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Abstract

The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs)

requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage regime and

the spiking mechanism. Combinations of the same types of ionic currents in different parameter regimes

may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like),

generating subthreshold oscillations patterns with different properties. We investigate the spiking reso-

nant properties of conductance-based models that are biophysically equivalent at the subthreshold level

(same ionic currents), but functionally different (parabolic- and cubic-like). As a case study we consider

a model having a persistent sodium current and a hyperpolarization-activated (h-) current. We unfold the

concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input

frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies

regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of

resonance. We also measure spiking phasonance, which is an extension of subthreshold phasonance to

the spiking regime. The subthreshold resonant properties of both types of models are communicated to

the spiking regime for low enough input amplitudes as the voltage response for the subthreshold reso-

nant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no

longer present, but output spiking resonance is present primarily in the parabolic-like model, while the

cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the under-

lying mechanisms and the mechanistic differences between the resonance types. Our results show that

the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscil-

lations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence

of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed

in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neu-

rons having resonant and amplifying currents with different time scales and the fact that the identity of

the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic

information, captured by the geometric properties of the phase-space diagram, is needed.

1 Introduction

Several neuron types have been shown to exhibit preferred frequency responses to oscillatory inputs

(resonances) [1–50], which have been implicated in the generation of network oscillations in the same

frequency bands [12, 37, 51, 52] (but see [53]). Most studies using single neurons have focused on

subthreshold resonance [1–42] and much less attention has been paid to the suprathreshold preferred

frequency responses to oscillatory inputs (suprathreshold spiking or firing rate resonance) and the link
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between the sub- and suprathreshold resonances [2, 22, 38, 43–50, 54]. The mechanisms responsible

for the generation of suprathreshold resonance and the circumstances under which the presence of sub-

threshold resonance is a good predictor of suprathreshold resonance are not well understood. Several

studies have suggested that firing resonance emerges from sub-threshold resonance properties [6, 7, 9],

but others have not found such a clear correlation [8, 55–57]. This is to be expected, at least in some

cases, since suprathreshold resonance depends on the spiking mechanisms in addition to the neuronal in-

trinsic properties (ionic currents). An important conceptual issue is that, unlike subthreshold resonance,

there is more than one notion of the preferred spiking response to oscillatory inputs as we explain below.

The goal of the this paper is to address these issues in the context of nonlinear conductance-based

models that are biophysically equivalent at the subthreshold level (same ionic currents), but function-

ally different in the sense that they have qualitatively different subthreshold oscillatory properties due to

differences in parameter values [58]. This allows us to examine various plausible realistic scenarios in

which the same participating ionic currents interact both among themselves and with the spiking mech-

anisms to produce the different types of preferred spiking responses to oscillatory inputs. In addition,

it lets us explain the underlying biophysical and dynamic mechanisms in a broader context that goes

beyond the interaction between ionic currents. On a more general level, this approach allows to examine

the notion of the communication of the resonant properties from the subthreshold to the suprathreshold

regime [2, 44, 53].

The subthreshold preferred frequency responses to oscillatory inputs have been characterized by the

impedance amplitude (or simply impedance) and phase-shift (or simply phase) profiles (curves of the

impedance and phase as a function of the input frequency) [1, 2, 59]. A neuron exhibits subthreshold

resonance if the impedance profile peaks at a nonzero input (resonant) frequency (fres) and subthresh-

old phasonance if the phase profile vanishes at a nonzero input (phasonant) frequency (fphas) (the in-

put and output are synchronized in phase). Resonance has being observed in both current and voltage

clamp experiments and in models in various neuron types including hippocampal pyramidal cells and

interneurons, neocortical neurons, entorhinal stellate cells, thalamic neurons, inferior olive neurons, stri-

atal neurons and pyloric neurons of the crab stomatogastric ganglion neurons [1–42]. Experimental and

modeling studies have shown the presence of more complex subthreshold impedance profiles exhibit-

ing additional extrema, referred to as antiresonance (impedance profile minimum) and antiphasonance

(zero-phase response with negative slope) [2, 17, 36, 60].

Subthreshold resonance in neurons requires the interplay of positive and negative feedback effects

that favor and oppose changes in voltage respectively. These are typically provided by the so-called reso-

nant and amplifying gating variables associated to the corresponding ionic currents. Passive neurons are

low-pass filters (monotonically decreasing impedance profile and monotonically increasing phase profile

with no zero-crossing). The presence of restorative ionic currents such as Ih (hyperpolarization-activated

mixed-cation) and IM (M-type slow-potassium) endows neurons with the ability to exhibit resonance,

while the presence of regenerative currents such as INap (persistent sodium) and IKir (inward-rectifying

potassium) amplify the neurons’ response to oscillatory input in addition to other causing changes in the

impedance and phase profiles [1, 2, 59, 61]. Negative feedback effects must be slower than the fastest

regenerative process for resonance to occur.

