
1 

Detecting gene subnetworks under selection in biological pathways 
Alexandre Gouy1,2*, Joséphine T. Daub3 and Laurent Excoffier1,2 

1 Institute of Ecology and Evolution, University of Berne, Baltzerstrasse 6, 3012 Berne, Switzerland 
2 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 
3 Institute of Evolutionary Biology, Universitat Pompeu Fabra – CSIC, 08003 Barcelona, Spain 

* To whom correspondence should be addressed. Tel: +41 31 631 30 28; Email: alexandre.gouy@iee.unibe.ch

ABSTRACT 

Advances in high throughput sequencing technologies have created a gap between data production 

and functional data analysis. Indeed, phenotypes result from interactions between numerous genes, 

but traditional methods treat loci independently, missing important knowledge brought by network-

level emerging properties. Therefore, evidencing selection acting on multiple genes affecting the 

evolution of complex traits remains challenging. In this context, gene network analysis provides a 

powerful framework to study the evolution of adaptive traits and facilitates the interpretation of 

genome-wide data. To tackle this problem, we developed a method to analyse gene networks that is 

suitable to evidence polygenic selection. The general idea is to search biological pathways for 

subnetworks of genes that directly interact with each other and that present unusual evolutionary 

features. Subnetwork search is a typical combinatorial optimization problem that we solve using a 

simulated annealing approach. We have applied our methodology to find signals of adaptation to 

high-altitude in human populations. We show that this adaptation has a clear polygenic basis and is 

influenced by many genetic components. Our approach improves on classical tests for selection 

based on single genes by identifying both new candidate genes and new biological processes 

involved in adaptation to altitude. 

INTRODUCTION 

Understanding the genetic basis of adaptation remains a central theme of evolutionary biology. 

Adaptation is typically viewed as involving selective sweeps that drive beneficial alleles from low to 

high frequencies in a population, lowering genetic diversity and increasing linkage disequilibrium near 

the selected region (1-3). Numerous statistical tests have been developed to detect selection from 

genomic data based on a simple selective sweep model (reviewed in De Mita et al. (4)). Therefore, 

most work in humans and other species has focused on identifying signals of strong selection at 

individual loci (5). These methods have been quite successful in humans to identify loci involved in 

several adaptations such as diet, altitude, disease resistance, and pigmentation (reviewed in Vitti et 

al. (6)). However, examples of adaptation due to a selective sweep at a single locus remain relatively 

rare in human populations. Therefore, some authors have argued that adaptation events could occur 

by the evolution of polygenic traits rather than via the fixation of single beneficial mutations (7-9). 

Recent Genome-Wide Association Studies (GWAS) in various model organisms have confirmed 

that variation at many important traits is controlled by a large number of loci scattered throughout the 

genome, e.g. human height (10,11). Selection acting additively on this kind of traits could therefore 
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lead to small shifts in allele frequencies (8). This verbal model has been studied analytically, showing 

that in some cases, polygenic selection may indeed lead to subtle shifts in allele frequencies (12-14). 

However, these small allele frequency changes may remain below the detection limit of most of outlier 

detection methods (15). Therefore, the generality of conclusions drawn from significant tests can be 

seriously challenged because phenotypic traits exhibiting clear-cut molecular signatures of selection 

may represent a biased subset of all adaptive traits (16). Another caveat of classical genome scans 

for selection is that lists of candidate genes are sometimes difficult to connect to a particular adaptive 

mechanism, since SNP-level results are unlikely to reveal complex mechanisms of adaptation, given 

the lack of signal of small-effect alleles. It seems therefore necessary to consider alternative 

approaches to study the genetic basis of adaptation of complex traits. 

Current approaches to detect selection acting on polygenic traits rely mostly on quantitative 

genetics models. Classical quantitative genetics approaches are not based on genetic data, but on an 

explicit description of continuous phenotypes (e.g. height, body mass index, fertility, etc.). These 

methods have strong theoretical foundations, and allow one to disentangle the genetic from the 

environmental variance by taking into account the heritability of the traits, and therefore to detect 

shifts in the distribution of the phenotype under selection (17). But these methods do not permit to 

identify the genetic basis of adaptation, and other approaches must be considered to associate 

genetic data to quantitative traits responding to selection. Correlative approaches have emerged 

where associations between a genotype and various environmental variables are tested (e.g. (18-

21)). Finally, recent approaches have tried to estimate selection coefficients from GWAS data 

(9,22,23), but all these methods need some phenotypic measures of the tested individuals or 

associated environmental data, which can be sometimes difficult to obtain. 

