhart	C,	Fang	MY,	
Sundararaman	B,	Blue	SM,	Nguyen	TB,	Surka	C,	Elkins	K,	et	al.	2016.	Robust	
transcriptome-wide	discovery	of	RNA-binding	protein	binding	sites	with	
enhanced	CLIP	(eCLIP).	Nat	Methods	13:	508–514.	

Wang	X,	Juan	L,	Lv	J,	Wang	K,	Sanford	JR,	Liu	Y.	2011.	Predicting	sequence	and	
structural	specificities	of	RNA	binding	regions	recognized	by	splicing	factor	
SRSF1.	BMC	Genomics	12	Suppl	5:	S8.	

Weyn-Vanhentenryck	SM,	Zhang	C.	2016.	mCarts:	Genome-Wide	Prediction	of	
Clustered	Sequence	Motifs	as	Binding	Sites	for.	Methods	Mol	Biol	Clifton	NJ	
1421:	215–226.	

Wilbert	ML,	Huelga	SC,	Kapeli	K,	Stark	TJ,	Liang	TY,	Chen	SX,	Yan	BY,	Nathanson	JL,	
Hutt	KR,	Lovci	MT,	et	al.	2012.	LIN28	binds	messenger	RNAs	at	GGAGA	motifs	
and	regulates	splicing	factor	abundance.	Mol	Cell	48:	195–206.	

Wurth	L.	2012.	Versatility	of	RNA-Binding	Proteins	in	Cancer.	Comp	Funct	Genomics	
2012:	178525.	

Yeo	GW,	Coufal	NG,	Liang	TY,	Peng	GE,	Fu	X-D,	Gage	FH.	2009.	An	RNA	code	for	the	
FOX2	splicing	regulator	revealed	by	mapping	RNA-protein	interactions	in	
stem	cells.	Nat	Struct	Mol	Biol	16:	130–137.	

Yuan	X,	Davydova	N,	Conte	MR,	Curry	S,	Matthews	S.	2002.	Chemical	shift	mapping	
of	RNA	interactions	with	the	polypyrimidine	tract	binding		protein.	Nucleic	
Acids	Res	30:	456–462.	

Zarnack	K,	Konig	J,	Tajnik	M,	Martincorena	I,	Eustermann	S,	Stevant	I,	Reyes	A,	
Anders	S,	Luscombe	NM,	Ule	J.	2013.	Direct	competition	between	hnRNP	C	
and	U2AF65	protects	the	transcriptome	from	the	exonization	of	Alu	
elements.	Cell	152:	453–466.	

Zhang	C,	Darnell	RB.	2011.	Mapping	in	vivo	protein-RNA	interactions	at	single-
nucleotide	resolution	from.	Nat	Biotechnol	29:	607–614.	

Zhang	C,	Lee	K-Y,	Swanson	MS,	Darnell	RB.	2013.	Prediction	of	clustered	RNA-
binding	protein	motif	sites	in	the	mammalian	genome.	Nucleic	Acids	Res	41:	
6793–6807.	

Zhang	S,	Zhou	J,	Hu	H,	Gong	H,	Chen	L,	Cheng	C,	Zeng	J.	2016.	A	deep	learning	
framework	for	modeling	structural	features	of	RNA-binding	protein	targets.	
Nucleic	Acids	Res	44:	e32.		

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2017. ; https://doi.org/10.1101/127878doi: bioRxiv preprint 

https://doi.org/10.1101/127878