When measuring subthreshold resonance in single neurons one typically (and often implicitly) as-

sumes that both the input and output frequencies coincide and the response amplitude is uniform across

cycles for a given input frequency. This lack of harmonics allows the impedance profile to capture the

amplitude of the voltage response and fres to be a predictor of what input frequencies will produce

spikes for low enough suprathreshold input amplitudes. In this sense, it is often said that subthreshold

resonance is communicated to the suprathreshold regime [2] and has implications for the the generation

of neuronal oscillations [1]. However, for larger input amplitudes the input frequency band that is able

to produce spikes expands and may do so away from the boundaries of the underlying subthreshold res-

onant frequency band (e.g., theta: 4 - 10 Hz). The neuron may even become a spiking low-pass filter

where all input frequencies below some limit are able to produce spikes. On the other hand, since spiking

may skip input cycles for a given frequency, the output frequency may remain bounded within a given

frequency band for input frequencies in much larger ranges.

We use the term resonance as a synonym for frequency preference response to oscillatory inputs and

unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses
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on the input frequencies that are able to generate spikes [43], while the latter focuses on the output

spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit

one or both types of resonance. A related preferred frequency response is spiking phasonance, which is

an extension of subthreshold phasonance to the spiking regime. The circumstances under which these

resonances occur and coexist, and their dependence on the intrinsic ionic currents and their interaction

with the oscillatory inputs are not well understood.

In previous work we investigated the mechanisms of generation of subthreshold oscillations (STOs)

in conductance-based models whose subthreshold dynamics are described by the same combinations of

ionic currents (Ih + INap and IKs + INap, both including a leak current), but give rise to different types

of nonlinearities (parabolic-like and cubic-like) in different biophysically plausible parameter regimes

[58]. These models have been used to investigate the generation of STOs and mixed-mode oscillations

(MMOs) in entorhinal cortex stellate cells [61–64]. We showed that while some STO properties are

controlled by the specific types of ionic currents involved, and they are different for the INap + Ih and

the INap +IKs models, other properties are controlled by the geometry of the phase-plane and are shared

by models with different ionic currents, but the same type of voltage nullclines (parabolic- or cubic-like).

The question arises whether, and if yes how and under what conditions, these similarities and differences

are reflected in the spiking response of models with the same ionic currents and qualitatively different

phase-space diagrams.

The outline of the paper is as follows. In Section 3.1 we discuss the intrinsic STO and spiking patterns

that arise in the parabolic- and cubic-like Ih + INap models (in the absence of any structured oscillatory

input) and we examine the similarities and differences in the mechanisms underlying the generation of

these patterns between the two types of models. In the presence of noise the intrinsic dynamics of these

two models are almost indistinguishable. In Section 3.2 we show that the subthreshold voltage responses

of the two models have different gain dependencies for large enough (subthreshold) input amplitudes. As

compared to the corresponding linearized models, the impedance amplitude is larger for the parabolic-

like model and smaller for the cubic-like model. In Section 3.3 we define and characterize the three

types of spiking responses we use to investigate suprathreshold resonance: evoked, output and phase

responses. Evoked spiking resonance occurs when spiking is generated only for input frequencies in an

intermediate (resonant) frequency band regardless of the output frequency. Output spiking resonance

occurs when the output frequency belongs to an intermediate (resonant) frequency band regardless of

the input frequency. Spiking phasonance is an extension of subthreshold phasonance. It occurs when

the phase-shift (or phase) between the output spike and the input peak vanishes at a non-zero input

frequency. In Section 3.4 we examine the similarities and differences in the mechanisms underlying the

generation evoked, output and phase resonance between the two models. Both exhibit evoked and output

spiking resonance for low enough values of (suprathreshold) input amplitudes. However, evoked spiking

resonance vanishes for larger values of the input amplitude. Output resonance persists in the parabolic-

like model, but not in the cubic-like model. This critically depends on the ability of the parabolic model

to generate response mixed-mode oscillatory patterns, which is almost absent in the cubic-like model.

Finally, we discuss our results, extensions for other time constant regimes, limitations and implications

for neuronal dynamics in Section 4.

2 Methods

2.1 Conductance-based Ih + INap models

We use conductance-based models of Hodgkin-Huxley type [65] whose subthreshold dynamics involve

the interplay of three ionic currents: passive leak (IL), hyperpolarization-activated or h- (Ih), and persis-

tent sodium (INap). We refer generically to these models as Ih + INap. These models do not include the

spiking currents (transient sodium and delayed-rectifier potassium) and therefore they do not describe the

spike dynamics. Spikes are added “manually” after their onset has been detected. The latter either results

from the model subthreshold dynamics (parabolic-like model 1) or by a voltage threshold mechanism

(cubic-like model 2) as in the standard models of integrate- or resonate-and fire type.

The current-balance equation is given by
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C
dV

dt
= −IL − Ih − INap + Iapp + Iin(t), (1)

where V is the membrane potential (mV), t is time (ms) , C is the membrane capacitance (µF/cm2), Iapp
is the applied bias (DC) current (µA/cm2), Iin(t) is a time-dependent input current (µA/cm2), and the

ionic currents are described by

IL = GL (V − EL), Ih = Gh r (V − Eh), INap = Gp p∞(V ) (V − ENa). (2)

In (2), r and p are the gating variables, Gj (j = h, p, L) are the maximal conductances (mS/cm2), and Ej

(j = h, p, L) are the reversal potentials (mV). The gating variables x (= r, p) obey first order differential

equations of the form

dx

dt
=

x∞(V )− x

τx(V )
(3)

where x∞(V ) and τx(V ) are the voltage-dependent activation/inactivation curves and time-scales re-

spectively. The gating variable p for INap in (2) is typically very fast, and it is assumed here to be slave

to voltage: p = p∞(V ). The activation and inactivation curves for INap and Ih are given, respectively,

by

p∞(V ) =
1

1 + e−(V−Vp,1/2)/Vp,slp
and r∞(V ) =

1

1 + e(V−Vr,1/2)/Vr,slp
. (4)

The time constant for Ih is given by τr = 80 ms. In the following we will omit the units unless necessary

for clarity.

