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Abstract

One of the main causes of cancer mortality is tumor evolution to therapy-resistant disease.
Drug resistance may emerge from the rise of ancestral clones that gain fitness through therapy-
induced natural selection. Previously, it was shown that the presence of drug-resistant sub-
clones at diagnosis or prior to therapy could be a strong predictor of poor survival, disease
transformation, and refractoriness, with direct implications for disease management. Although
such prognostic mutations are most commonly identified using amplicon-based or hybrid-capture
deep sequencing in a clinical setting, their sensitive detection relies on the accurate analysis of
background noise, specifically sequencing errors that arise from prior polymerase chain reaction
cycles. In this work, we provide a comprehensive, unbiased model that precisely describes
this background noise and show that it can be approximated by aggregating negative binomial
(NB) distributions, using tumor-only data. We evaluate our model and its NB approximation
with simulated exponentially expanded populations, as well as ultra-deep sequencing data from
cell line and patient sample dilution experiments. Our method goes beyond estimating fixed
detection thresholds for all variants, having the power to assess mutation-specific sensitivities
that allow identification of 1-2 mutated alleles out of 10,000 wild-type. This facilitates the design
of precise treatment strategies and contributes significantly to combatting drug resistance and
increasing positive outcomes.

Introduction

In the development and evolution of cancer, while genetic alterations accumulate, fitter sub-
populations gain dominance and give rise to clinically diagnosable disease. Drug resistance often
emerges from such tumor evolutionary patterns via Darwinian selection of sub-clones with greater
fitness under therapy Y. The detection of these low frequency disease-driving clones in the preclin-
ical phase, at diagnosis, or during treatment, can be a strong predictor of poor survival, disease
transformation and refractoriness, with direct implications for treatment strategy.

Rapid progress in genomic sequencing has enabled the molecular characterization of human neo-
plasms and has improved our understanding of cancer development and evolution. The underlying
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biochemical mechanisms are often recurrent across different cancers: for example, aberrations lead-
ing to unregulated cell growth or inactivation of apoptosis are common to almost all neoplasms. In
particular, tumors arising from different cells of origin often harbor identical low frequency genetic
alterations, which often have similar prognostic consequences 2. Cells bearing some of these mu-
tations may be resistant to therapy and may exist at very low abundance (<10 in 10,000 wild-type
alleles) in the preclinical phase or may persist and be positively selected during therapy-induced
remission. To date, timing the rise of such resistant clones and translating this into clinical practice
has been confounded by the lack of calibrated methods to accurately detect low frequency variants.

Allele-specific, real-time polymerase chain reaction (PCR) assays have been proposed to identify
prognostic variants %90, However, these approaches only target known mutations, and their adap-
tation to situations with large numbers of variants requires extensive primer calibration. In contrast,
high-throughput sequencing provides an unbiased view of tumor heterogeneity and its genomic pro-
file. The main hurdle in clinical utilization of ultra-deep sequencing data (depth > 2,000x) is distin-
guishing real mutations from mistakes that arise during amplification. Various techniques based on
unique molecular identifiers have been proposed to correct both polymerase and sequencing errors
L8810, however, these methodologies require the generation of very large numbers of sequencing
reads to assemble the genome of a single DNA molecule with high confidence. Therefore, basic
amplicon-based or hybrid-capture targeted sequencing have remained the most commonly used
methods to track prognostic markers in both clinical and basic research applications M. Precisely
designing primers to generate overlapping read pairs allows their merging and facilitates correcting
errors that accumulate in the sequencer after the amplification of targeted loci, while leaving the
PCR errors uncorrected 1443, The challenge is then to determine sensitivity thresholds, i.e. the
depths above which sequencing errors happen with a probability below a statistical cut-off. Such
thresholds can be estimated by hypothesizing that all variants are due to errors and deviations from
this null hypothesis indicate the presence of true variants. Since different errors occur at different
rates 1419 5 single threshold cannot comprehensively test the significance of all variants. Bayesian
modeling of background error, in conjunction with multiple filtering criteria using sequencing data
from patient-matched and normal samples has been proposed to address this issue LOITISII