In contrast to a gene-centric approach, some studies have considered testing if a set of genes as 

a whole is yielding signals of selection (7,24). Indeed, different genes within pathways (i.e. molecular 

networks leading to a given biological function) may interact to produce a given phenotype (25,26), 

and therefore be under the same selective pressure. Finding sets of outlier interacting genes can be 

achieved using gene-set enrichment methods (e.g., (27,28)). The idea is to assign a score (i.e. proxy 

for selection) to each gene within a biological pathway (i.e. gene-set) and to test if the distribution of 

scores within the pathway is significantly shifted towards extreme values (7). This approach has 

successfully identified candidate pathways involved in various human adaptations, such as response 

to pathogens (7), or adaptation to altitude (24). However, this gene-set enrichment approach mainly 

identifies pathways where all its members show a shift in the distribution of a given tested statistic. It 

might thus be underpowered to find more subtle signals, where only a subset of genes is under 

selection in a large pathway, which is a more likely situation than assuming that all the genes in a 

pathway have responded to selection.  

To address this problem, network analysis can provide new insights into the genetics basis of 

adaptation. In the last few years, network-based approaches have spread into a large number of 

research areas, and were successfully used to solve a wide range of biological problems; e.g. gene 

expression studies (29,30), GWAS (26) or evolutionary biology (31,32). Here, we present a new 

network-based method to detect polygenic selection in natural populations. The general idea is to 
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search for subnetworks of interacting genes within biological pathways that present unusual features. 

This search is a typical combinatorial optimization problem that can be solved using a heuristic 

approach like simulated annealing (29,33). We implemented such an algorithm to search for high-

scoring subnetworks of genes in biological pathways, and we developed a testing procedure that 

explicitly takes into account the optimization process involved in this search. After studying the 

sensitivity and precision of our method with simulated data, we reanalysed data from a previous study 

looking for convergent adaptation to altitude in Tibetans an Andeans (24). As compared to the original 

study, we discover new genes and biochemical functions potentially related to adaptation in these 

human populations. Our method can thus complement classical genome scans by providing 

functional information and discovering new genes with weaker effects that are involved in complex 

selective processes. Finally, we discuss the limits and potential improvements, as well as other 

possible applications of our methodology. 

MATERIAL AND METHODS 

Pathway databases and conversion to gene networks 

We considered biological pathways as gene networks. More formally, we define a gene network as a 

graph G(V,E), where V is a set of nodes (i.e. genes), and E is a set of edges (i.e. interactions between 

genes). In this study we used three signalling and metabolic pathway databases that are considered 

as references in systems biology: (i) KEGG, the Kyoto Encyclopaedia of Genes and Genomes 

Pathway database (34); (ii) NCI, the National Cancer Institute / Nature Pathway Interaction Database 

(35); and (iii) Reactome (36,37). We then used the R/Bioconductor graphite package to convert 

biological pathways into graphs of interacting genes (see (38) for more details on this procedure). 

Computation of summary statistics on gene networks 

To characterise the structure of networks and check for potential differences between databases, we 

generated the distributions of three standard summary statistics for each of the three databases. We 

thus computed for each network i) the number of nodes, ii) the number of edges, and iii) the graph 

density. The graph density d is a measure of connectivity between the nodes of the network, and it is 

defined as the number of edges in a set E compared to the maximum number of possible edges 

between nodes in a set V, therefore d = 2 * |E| / (|V| * (|V| − 1)), where |X| represents the number of 

members of a set X. We also analysed the overlap between pathway databases by computing the 

number of genes they share. Finally, we quantified the redundancy between pathways within a 

database by computing Jaccard’s similarity index. For a pair of networks A and B with sets of nodes 

VA and VB, Jaccard’s index is defined as JAB = (|VA| ∩ |VB|) / (|VA| ∪ |VB|). 