For the sinusoidal inputs with frequency fin (Hz) we use the following notation

Iin(t) = Ain sin(Ω t) with Ω =
2πf

1000
. (5)

When necessary for clarity, in the graphs we will use the notation fin for the input frequency.

For some of the simulations of the unforced system we added white noise to the model. Specifically,

we added a stochastic term of the form
√
2Dη(t) to the right hand side of eq. (1). This term is delta

correlated with zero mean; i.e., < η(t), η(t′) >= δ(t− t′). D > 0 is the standard deviation.

2.2 Two Ih + INap models with different geometric/dynamic properties

The two models we use in this paper have the same ionic currents but different parameter values that

endow them with qualitatively different geometric/dynamic properties reflected in the shapes of their

voltage nullclines in the phase-plane diagram [58]. The Ih + INap model 1 has a parabolic-like V -

nullcline (Fig. 3-A1) and the Ih + INap model 2 has a cubic-like V -nullcline (Fig. 3-B1). Therefore,

we will often refer to them as the parabolic and cubic Ih + INap models, the Ih + INap models in the

parabolic and cubic regimes, or, simply, the models 1 and 2, respectively. Both are modifications of mod-

els originally used for medial entorhinal cortex layer II stellate cells (see below) and are representative

of a general class of models having combinations of these currents. The activation/inactivation curves

for the two models (blue for model 1 and red for model 2) are presented in Fig. 1.

Ih + INap model 1

This model is a modified version [61, 62] of the one model introduced in [66]. The spiking currents

were eliminated without affecting the mechanism that governs the onset of spikes [62], and spikes were

artificially reintroduced [61, 62], as for the 2D models of quadratic integrate-and-fire type [67, 68] that

have a parabolic voltage nullcline and an additional recovery variable that captures the effects of restora-

tive currents. An additional slow h-current was also eliminated as in [61]. The ability of the model to

produce subthreshold oscillations (STOs) and spikes is not affected by these modifications (Fig. 3-A),

but the model cannot produce mixed-mode oscillations (MMOs, consisting of STOs interspersed with
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Figure 1: Activation curves for the Ih+INap models 1 and 2. The subindex

j = 1, 2 in pj,∞(V ) and rj,∞(V ) refers to the models 1 and 2 accordingly. The

blue and red dots indicate the values of the reversal potentials EL, Eh and ENa for

models 1 and 2 respectively.

spikes) in the absence of noise (Fig. 3-A3) or a time-dependent input. For intrinsic mixed-mode oscilla-

tions to occur 3D subthreshold dynamics are necessary. We use the following baseline parameter values

unless indicated otherwise [62, 66, 69]: Vp,1/2 = −38, Vp,slp = 6.5, Vr,1/2 = −79, Vr,slp = 10, C = 1,

EL = −65, ENa = 55, Eh = −20, GL = 0.5, Gp = 0.5 and Gh = 1.5.

Ih + INap model 2

This model is a modified version of the model introduced in [64]. We have translated the two nullclines

to lower voltage values so the subthreshold voltage regime is in a similar range as for model 1. In contrast

to the latter, the spiking mechanism is implemented by adding an artificial voltage threshold (Vth) and

a reset mechanism (Vrst and rrst). We use the following baseline parameter values unless indicated

otherwise: Vp,1/2 = −54.8, Vp,slp = 4.4, Vr,1/2 = −74.2, Vr,slp = 7.2, C = 1, EL = −75, ENa = 42,

Eh = −26, GL = 0.3, Gp = 0.08 and Gh = 1.5.

2.3 Subthreshold impedance and phase profiles in response to oscillatory input

currents: resonance and phasonance

The voltage response of a neuron to oscillatory input currents of the form (5) with amplitude Ain can be

characterized by the so-called impedance (Z) and phase (Φ) profiles (Fig. 2), which are curves of the

impedance amplitude (or simply impedance) and phase-shift (or simply phase) as a function of the input

frequency (f ), defined as [61]

Z(f) =
Vmax(f)− Vmin(f)

2Ain
and Φ(f) =

tpeak,out(f)− tpeak,in(f)

Tper(f)
, (6)

respectively, where Vmax(f) and Vmin(f) are the maximum and minimum of the oscillatory voltage

response Vout(f) respectively, tpeak,in(f) and tpeak,out(f) are the peak times for the current input and

voltage output respectively, and Tper(f) is the oscillation period. We note that Z(f) is often used to refer

to the complex impedance (a quantity that includes both amplitude and phase); following other authors

we use Z(f) rather than |Z(f)| for the impedance amplitude.

Eqs. (6) generalize the impedance and phase profiles for linear systems [2,59] under the assumption

that the number of input and output cycles per unit of time coincides and the output voltage waveforms

for each each input frequency are identical across cycles (assuming steady state). This is the case for

linear (or linearized) and quasi-linear models [59, 61, 70] and the parabolic- and cubic-like models we

use in this paper. We note that in other parameter regimes, the above-mentioned assumptions may not be

satisfied for cubic-like models.