Recently, we reported an algorithm called Backtrack that models the background PCR noise
and establishes depth thresholds to distinguish true variants from errors in ultra-deep tumor-only
sequencing “%4Y. We considered different types of error distributions: (i) the negative binomial
distribution, which is known to describe the depth distribution of clones after PCR amplification
through a Poisson-Gamma mixture model “?; (ii) a single or a linear combination of Lauria-Delbriick
distributions, characterizing the expected number of spontaneous mutations during growth when
the PCR error rate is assumed to be constant “¥. Our empirical analysis indicated that the negative
binomial distribution gives the best fit to the error depth distribution based on goodness-of-fit log-
likelihood. The application of Backtrack to 309 newly diagnosed chronic lymphocytic leukemia
(CLL) patients identified small sub-clonal prognostic mutations in four frequently mutated drivers
of this neoplasm, present in 2 out of 1,000 wild-type alleles. These mutations were missed by
traditional Sanger sequencing, but were validated by independent deep sequencing (using different
primers) and allele-specific PCR %21, Despite Backtrack’s accuracy, we did not provide a proof
for our empirical approach.

In this manuscript, we revisit this problem and introduce a comprehensive model that illustrates
how aggregate negative binomial distributions describe PCR error depths in ultra-deep targeted
sequencing. We test our model with in silico as well as cell line and patient dilution experiments,
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and propose highly sensitive, mutation-specific approaches to detect true mutations without the
need for control data from unmutated normal tissue DNA.

Methods

Derivation of the error depth distribution. Let us assume an experiment in which S inde-
pendent samples are subjected to ultra-deep sequencing. At each genomic locus, three possible
erroneous substitutions or two types of small indels — henceforth called variants — may occur.
The probability of observing n; reads harboring a variant amongst N; total reads that cover its
position follows a binomial distribution, Bino(n;|N;). Therefore, if M = Zgéj N; and m = Zfﬁ Ng,
the posterior predictive p value for having detected a true mutation in sample j, given other S — 1
samples is

, Bino(n;|Nj) I Bino(n;|N;)

i#]
fol 1 Bino(n;|N;)dé
i#]

(Nj> y 1 0nj+1m(1 _ H)Nj—nj+M—m 40
0o fy (1 —0)M-mde
N; Beta(l1+n; +m,1+ Nj —n; + M —m)
= X
Beta(l +m,1+4+ M —m)

P(n]]Nj,{n,,Nz}) = d@

1

. )
Uz

where Beta indicates the Beta function. Simplifying the algebra yields the beta-binomial distribu-

tion,
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Variations of equation (1)) have been previously derived for sequencing depths > 100x LS9 T

ultra-deep data, where N > 5,000x, we can assume that n; < V;, and hence, using Stirling’s

approximation, (JT\[;) ~ —. Equation can then be approximated by
n; +m N, , M
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which equals NB(n;|1 + m, NJNW), where NB indicates the negative binomial distribution.

Exponential expansions at varying error rates. In an exponentially expanded population
that is generated through ¢ amplification cycles, if errors accumulate at a rate of p substitutions
per site per cycle, the average error depth (i.e. the average number of reads harboring errors) is
equal to 2°u. For S such populations, the error depth distribution is described by equation , or
is approximated by a negative binomial distribution, NB(1 + (S — 1)2%u,1 — %), as derived above
in equation . Since different types of PCR mis-incorporations (e.g. transitions versus transver-
sions) occur at differential rates, assuming R independent rates, the observed number of variants
D(v), with error depth v is given by,

1
ZXP v[2°, (S — 1)2°,, (S — 1)2°) = ZXNB o1+ (S =12 1= 2).  (3)
r=1
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where X, represents the number of variants that occur with rate p,. Since error rates are often
unknown, we can alternatively bin the variants based on their average depth across samples and
write D(v) as

B 1

B
D(v) =Y Xy P(o(N), (S = 1){v)s, (S = 1)(N)) = Y XpNB(v[L + (S = 1){v)s, 1 — g ()
b=1 b=1

where B is the number of bins, X} is the number of variants in each bin, and (N) is the average
sequencing depth across S samples. It has been shown that the sum of negative binomial distri-
butions with equal success probabilities, is also a negative binomial distribution, though with a
random parameter #4259, Thus, the approximation of D(v) in equations and with sums
of negative binomial distributions that have success probability of 1 — %, suggests the empirical
observation implemented in the Backtrack algorithm 2.,