Workflow to detect outlier subnetworks 

As the detection of outlier subnetworks includes several distinct steps, we describe here our analysis 

pipeline. The goal of our approach is to search within each gene network the subnetwork with the 

largest signal of interest (e.g. evidence of selection) using a simulated annealing approach (33). Our 

algorithm is globally similar to that used by Ideker et al. (29), but our method differs in two important 
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ways, as described below. First, whereas Ideker et al.’s method aimed at finding the highest-scoring 

subset of nodes, we aim here at finding the highest-scoring subnetwork (i.e. a subset of genes that 

are directly connected by edges). Second, we consider a statistical testing procedure that explicitly 

considers the optimization procedure when computing the p-value of a given subnetwork. Indeed, the 

score of a given subnetwork identified by the simulated annealing algorithm cannot be compared to 

that of a random subnetwork, as simulated annealing would identify a high scoring subnetwork even 

in absence of any true signal (39). 

Gene and subnetwork scores 

We begin our testing procedure by assigning a score to each of the gene (node) in our network. In 

population genetics applications looking for subsets of selected genes, this score might be a measure 

of population differentiation between populations (e.g. FST), the result of a selection test, or the 

difference in some measure between cases and controls. If this score is available for different SNPs in 

a given gene, we need to summarize their scores in some way, as our method assumes that each 

gene has a single score. For instance, the SNP with maximum score can be selected to represent a 

gene, or the average of the SNP-specific scores can be computed over all SNPs assigned to a gene. 

We then use an aggregate score for a subnetwork of size k following (29) as s = ∑(xi) / √(k), where xi is 

the score of the i-th node (gene). 

Subnetwork score normalization 

We then normalize the scores of subnetworks such as to be able to compare subnetworks of different 

sizes. Indeed, we expect to observe less variance in subnetwork aggregate scores in large than in 

small networks. The score of a given subnetwork of size k is thus normalized as z’k = (sk - μk) / σk, 

where μk and σk are the mean and standard deviation of the score of a subnetwork of size k, 

computed empirically over 10,000 random subnetworks of size k, obtained for each data base 

separately. The means and standard deviations of subnetworks of sizes kmin to kmax are computed 

once and stored in a lookup table. Random subnetworks of size k are obtained by i) randomly 

selecting a network in the database with a probability depending on the network size, ii) randomly 

selecting a gene from this network as an initial member of the subnetwork, and iii) iteratively adding k-

1 other randomly chosen genes that are connected to the growing subnetwork.  

Searching for optimal subnetworks with simulated annealing 

We have used a simulated annealing algorithm to detect the Highest Scoring Subnetwork (HSS) of 

each gene network. The general idea is to start with a random subnetwork, and modify it 

progressively by adding or removing one node at a time until we reach a subnetwork with the highest 

possible normalized score. The algorithm takes as initial parameters the number of iterations N to 

perform and the annealing parameter alpha, which determines a temperature function T(α) that 

decreases geometrically over time. 

In more details, our search algorithm is as follows:  

1. Select a starting subnetwork of arbitrary size kmin, defined at random. 
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2. Calculate its normalized score zi. 

3. Modify the current subnetwork: First, select a node at random from the following list: i) nodes 

not belonging to the current subnetwork, but that are connected to it by a single edge, ii) 

terminal nodes of the current subnetwork, iii) internal nodes of the current subnetwork which 

are not articulation points (i.e. whose removal will not create two disjoint subnetworks). If the 

selected node is not part of the current subnetwork then add it, else remove it. 

4. Calculate the new subnetwork's normalized score zi+1 

5. Accept the new subnetwork with probability min(1,p), where the annealing probability p = 

exp([zi+1 - zi] / Ti+1), and Ti+1 is the annealing temperature for the iteration i+1. This typical 

simulated annealing equation means that a new subnetwork is always accepted if its 

normalized score is larger than that of the previous subnetwork, and that less optimal 

subnetworks are more and more difficult to accept with more iterations of the algorithm. 

6. Repeat steps 3-5 above for a given predefined number of iterations N. 

7. Record the resulting subnetwork and its score. 

This algorithm is expected to find the global optimum for a sufficient number of iterations (29), but 

as its performance could vary between networks, we have run it five times for each pathway, and 

recorded the subnetwork with the highest score. 