A neuron exhibits subthreshold resonance if Z(f) peaks at a non-zero (resonant) frequency fres and

subthreshold phasonance if the Φ = 0 at a non-zero (phasonant) frequency (fphas). We expand below.
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Figure 2: Representative Impedance (Z), envelope amplitude and phase (Φ) profiles. The impedance and phase profiles are

the curves of Z and Φ vs. the input frequency f . The envelope amplitude are the curves of the maximum (Vmax) and minimum

(Vmin) voltage values of the steady state response. Resonance occurs at f = fres. The resonance amplitude QZ = Zmax −Z(0).
Phasonance occurs at f = fphas. The voltage response is advanced for f < fphas and delayed for f > fphas. The lack

of symmetry between the upper and lower branches of the envelope amplitude response reflects the nonlinearities present in the

system.

2.4 Suprathreshold spike-frequency and spike-phase diagrams in response to os-

cillator input currents

Here we focus on two measures of the neuronal suprathreshold response to oscillatory input currents:

spike-frequency fspk and spike-phase Φspk.

The spike-frequency fspk was computed as the inverse of the average interspike-intervals (ISI) over

1000 ms (Hz). For the purposes of this paper this measure is appropriate to capture the desired behavior

of both types of models and the differences between them. A more detailed analysis (beyond the scope of

this paper) that uses noise in addition to oscillatory inputs will require the development of more advanced

measures. The measure we use here is closer to the time average rate used in [9, 17] than to the signal

gain used in [2] (an extension of the impedance to the suprathreshold regime, defined as the quotient

between the instantaneous firing rate of a population of neurons driven by noise as well as a common

oscillatory input and the amplitude of this input). The latter requires an oscillatory input with small

enough amplitude so that the trial-averaged instantaneous can be captured by a linear suprathreshold

response. In contrast, here we are interested in the spiking responses away from the weak input amplitude

regime.

The spike-phase (spike-phase-shift) Φspk was computed in a similar manner as the subthreshold

phase (phase-shift) in (6) with tpeak,out replaced by the spike time and averaged over 1000 ms. Each

input cycle was considered to begin and end at the immediate consecutive troughs. Spikes occurring at

the peak of the input oscillation cycle were assigned Φspk = 0. Spikes occurring at the immediate prior

and posterior troughs were assigned Φspk = ±0.5 and Φspk = −0.5 respectively.

2.5 Numerical simulation

The numerical solutions were computed by using the modified Euler method (Runge-Kutta, order 2) [71]

with a time step ∆t = 0.1 ms in MATLAB (The Mathworks, Natick, MA).

3 Results

3.1 Intrinsic dynamics: similarities and differences between the parabolic- and

cubic-like Ih + INap models

Fig. 3 illustrates the subthreshold (panels A1 and B1) and mixed-mode oscillatory (MMO) dynamics

(panels A2 and B2) for the Ih + INap models 1 (panels A) and 2 (panels B) in the theta frequency band
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in the presence of additive white noise (standard deviation D) in the current-balance equation (1). The

values of D were adjusted in each case in order to illustrate the characteristic patterns.

Geometrically, the most prominent qualitative difference between the Ih+INap models 1 and 2 are

captured by the shapes of the corresponding V -nullclines [58] given by

NV (V ) =
Iapp −GL (V − EL)−Gp p∞(V ) (V − ENa)

Gh (V − Eh)
, (7)

which are parabolic-like for the model 1 (Fig. 3-A1) and cubic-like for the model 2 (Fig. 3-B1). While

there are also differences in the r-nullclines Nr(V ) = r∞(V ) between the two models, these are rela-

tively minor.

These differences in the dynamic structure between the two models have consequences not only for

the STO dynamics, as shown in [58], but also for the subthreshold and spiking resonant properties as we

show below in this paper.
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Figure 3: STOs and spiking dynamics for the autonomous Ih+INap models 1 (A; parabolic regime) and 2 (B; cubic regime)

for representative parameter values. In the absence of noise (D = 0) both models have a stable fixed-point. For visualization

purposes, only one STO cycle is shown in the phase-plane diagrams (A1 and B1, left) and spikes were truncated (A2 and B2). A.

Ih+INap model 1. We used the following parameter values: GL = 0.5, Gp = 0.5, Gh = 1.5, Iapp = −2.25 (A1), Iapp = −2.2
(A2), D = 0.004, Vth = −50, Vrst = −52, rrst = 0.065. B. Ih+INap models 2. We used the following parameter values:

GL = 0.3, Gp = 0.08, Gh = 1.5, Iapp = 0.4 (B1), Iapp = 0.55 (B2), D = 0.04, Vth = −51, Vrst = −52, rrst = 0.035.

3.1.1 Intrinsic subthreshold oscillations (STOs)

The similarities and differences in the mechanisms of generation of STOs in the parabolic- and cubic-

like Ih+INap as well as the mechanisms of generation of STOs and the transition from STOs to spikes

in the Ih+INap model 1 were thoroughly analyzed in previous work [58, 62, 63] (see also [61]). The

fixed-point in Fig. 3-A1 is a stable focus. In the absence of noise (D = 0) model 1 can generate damped

STOs (Fig. 5-A2). Persistent STOs (Fig. 3-A1) emerge when white noise is added (D > 0). The

transition from STOs to spiking as Iapp increases occurs through a sub-critical Hopf bifurcation as the

V -nullcline shifts down and the fixed-point moves to the right relative to the peak of the V -nullcline (

Fig. 5-A). Alternatively, spiking can be created by noise, as in Fig. 3-A2, when the fixed-point is stable.
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Because the system is fast-slow, for small enough values of D the trajectories can move around the knee

of the V -nullcline (see Section 3.1.2, below). This includes their canard-related ability to move along

the unstable branch (right) of the parabolic-like V -nullcline for a significant amount of time before either

crossing it and generating a STO (Fg. 5-A2) or moving to the right along a fast fiber into the spiking

regime (Fig. 5-A3).