Cell line and patient sample dilution experiments. In the first experiment, a series of
dilutions using the SU-DHL-6 cell line (Diffuse Large B-Cell Lymphoma), which carries a heterozy-
gous TP53-Y234C missense transition substitution was generated. The cells were serially diluted
at (1:10, 1:102, 1:103, 5:10%, 1:10%, 5:10°, and 1:10%) by mixing the cell line DNA with TP53 wild-
type genomic DNA from a healthy donor. The TP53 mutation locus was sequenced at depths of
10,000x (10K x), 100,000x (100K x), and 1,000,000x (1Mx). In the second experiment, genomic
samples from 18 healthy individuals as well as samples from undiluted and 1:10% diluted leukemia
cells from a CLL patient, harboring a heterozygous SF3B1-K700E missense transition substitution
were analyzed and the TP53 mutation locus was sequenced at a mean depth of 620,000x. For both
experiments, each cell line dilution and patient sample was barcoded and targeted with amplicon
multiplexed sequencing using the Illumina MiSeq (2 x 150 bp) (Genewiz, South Plainfield, NJ).
The primers were designed so that the pair-end reads substantially overlapped with each other and
each read pair was merged to correct sequencing errors. The merged reads were mapped to the hu-
man reference genome (hgl9) using the Burrows-Wheeler Aligner (BWA) alignment tool“®, and all
variable sites were identified using an inclusive variant caller, adapted from the SAVI algorithm®”.

Results and Discussion

Simulated data. We generated a set of in silico experiments with exponentially expanded popula-
tions starting from a single, homogenous, 100 base-long sequence of binary bases. Each population
was aggregated from four expansions that followed error rates of 1073, 104, 1072, and 10~ substi-
tutions per site per cycle. The number 12, 14, and 18 of cycles were chosen to produce populations
with 16,384, 65,536 and 1,048,576 total reads respectively. Each experiment contained 50 indepen-
dent populations (S = 50) and for each experiment, D(v), the expected number of variants with
depth v was calculated using equations . This experiment was repeated 100 times. Figure
shows the results, as well as statistically significant x? p values indicating high accuracy of the
estimates from both the beta-binomial model and its NB approximation.

Cell line dilution experiments. Next, we removed the real diluted TP53% mutation from cell
line sequencing data, and arranged the erroneous variants based on their depth in 5x-sized bins.
We then counted the number of variants X3 in each bin, and calculated D(v) using equation (4)).
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Figure[2]shows the results for sequencing depths of 10K x, 100K x, and 1M x, indicating statistically
significant y? p values that show a strong concordance between estimates from the beta-binomial
model, its NB approximation, and ultra-deep sequencing data. Distinguishing transitions and
transversions further clarified the importance of classifying variants using sequencing depth as a
proxy for the error rates. We obtain similar results from modeling the ultra-deep sequencing data
from the SF3B1 locus (Figure |3)).

Detecting true mutations. We propose two comprehensive approaches to assess the presence of
true mutations at very low abundance relative to background. Our methodology does not require
matched normal samples or extensive filtering based on variant annotation resources.

First, having established an accurate model to describe the sequencing error distribution, a
threshold is determined above which sequencing errors happen with a probability below an es-
tablished statistical cut-off . These thresholds can be derived from all variants or a subset of
variants, for example only transitions or transversions. Figure [4] shows such thresholds for detect-
ing the TP53-Y234C transition mutation in dilution experiments, where we are able to identify
the mutation in abundances as low as 5:10% at 10K x and 100K x, and 1:10* at 1M x, without any
false positive calls. As shown in Figure [2] there is better sensitivity for detecting a transversion
substitution.

Second, we test an individual mutation in each sample against all other sequenced samples
and calculate cumulative P using equation . After correcting for multiple hypotheses using the
Benjamini and Hochberg method, we generate a list of variants that satisfies a pre-determined false
discovery rate. This approach is particularly powerful in identifying patient-specific mutations.
We assess the presence of the SF3B1-K700E mutation in patient samples, and find the probability
of observing the mutation in 1:10> CLL dilution to be extremely significant compared to controls
(Table [1)).