Statistical testing procedure 

To test if the score of the estimated HSS is significantly larger than what would be expected by 

chance, we need to generate the null distribution of HSS for subnetworks of a given size. To do this, 

we cannot simply randomly sample subnetworks and compute their scores in the original dataset, as 

we need to take into account the fact that the optimization procedure will bias the subnetwork scores 

towards high value. To take this effect into account, we have generated a null distribution of optimised 

scores. To do this, we first permute gene scores across all networks of a given database. Then a 

network is randomly chosen with a probability proportional to its size, and the optimisation algorithm is 

applied to obtain the HSS on the permuted dataset. The score of the resulting HSS is finally recorded. 

This procedure is repeated N times to generate the null distribution. The empirical p-value of a given 

observed HSS is then obtained as the proportion of random HSS of similar size that have a score 

larger or equal to the observed HSS score (unilateral test). 

As many subnetworks are tested with our procedure, we have corrected the inferred p-values for 

multiple testing by computing q-values, which are false discovery rates (FDRs) that would be 

computed if the observed p-value was used as a threshold to declare significance. To do this, we 

used the FDR method (40) implemented in the R package qvalue.  

Pipeline implementation 

Our analysis pipeline has been implemented in R, and graphical representations of the networks and 

HSS were made using the software Cytoscape (41,42), called from R with the Bioconductor package 

RCytoscape (43). 
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Test of the method on simulated data 

As simulated annealing is an approximate method, we studied its performance using a simulation-

based approach. We simulated pseudo-observed data sets by building a random network of size N 

using a random edge model, i.e. where an edge is drawn with a given probability p. Then, a 

connected subnetwork of size k is randomly sampled within the network. The node scores from the 

subnetwork are drawn from a normal distribution N(μHSS,1), where μHSS is the average score of this 

subnetwork. The score of the other nodes of the network are drawn from a standard normal 

distribution N(0,1). We then apply our simulated annealing algorithm to find the highest-scoring 

subnetwork using with i iterations. Therefore, the outcome of our search depends on five parameters: 

the network size N, the HSS size k and its average expected score μHSS, the network connectivity p 

and the number of iterations i. 

In order to characterize the accuracy of our network search and to better understand which 

parameters have an impact on our estimation, we computed, for each simulation, the number of true 

positives (TP, the number of nodes from the true HSS that are correctly identified), the number of true 

negatives (TN, the number of nodes that are not in the HSS and that are not identified), false positives 

(FP, the number of nodes wrongly identified as part of the true HSS) and false negatives (FN, the 

number of nodes from the true HSS that have not been identified). We then computed two measures 

of performance: precision or positive predictive value: PPV = TP / (TP + FP); and sensitivity or true 

positive rate: TPR = TP / (TP + FN). 

To assess the impact of our five parameters on the precision (PPV) and on the sensitivity (TPR) 

of our estimation, we used a Generalised Linear Model (GLM) where the response variables are the 

counts of TP and FP for precision, and the counts of TP and FN for sensitivity. The predictor variables 

are the five above-mentioned parameters, and the error follows a binomial distribution. 

To test the performance of our significance testing procedure that explicitly takes the optimisation 

process into account, we computed p-values using the null distribution obtained from 10,000 runs of 

simulated annealing on data generated with μHSS = 0 (i.e. the null hypothesis). 

Application to real data: detection of convergent adaptation to altitude in humans 

We analysed a dataset published by Foll et al. (24) on convergent adaptation to altitude in 

Tibetans and Andeans. This data set consists of 632,344 SNPs genotyped in four populations: two 

populations living at high altitude in the Andes (49 individuals) and in Tibet (49 individuals), as well as 

two lowland related populations from Central America (39 Mesoamericans) and East Asia (90 

individuals). For each SNP, a probability of convergent adaptation has been computed under a 

hierarchical Bayesian model (24). To get a unique score per gene, as required in our methodology, 

we used the p-value of the highest scoring SNP mapped within a gene or less than 50 kb away. 