In contrast to model 1, model 2 can generate persistent STOs (Figs. 5-B3 and -B4) in the absence

of noise (D = 0) in addition to damped oscillations (Figs. 5-B1 and -B2). Although the time scale

separation between V and r is the same (τr = 80) for both models, it affects the dynamics of the

model 2 in the vicinity of the knee of the parabolic-like nullcline in a different way than for model

1. Specifically, the stable small amplitude oscillations (Fig. 5-B3) generated in the supercritical Hopf

bifurcation gradually grow in size until they reach the left branch of the cubic-like V -nullcline (Fig.

5-B4). Because of the small distance between nullcline’s local extrema relative to the Ih time constant,

these oscillations are not of relaxation type. Finally, although the model includes a sodium current, the

subthreshold dynamics does not posses a mechanism for the onset of spikes. As for other cubic-like

systems, the same vector field that gives rise to the STOs prevents the trajectories from escaping to the

subthreshold voltage regime. Spiking is created by a threshold mechanism as explained earlier in the

paper.

3.1.2 Intrinsic spiking mechanisms

Here we examine the mechanisms of transition between STOs and spikes in the autonomous Ih+INap

models 1 and 2 as Iapp changes. The differences between the two models result from the qualitatively

different effects that changes in the excitability levels (Iapp) have on the shapes of their respective V -

nullclines (see [61] for a detailed discussion).
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nullcline on Iapp for the autonomous

Ih+INap models 1 (A) and 2 (B) for

representative parameter values. The

arrow in the phase-plane diagrams indi-

cates the direction of increasing values of

Iapp. We used the following parameter

values: GL = 0.5, Gh = 1.5 (model 1)

and GL = 0.3, Gh = 1.5 (model 2).

For model 1, as Iapp increases the V -nullcline shifts down and the fixed-point moves to the right

(larger values of V ). The shape of the V -nullcline remains almost unchanged. For low enough values

of Iapp the fixed-point is a stable node (not shown). The fixed-point transitions to a stable focus as it

gets closer to the knee of the V -nullcline (Figs. 5-A1 and -A2). The amplitude of the STOs increases

with increasing values of Iapp. The transition from STOs to spikes occurs through a subcritical Hopf

bifurcation (type II excitability; see [72]) and involves the subcritical canard phenomenon [62, 63, 73].

The limit cycle trajectory is able to move along the unstable (right) branch of the V -nullcline be-

fore crossing it and turning left towards the stable (left) branch, which is a signature of the canard phe-

nomenon. The fixed-point in Fig. 5-A3 is still a stable focus, separated from the trajectory by an unstable

small amplitude limit cycle (not shown) [62]. The spiking trajectory first moves around this small am-

plitude unstable limit cycle and then moves to the right (in the direction of increasing values of V ) along

a fast fiber towards the spiking regime. The voltage threshold indicates that a spike has occurred, but

is not part of the spike generating mechanism. The canard explosion of the unstable limit cycle as Iapp
decreases from the values in Figs. 5-A3 to Figs. 5-A2 allows trajectories initially far away (e.g., reset

values for V and r) to reach the stable fixed-point. As Iapp continues to increase, the V -nullcline contin-

ues to shift down, the fixed-point loses stability, and eventually disappears in a saddle-node bifurcation

on the right branch (not shown).
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For model 2, increasing values of Iapp cause a deformation in the shape of the V -nullcline, an overall

shifting down of the V -nullcline, and a shifting of the fixed-point to the right (larger values of V ). In

other words, increasing values of Iapp make the V -nullcline “more cubic”. As for model 1, for low

enough values of Iapp the fixed-point is a stable node (not shown) that transitions into a stable focus

(Figs. 5-B1 and -B2). These small amplitude damped oscillations occur over a relatively small range of

values of V by a mechanism similar to the one in model 1. However, in contrast to model 1, for model

2 the Hopf bifurcation is supercritical (in part due to the cubic-like shape of the V -nullcline). The small

amplitude limit cycle generated as Iapp increases further (when the fixed-point loses stability) is stable

(Fig. 5-B3) and its amplitude increases with increasing values of Iapp within some range (Fig. 5-B4).

As mentioned above, in contrast to model 1, the onset of spikes is not described by the the two equations

(for V and r) in model 2, and it requires a voltage threshold mechanism (Fig. 5-B4). The value of Vth

determines the maximal amplitude of the STOs.

In the following sections we investigate the consequences of the autonomous dynamics described

above (Sections 3.1.1 and 3.1.2) for the subthreshold and suprathreshold responses of the Ih + INap

models to oscillatory input currents.