In the absence of matched normal samples, the first approach is especially practical for identi-
fying mutations that may exist in more than one tumor sample. The second approach, however,
can accurately identify sample-specific mutations by comparing multiple samples at the same ex-
act mutated base. In comparison, amongst various published variant calling algorithms, the only
comparable unbiased method is EBCall, whose implementation is based on beta-binomial distri-
butions and establishing priors from normal sequencing data 18, EBCall requires normal samples;
therefore, we remove the reads harboring the diluted mutations to simulate matched normal data.
EBCall, with a sensitivity-adjusted configuration, successfully identifies the SF3B1-K700E muta-
tion in 1:10% CLL dilution sample, as well as the TP53-Y234C mutation in the least diluted samples
at all sequencing depths (i.e. 1:10 in 10Kx, 1:10? in 100K x, and 1:10% in 1M x); however, it fails
to detect the mutation in higher dilution levels, and also results in four false positive calls at 1M x.

Conclusion

Therapeutic resistance, one of the main causes of eventual disease relapse and mortality in can-
cer patients, is often associated with the natural selection of pre-existing resistant clones under
treatment Y. The detection of such low frequency sub-clones is hindered by a lack of precision-
tested diagnostic assays. In this manuscript, we address this important problem in cancer therapy
by introducing a highly sensitive method to detect prognostic markers of disease recurrence using
ultra-deep targeted sequencing (depth > 2,000 ), a commonly utilized technology in clinical prac-
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Figure 1: Number of variants with error depth of v from aggregated cycles of PCR amplification
at four error rates. Piheo. and NByyeo. are calculated using equation , and FPemp. and NBepyp,. are
calculates using equation (4)).

tice. Our approach is based on interrogating data from multiple tumor samples at identical genomic
regions and provides an accurate assessment of the error rate at a given position without relying
on normal samples. Therefore, instead of establishing a fixed detection threshold for all variants,
we directly calculate mutation-specific sensitivities. Overall, since ultra-deep sequencing methods
are now routinely implemented in the clinic, we believe that the application of our comprehensive
model to tumor samples will increase the speed with which patients can be evaluated during dis-
ease surveillance. Our method opens up the possibility of exploring the dynamics of cancer clones
after treatment, timing the rise of resistance to therapy, and determining the clinical importance
of minimal residual disease assessed from liquid biopsy samples for precise disease management.
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Table 1: Presence of the SF3B1-K700E mutation in undiluted and diluted patient samples are
tested against 18 samples that harbor wild-type allele.

Sample Variant Depth (v) | Total Depth | Variant Frequency | Cumulative P FDR Cumulative NB
Control 64 711703 0.00009 9.48E-01 9.48E-01 8.66E-01
Control 62 642586 0.00010 8.45E-01 9.48E-01 6.85E-01
Control 74 717154 0.00010 7.02E-01 9.37E-01 5.09E-01
Control 94 630510 0.00015 2.95E-03 9.43E-03 5.00E-04
Control 56 505857 0.00011 4.68E-01 7.89E-01 2.60E-01
Control 61 509147 0.00012 2.49E-01 5.69E-01 1.07E-01
Control 88 699082 0.00013 1.12E-01 2.98E-01 4.12E-02
Control 75 749932 0.00010 7.91E-01 9.48E-01 6.22E-01
Control 62 657036 0.00009 8.84E-01 9.48E-01 7.47E-01
Control 56 581178 0.00010 8.34E-01 9.48E-01 6.63E-01
Control 81 731934 0.00011 4.75E-01 7.89E-01 2.85E-01
Control 70 636485 0.00011 4.93E-01 7.89E-01 2.89E-01
Control 40 452271 0.00009 9.15E-01 9.48E-01 7.92E-01
Control 59 511932 0.00012 3.51E-01 7.03E-01 1.72E-01
Control 46 518211 0.00009 9.27E-01 9.48E-01 8.15E-01
Control 80 714670 0.00011 4.35E-01 7.89E-01 2.50E-01
Control 85 736865 0.00012 3.33E-01 7.03E-01 1.75E-01
Control 74 691495 0.00011 5.87E-01 8.53E-01 3.82E-01
CLL 281058 630750 0.44559 0.00E+00 0.00E+00 0.00E-+00
CLL 1:1000 dilution 2678 440301 0.00608 0.00E+00 0.00E+00 0.00E-+00
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