We applied our methodology to detect subnetworks under selection on this dataset. The three 

pathway databases were analyzed separately (i.e. every step of the workflow has been done 

independently for each database). Pathways for which the largest connected subnetwork size was 

less than kmin = 5 nodes were removed from the analysis, since we wanted to avoid focusing on small 

subnetworks. Aggregate subnetwork score distributions have been generated by sampling 10,000 
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random subnetworks for each possible size k. The HSS search algorithm has been applied to every 

pathway with N = 10,000 simulated annealing iterations. The p-value of the obtained HSSs was 

inferred from the distribution of scores of 10,000 random HSS generated under the null hypothesis 

(i.e. permuted data). 

RESULTS 

Test of the method on simulated data 

We first studied the performance of our approach in terms of precision (i.e. the fraction of selected 

genes in the estimated highest-scoring subnetworks (HSS)) and sensitivity (i.e. the proportion of 

selected genes that are identified as such) by analysing pseudo-observed data. We generated 

random networks and HSS based on five parameters (see Material and Methods). We ran our 

algorithm on the simulated data and compared the estimated HSS to the true HSS. Using logistic 

regressions, we show that out of the 5 parameters tested, 4 have a significant impact on both the 

precision and sensitivity of the method (Table 1). Most of the model deviance is explained by the 

mean score of the selected genes, the network size, and the subnetwork size. As expected, precision 

goes up with µHSS and the false positive rate is lower than 0.05 when µHSS > 4 (Figure 1A). 

Furthermore, even if network (N) and subnetwork (k) sizes influence our ability to correctly identify 

HSS, N and k have a negligible impact on the precision of our estimations when the true subnetwork 

score is sufficiently large. Indeed, in this case precision remains high for a broad range of N and k 

values (Figure 1B and 1C). Even though one would have thought that the number of iterations of the 

simulated annealing algorithm was an important parameter for the success of the algorithm, it has a 

limited impact (Table 1) and 5,000 iterations appear enough to achieve high precision (Table 1). 

Finally, we find that network density has no real influence on the performance of our method. 

Then, in order to verify that our statistical testing procedure behaves properly, we computed the 

p-value distribution under the null hypothesis of μHSS = 0. In that case, p-values do not depart 

significantly from a uniform distribution (Kolmogorov-Smirnov test, D = 0.03, p = 0.76; Figure S1), 

which is the behaviour expected when the null hypothesis is true. 

Pathways databases characteristics 

We used pathways defined in three databases: KEGG, NCI and Reactome (including respectively 

225, 189 and 1095 pathways). To see whether we should treat these databases separately or not, we 

first computed statistics summarizing the main properties of these databases. First, we characterized 

the overlap between these databases, i.e. the number of genes shared between databases. We show 

that even if they substantially overlap in their gene content, the three databases have a large number 

of private genes (Figure S2A). We also characterized the overlap between pathways within databases 

using Jaccard’s index. We computed the redundancy within a database as the proportion of pathways 

pairs with an overlap higher than a given threshold as a function of this threshold (44). We find that 

pathways from the three databases have different levels of overlap, with Reactome having the largest 

fraction on non-overlapping pathways (Figure S2B). Finally, we computed summary statistics to 

understand the structures of the networks in the different databases. The distributions of the number 
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of nodes, the number of edges and the connectivity are also strikingly different between the three 

databases (Figure S3). Since pathways of these three databases had different properties, we have 

analysed them separately, using genes from each database to build separate null distributions and 

perform statistical tests. 

Adaptation to altitude in humans 

We analysed the data from Foll et al. (24), who studied adaptation in two human populations living at 

high altitude. For each SNP, they computed the probability of convergent adaptation to altitude in 

Andeans and Tibetans under a hierarchical Bayesian model, and we used this probability as our 

score. We define the gene score as the highest-scoring SNP within the gene or in a 50 kb 

surrounding window. The distribution of gene scores appears slightly different between databases 

(Figure S4), again justifying the separate analysis of the three databases.  

To search for high-scoring subnetworks in each pathway, we first generated the aggregate 

subnetwork score distributions for each database and for all possible subnetwork sizes. We then 

searched for the high-scoring subnetwork in each pathway using 10,000 simulated annealing 

iterations, and we assessed their significance from a null distribution of HSSs based on 10,000 

permutated data sets (see Material and Methods). Interestingly, we find that subnetwork scores tend 

to be lower in denser pathways. Indeed, the estimated subnetwork score significantly decreases with 

the density of a pathway (linear regression, F(1,1339) = 42.11, p = 1.2.10-10; R = 0.17; Figure S4). 