3.2 Models 1 and 2 exhibit different subthreshold gain dependencies with the

input amplitude: supra- and sub-linear amplification of the voltage response

The subthreshold frequency preference properties of the Ih + INap models 1 and 2 are captured by the

impedance (Fig. 6-A1 and -B1), voltage envelope (Fig. 6-A2 and -B2) and phase (Fig. 6-A3 and -B3)

profiles computed using eqs. (6). For the parameter values used, the two models exhibit both resonance

and phasonance in the theta (4 − 12 Hz) frequency range. In [61, 70], we used a dynamic phase-plane

analysis approach (e.g., Fig. 7) to explain the mechanisms of generation of resonance and phasonance

for models with linear and parabolic V -nullclines.

Briefly, the V -nullcline NV (V ) (7) for the autonomous system (solid-red curves) moves cyclically

following the sinusoidal input (5) in between the dashed-red curves obtained by substituting Iapp by

Iapp ±Ain in NV (V ):

NV,±(V ) =
Iapp ±Ain −GL (V − EL)−Gp p∞(V ) (V − ENa)

Gh (V − Eh)
. (8)

The moving V -nullcline

NV,t(V ) =
Iapp + Iin(t)−GL (V − EL)−Gp p∞(V ) (V − ENa)

Gh (V − Eh)
(9)

shifts down and rises on the input ascending and descending phases respectively, and reaches the mini-

mum and maximum levels (dashed-red curves) at a quarter and three quarters of the input cycle respec-

tively. We note that, technically, the V -nullcline does not move, but this motion is the visualization of a

projection of the three-dimensional phase-space for V , r and t into the two-dimensional phase-plane for

V and r.)

The response limit cycle (RLC) trajectories evolve in response to the motion ofNV,t with f -dependent

speeds and directions, and therefore have f -dependent shapes. The values of Vmax and Vmin are given

by the projections of the points with the maximum and minimum V -values on these limit cycle trajecto-

ries on the V -axis. In the limit of very low input frequency values (fin → 0) the RLC trajectory is slave

to the motion of the V -nullcline, due to the slow motion of the latter. Therefore, the RLC motion occurs

in the direction of the r-nullcline (e.g., fin = 0.5 in Figs. 7-A3 and -B3). In contrast, for very high

input frequency values the RLC trajectory moves very slow as compared to the motion of the NV,t, and

therefore the former has a very low amplitude and moves in a quasi horizontal direction (e.g., fin = 40
in Figs. 7-A3 and -B3). In the limit of fin → ∞, the RLC trajectory converges to the fixed-point for

the autonomous system (not shown). For intermediate values of fin the RLC trajectory transitions in

between these two extreme cases, by first rotating and becoming more elliptical, and then shrinking to a

point as Ain continues to increase. The resonant frequency correspond to the RLC trajectory that is able

to reach the highest value Z(f) according to eq. (6). Under certain conditions (e.g., the number of input
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Figure 5: Spiking mechanisms in the autonomous Ih+INap models 1 (A) and 2 (B) for representative parameter values:

effects of changes in Iapp. A. Ih+INap model 1. We used the following parameter values: GL = 0.5, Gp = 0.5, Gh = 1.5,

D = 0, Vth =?45, Vrst = −75, rrst = 0.0 B. Ih+INap models 2. We used the following parameter values: GL = 0.3,

Gp = 0.08, Gh = 1.5, D = 0, Vth = −51, Vrst = −75, rrst = 0
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and output cycles coincide for each input frequency f ) this corresponds to the optimal RLC trajectory

that is able to reach the highest value of Vmax as compared to other input frequencies. From the point

of view of the communication of the subthreshold frequency preference responses to the suprathreshold

one, this is the measure that matters.
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Figure 6: Impedance (left columns), voltage envelope (middle columns) and phase (right columns) profiles for the sinu-

soidally forced Ih+INap models 1 (A) and 2 (B) for representative parameter values. A. Ih+INap model 1. We used the

following parameter values: GL = 0.5, Gp = 0.5, Gh = 1.5, Iapp = −2.5, D = 0. B. Ih+INap models 2. We used the following

parameter values: GL = 0.3, Gp = 0.08, Gh = 1.5, Iapp = 0.3, D = 0.

As the input amplitude increases, the voltage response also increases (Fig. 7-A2 and -B2). For linear

(or linearized) models this increase is proportional to the input amplitude Ain, rendering the impedance

independent of Ain. For nonlinear models, the steady state responses to sinusoidal inputs violate at least

one of the linearity principles: (i) coincidence of the output and input frequencies, (ii) proportionality

between the output and the input, and (iii) symmetry of the output with respect to the equilibrium value

around which the system is perturbed (resting potential). For the Ih + INap models 1 and 2, (i) is

satisfied, but not necessarily (ii) and (iii). In [61] we argued that the Ih + INap model 1 exhibits a

canard-related nonlinear amplification of the voltage response (Fig. 7-A1 and -A2) due to the ability of

the resonant RLC trajectory to optimally follow the unstable branch of the parabolic-like V -nullcline for

a significant amount of time (Fig. 6-A3). The combination of the parabolic-like shape of the V -nullcline

and the time scale separation between the participating variables allows the resonant RLC trajectory to

reach higher values of V as compared to the resonant RLC trajectory for the corresponding linearized

system (not shown). (The latter would have a more rounded shape as in Fig. 6-A2). We refer to this type

of nonlinear amplification of the voltage response as supra-linear.