This result is unlikely to be an artefact, as our simulation study shows that our procedure is not 

affected by network density (Table 1). Therefore, genes potentially involved in adaptive processes 

seem to be preferentially found in pathways with less gene-gene interactions. These results are in 

agreement with other empirical studies that showed that deleterious mutations tend to accumulate at 

the periphery of gene networks (45). Even though positive selection can also act on genes with more 

interactions (31,46), this result suggests that adaptation to altitude has mainly targeted genes with 

less pleiotropic effects since the number of interactions of a gene is clearly correlated to its pleiotropy 

level (47). 

We then considered a HSS as significant if it showed a p-value < 0.01 and a q-value < 0.20. 

None of the pathways tested in the Reactome database remained significant after multiple test 

correction. We identified four pathways with a significant HSS in the NCI database and six such 

subnetworks in KEGG (Table S1). The overall top-scoring pathway is the HIF-2-α transcription 

network (Figure 2), a pathway containing genes known to respond to hypoxia conditions. EPAS1 

(HIF-2-α) is the top-scoring gene, it is a transcription factor active under hypoxic conditions. All the 

other significant genes within this pathway are directly interacting with EPAS1 and should thus play 

an important role in response to hypoxia. Some of these genes are inhibitors (CITED2) or cofactors 

(ARNT) of Hypoxia-Inducible Factors (HIF), others are regulated by HIF, such as VEGFA, a growth 

factor involved in angiogenesis. 

When top-scoring HSSs were overlapping by one or more gene, we merged them in a single 

network (Figure 3). After this procedure, we observe four distinct clusters of genes. First, in the NCI 

database, we find a single cluster of genes within four pathways involved in vascular processes such 
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as angiogenesis, response to hypoxia or blood coagulation (Figure 3A). Among these, the top-scoring 

genes are Endothelial PAS domain-containing protein 1 (EPAS1), Interleukin-6 (IL6), Angiopoietin 1 

(ANGPT1), Pleiotrophin (PTN), Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) and 

Epidermal Growth Factor (EGFR). We also observe many genes in these HSS that present lower 

scores. Most of these are growth factors, such as genes in the Insulin Growth Factor (IGF), receptor 

tyrosine kinases (ErbB, EGFR), Neurotrophic Factors (NTF) or Interleukin (IL) families. We identified 

three other clusters of genes in the KEGG database that are involved in very different biological 

processes (Figure 3B). First, a large network of 32 genes involved in metabolic functions where the 

top-scoring genes are Alcohol Dehydrogenase (ADH) subunits, most of the other genes being other 

aerobic metabolism related enzymes such as the Glucuronosyltransferase (UGT), Glutathion S-

tranferase (GST) or Glutamic-Oxaloacetic Transaminase (GOT) families. All of them present 

moderate probabilities of convergent adaptation (< 0.8). Second, an immunity-related cluster is 

observed, including 6 Human Leucocyte Antigen (HLA) genes. A last cluster consists in three genes 

related to neuronal cell growth, with Neuroligin 4 (NLGN4X) being the top-scoring gene in this 

database. 

DISCUSSION 

New insights into human adaptation to altitude 

The challenges of living at high altitude impose a very strong selective pressure on individuals, mainly 

due to low oxygen levels leading to hypoxia (48). Physiological changes have been identified in 

Tibetans and Andeans living at high altitude (49), and many studies have unveiled the genetic bases 

of these physiological changes (reviewed in (48)). Adaptation to altitude thus offered us a good 

positive control to test our new method on real data, and therefore, the fact that our top subnetwork is 

found in the HIF-2-α transcription pathway is reassuring. This pathway is indeed a key component of 

the response to hypoxia, as it modulates or induces various physiological responses such as 

angiogenesis, haemoglobin concentration or erythropoiesis (50). Numerous genes within this pathway 

have already been proposed to be under selection in Tibetans and Andeans, such as EPAS1 and IL6 

(50-53). In addition to these usual suspects, we identify many other genes with scores that remain 

below the detection threshold of the original genome scan (24), and which show a much more 

moderate signal of convergent adaptation. The identification of other candidate genes present in the 

HIF pathway is in line with the view that adaptation to altitude has a polygenic basis (50). For 

instance, we identified pleiotrophin (PTN), which acts as an angiogenic factor through multiple 

mechanisms (54), but which has to our knowledge never been identified as a major player in 

adaptation to altitude. Another gene, PTPN11, has a high score and a central position in one of the 

significant subnetworks. It encodes the protein tyrosine phosphatase SHP-2, which regulates heart 

and blood cells development during embryogenesis, as well as other tissues (55). The Cell Adhesion 

Molecules (CAM) pathway also presents interesting signals, as we have identified a small cluster of 3 

genes coding for neuroligins, which are neuronal proteins involved in the modulation of synaptic 

transmission (56). However, it has recently been shown that these genes are also involved in vascular 

processes (57,58). The NLGN1 gene thus seems to be a strong candidate for adaptation to high-
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altitude in Tibetans and Andeans and mechanisms linked to neuroligins action in angiogenesis at high 

altitude would deserve further investigation. 

Note that we have also identified a cluster of genes involved in separate metabolic processes. 

Signals of adaptation at ADH and ALDH genes have been observed in the original study as well as in 

Ethiopian populations living at high altitude (59). As suggested in the original study, these genes 

could be involved in fatty-acid degradation and energy production in the mitochondrion: in case of 

hypoxia, alternative pathways such as omega-oxidation (including ADH genes) could be an 

alternative to beta-oxidation (24).  

Advantages and limitations of the method 

The search for high-scoring subnetworks is a combinatorial optimization problem for which several 

methods have been developed (29,39,60). Here, we describe a new method to detect selection in 

biological pathways based on a simulated annealing algorithm that extends a previous approach (29) 

by searching for the highest scoring subnetwork of interacting genes rather than for the highest 

scoring subset of nodes, i.e. we constrain the search to a single connected set of genes. Even though 

an exact algorithm has been developed to find the optimal subnetwork, it is not generally applicable, 

as it can only be applied to a list of p-values coming from a mixture of beta distribution (39). On the 

other hand, our simulated annealing method does not require any assumption on the distribution of 

gene scores, and it can therefore be applied to a wider range of problems. In addition, our statistical 

testing procedure explicitly takes into account the optimization procedure, by building a null 

distribution of high-scoring subnetworks in permuted data. The generation of this null distribution is a 

crucial step to prevent simulated annealing to identify subnetworks in the absence of any signal (39), 

and we show here by simulation that our statistical procedure behaves properly in terms of type I error 

(Figure 1 and S1). 

An interesting feature of our approach is the integration of functional information into the analysis 

by directly testing biologically relevant gene sets. This procedure allows one to better interpret the 

output of a genome scan and to find the potential functions that are involved in the adaptive process. 

This is in clear contrast with traditional Gene Ontology (GO) analyses (61) that are typically performed 

on a list of top scoring candidate genes. For instance, a GO analysis performed in the original study 

(24) reveals only 2 significant GO terms: ‘‘ethanol oxidation’’ (GO:0006069) and ‘‘positive regulation of 

transmission of nerve impulse’’ (GO:0051971). This GO analysis thus missed some important 

biological processes involved in adaptation to altitude. Note that 14 of the 72 genes initially identified 

as candidates for adaptation to altitude are also present in our significant HSSs (Figure 3). 46 of the 

72 top scoring genes are not included in our current analysis, either because they are absent from the 

pathways databases (n = 31), or because no SNP could be associated to them (e.g. because the 

closest SNP is more than 50 Kb away from them) (n = 15). Therefore, only 26 genes were identifiable 

with our method. The fact that a large fraction (46%) of these genes are not present in our significant 

HSSs and that only 4 out of 9 HSSs include a top-scoring gene shows that our method is not just 

agglomerating less significant genes around top scoring genes. In any case, our results seem 

biologically more relevant than a GO analysis output and in this case easier to interpret. 
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Our approach is conceptually close to the method developed by Daub et al. (7), which consisted 

in testing if a whole pathway presented a shift in the gene score distribution. The main difference with 

this previous approach is that we aim here at finding high-scoring subnetworks within pathways. 