In contrast to the Ih + INap model 1, the Ih + INap model 2 exhibits a sub-linear amplification of

the voltage response (Fig. 6-B1 and -B2), which implies a negative gain. Specifically, for low enough

values of Ain (e.g., Ain = 0.1 in Fig. 6-B) the amplification is supra linear, but it becomes sub-linear as

Ain increases further (e.g., Ain = 0.15 in Fig. 6-B). The impedance profiles for Ain = 0.15 is below

the ones for Ain = 0.1 and Ain = 0.01. We use the latter case as representing the linear behavior due

to the low input amplitude and the symmetric properties of the envelope amplitude diagrams (Fig. 7-A1
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and A2).

The initial supra-linear amplification occurs when the RLC trajectories, in particular the resonant

ones, move around the parabolic-like part of the cubic-like V -nullcline (Fig. 7-B2), by a mechanisms

similar to the one described above. However, this mechanism is disrupted as Ain increases further and

the RLC trajectories enter the voltage regime where the cubic-like V -nullcline “bends up”, thus changing

the effect the vector field has on the shape of the RLC trajectories.
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Figure 7: Phase-plane diagrams for the sinusoidally forced Ih+INap models 1 (A) and 2 (B) for representative parameter

values and the values of Ain in Fig. 6. The dashed-red curves are the V -nullclines displaced ±Ain units above and below the

V -nullcline for the autonomous system (solid-red). They indicate the boundaries of the cyclic displacement of the V -nullcline as

time progress due to the sinusoidal input. The V -nullcline reaches its lowest and highest levels (dashed-red curves) at a quarter and

three quarters of each cycle respectively. A. Ih+INap model 1. We used the following parameter values: GL = 0.5, Gp = 0.5,

Gh = 1.5, Iapp = −2.5, D = 0. B. Ih+INap models 2. We used the following parameter values: GL = 0.3, Gp = 0.08,

Gh = 1.5, Iapp = 0.3, D = 0.

In contrast to subthreshold resonance, subthreshold phasonance does not show a significant quali-

tative difference in the monotonic properties between the models 1 and 2 (Fig. 7-A3 and -B3). This

is consistent with previous findings showing that resonance and phasonance are related, but different

phenomena [59, 61].

These results persist for a larger range of values of τr (not shown). The differences between the two

models are more pronounced for larger than for smaller values of τr. For model 2 and smaller values of

τr (e.g., τr = 40) the impedance profile still decreases as Ain increases , but it may require larger values

of Ain for the impedance profile to decrease below the linear impedance.

Since generating spiking responses involves increasing the values of Ain above these used to obtain

subthreshold resonance, the results above suggest that the communication of the subthreshold frequency

preferences to oscillatory inputs to the suprathreshold regime, when it happens, will have different prop-

erties between the Ih + INap models 1 and 2. We address this in the following sections.
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3.3 Suprathreshold spiking resonance: evoked, output and phase responses

Below we examine the suprathreshold frequency preference response of the Ih + INap models 1 and 2 to

sinusoidal inputs of the form (5). We primarily address two issues: (i) whether and how the subthreshold

resonant properties are communicated to the suprathreshold regime, and (ii) what are the differences

and similarities between the suprathreshold responses to oscillatory inputs between the two Ih + INap

models.

We will focus on three different types of spiking resonances that occur depending on whether one

focuses on (i) the input frequencies (what input frequencies are able to generate spikes), (ii) the output

frequencies (regardless of the input frequencies that generate the response), and (iii) the phase-shift of

the spiking output with respect to the input peak (spiking phase). While for subthreshold resonance, one

can identify a single number (the resonant frequency fres) as defining the preferred frequency response,

for the spiking resonances it is often more convenient to identify resonant frequency bands ∆fres for

which the models exhibit preferred spiking responses. Here we focus on ∆fres in the theta frequency

regime, which is the frequency band at which the models we use exhibit subthreshold resonance.

Evoked spiking resonance occurs when spiking is generated only for input frequencies in an interme-

diate (resonant) frequency band ∆fres,ev . Output spiking resonance occurs when the output frequency

primarily belongs to an intermediate (resonant) frequency band ∆fres,out, regardless of the input fre-

quency that generated the response. Spiking phasonance occurs when the phase-shift (phase) Φspk

between the output spike and the input peak vanishes at a non-zero input frequency. We provide more

details below in our discussion of the specific cases.

The definition of spiking phasonance is the natural extension of subthreshold phasonance, using (6),

to the suprathreshold regime. It is rather restrictive for two reasons. First, it assumes that a single spike is

produced for each input cycle. However, Φspk can be computed when more than one spike are produced

by a single input cycle. Second, it does not take into account the cases where Φspk does not vanish for

any value of the input frequency, but it is minimized for a given input frequency. We will not consider

this situation in this paper.

The mechanisms that govern the transition from the subthreshold to the spiking resonances depend

on the interplay of the sinusoidal input and the autonomous spiking dynamics described in Section 3.1.2.

The latter, in turn, depends on the subthreshold dynamics and the spiking mechanism for the two models.

We leave out of this study the analysis of other types of preferred frequency responses to oscillatory

inputs such as the firing rate resonance [2] where the neuron’s firing rate (e.g., see [74]) responseRout(f)
measured in terms of the signal gain A(f) = Rout(f)/Ain peaks at a preferred input frequency.