Indeed, it is more likely that polygenic adaptive events have focused on only a subset of genes rather 

than on a whole pathway. In addition to be able to identify small subsets of genes even in large 

pathways, our approach allows one to identify outlier functions and genes at the same time, whereas 

under the previous whole-pathway approach, pathways had to be manually inspected in order to 

know which genes were driving adaptation (7). However, Daub et al.’s approach (7) has some 

advantages as it can be applied to any pathway, as it is not limited to pathways for which gene 

interaction networks are explicitly available. Therefore, the two approaches should be seen as 

complementary. 

Whereas the present methodology overcomes some common problems associated to genome 

scans for selection, such as being able to identify genes with moderate selection score (Figure 2 and 

3), and to explicitly associate candidate gene-sets to biological functions, it also presents some 

limitations as compared to other methods to detect selection. For instance, our approach is limited by 

the availability of pathway and network information. Therefore, some genes and biological functions 

cannot be tested, and the method is not easily applicable to non-model species for which no 

pathways databases are available. Then, one should be aware that only a certain type of biological 

functions are tested, i.e. biochemical phenotypes, and we thus have no information about higher-

order phenotypes, e.g. height or weight. Finally, this method does not allow one to identify isolated 

top-scoring genes. However, such isolated outlier genes are easily identified with a classical genome 

scan. One can thus check if outliers are represented among significant subnetworks and therefore 

determine if selection has only targeted these single genes of if higher-order processes have been the 

target of selection. 

Overall, our method allowed us to study an example of human adaptation from a gene network 

perspective. Based on information about gene interactions and a proxy for selection, we were able to 

identify potential undiscovered targets of selection, like pleiotrophin or neuroligins. This method has 

thus the potential to detect new genetic bases of adaptation in humans, as well as in other species for 

which gene interactions databases exist or could be inferred. In addition, even though we have 

applied this search algorithm to a case of human evolution, the same workflow can be used in other 

fields, such as for the study of differential gene expression, GWAS or any kind of analysis for which a 

score can be obtained for any given gene. 

AVAILABILITY 

Our approach has been implemented as a fully automated R package. The source code and 

documentation are available on Github (http://www.github.com/CMPG/signet). 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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Figure 1: Impact of different parameters on the precision of the estimation (PPV). The predictions of the GLM 
for the influence of μHSS on the precision is represented (A), as well as the PPV as a function of network size (B) 
and subnetwork size (C) when μHSS is fixed to 5.

Estimate p-value %TD Estimate p-value %TD
N 1 -0.025 < 2.10-16 17.5 4.3.10-3 < 2.10-16 < 1
k 2 0.14 < 2.10-16 21.3 -0.03 1.4.10-15 < 1

μ HSS
3 0.75 < 2.10-16 45.8 1.29 < 2.10-16 66

d 4 -0.029 0.29 < 1 25.10- 0.31 < 1
i 5 -1.8.10-6 52.10- < 1 1.5.10-6 0.05 < 1

1Network size; 2HSS size; 3HSS mean score; 4Network density; 5Number of iterations

PPV TPR

Table 1: Estimates of the effects of the five parameters on the precision (PPV) and sensitivity (TPR) obtained 
under a logistic regression framework. For each parameter, the coefficient, p-value and the percentage of 
explained total deviance (%TD) are indicated.
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Figure 2: Most significant subnetwork among the three pathway databases. The HIF-2-α transcription pathway is 
represented as a graph (A), where each node is a gene, and the node size is proportional to the gene score. The 
highest scoring subnetwork (HSS) of the pathway is shown in red. The gene scores density distribution in this 
pathway is shown in (B). The dashed line represents the density of gene scores within all the KEGG database, the 
histogram shows the distribution of genes scores within this pathway, and the vertical red lines indicate the scores 
of the genes belonging to the HSS.
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Figure 3: Merged significant subnetworks. For each database, NCI (A) and KEGG (B), we merged the significant 
subnetworks of genes if they overlapped. The colour intensity and size of the nodes are proportional to the gene 
score. Red lines delimit the individual significant subnetwork and the names of pathways to which they belong are 
shown next to it.
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