3.4 Suprathreshold spiking resonance: similarities and differences between the

Ih + INap models 1 and 2

3.4.1 Evoked and output spiking resonance are inherited from the neuronal subthresh-

old resonant properties for small values of Ain in models 1 and 2

For low enough values of Ain subthreshold resonance is communicated to the suprathreshold regime to

produce both evoked and output spiking resonance (Figs. 8-A1 and 10-A1) in input frequency bands

(∆fres,ev and ∆fres,out) around 10 Hz in both models. The existence of these resonances is a direct

consequence of the fact that a small enough increase in Ain above the subthreshold values causes spiking

both within a limited range of output frequencies and for only a small range of input frequencies around

the subthreshold frequency band. The output/input frequency patterns are different between the two

models: 2:1 for the model 1 (Figs. 8-A1) and (mostly) 1:1 for the model 2 (Fig. 10-A1). The differences

in the output/input patterns reflect the geometric differences between the two Ih + INap models.

In model 1, spiking resonance is created by an extension of the canard-like mechanism described

above (Fig. 7-A) [61]. Figure 9-A illustrates this for Ain = 0.11 (the value used in Fig. 8-A, just above

the value used in Fig. 7-A: Ain = 0.1). For input frequencies below and above ∆fres (Figs. 9-A1 and

-A4 resp.), the limit cycle trajectory moves around the NV,t knee and crosses it when NV,t is raising

(descending phase), thus creating STOs. The differences in the shapes of these small amplitude limit

cycles reflect the dependence of the RLC trajectory on the interaction between the input frequency time
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Figure 8: Suprathreshold response of the Ih+INap

model 1 to sinusoidal inputs for representative pa-

rameter values (as in Figs. 7-A). Left panels: Spike-

frequency diagrams. The output spike frequency fspk
is the normalized inverse of the average length of the

interspike intervals (Hz). The dashed-red lines (from

top to bottom) indicate the 1:1, 2:1, and 3:1 output

spikes versus input cycle patterns, respectively. Right

panels: Spike-phase diagrams. The output spike phase

Φspk (blue dots) was computed as the difference be-

tween the output spike-time and the closest input peak-

time normalized by the cycle length. Φspk = 0 for

spikes at the input peak and Φspk = ±0.5 for spikes

at the immediate prior and posterior input troughs.

The red line indicates the average Φspk for each in-

put frequency. We used the following parameter val-

ues: GL = 0.5, Gp = 0.5, Gh = 1.5, Iapp = −2.5,

D = 0, Vth = −45, Vrst = −75, rrst = 0.

scale and intrinsic dynamics structure (nonlinearities and time scale separation) described in Section ??.

As fin increases above the values in Figs. 9-A1NV,t moves faster and opens a window of opportunity

for the RLC trajectory to escape the subthreshold regime and produce a spike. Figs. 9-A2 and -A3 (left)

shows the 2:1 MMO patterns for fin = 9 and fin = 11 respectively. The phase-plane diagrams (right)

show the corresponding trajectories initially at the reset values (Vrst and rrst) during the descending
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phase of the input. The loops in the phase-plane diagrams reflect the STOs in the left panels.

The trajectory first moves along the left branch of NV,t as it raises from its minimum level (input

peak) towards its maximum level (input trough), and then shifts down again. The trajectory reaches the

knee when the trajectory is near its baseline level and evolves around the knee as it continues to shift

down, to reach its minimum level. The STO is created because the trajectory is moving around the right

branch of the NV,t while the latter is beginning to raise, and therefore they intersect.This intersection

occurs at a higher level (“earlier”) as compared to fin = 7, therefore the STO in Fig. 9-A2 has a smaller

amplitude than in Fig. 9-A1. The STO trajectory crosses the left branch of NV,t and reaches the left

branch when the trajectory is near its maximum level, then it moves around the NV,t knee as it shifts

down. In contrast to the previous input cycle, when the trajectory reaches the right branch, the NV,t is

shifting down, therefore the distance between the two is large enough to allow the trajectory to move

away from the vicinity of NV,t towards the spiking regime before NV,t raises back. As fin increases

further (fin = 11; Fig. 9-A3) the speed of NV,t increases, causing the trajectory to cross the NV,t at

lower level (as compared to fin = 9) during the first input cycle, therefore creating a STO with a smaller

amplitude.

When fin increases to fin = 12 (Fig. 9-A4) NV,t moves faster than for fin = 11 and the limit cycle

trajectory looses the ability to generate a STO on the left branch of NV,t. Instead, it continues to move

and crosses the NV,t on its right branch, when it is shifting down, thus creating a STO with a larger

amplitude than for fin = 11, but there is no spiking.

In model 2, spiking resonance is created by a different mechanism that for model 1 (Fig. 11-A),

which involves the interplay of the cubic-like subthreshold dynamics and a voltage threshold for spike

generation.

For input frequencies below and above ∆fres (Figs. 11-A1 and -A4 to -A6 resp.), the RLC trajecto-

ries never cross the Vth line. As for the model 1, the differences in the shapes of these RLCs reflect the

dependence of the model response on the interaction between the input frequency time scale that causes

NV,t to raise and shift down, and the intrinsic cubic-like dynamic structure (see Section ??).

Although there is a time scale separation between the participating variables (the value of τr for the

models 1 and 2 are the same), the STOs are not of relaxation type as it would occur for the “classical”

cubic-like models such as the FitzHugh-Nagumo model [75, 76] (see also [77]), but more rounded due

to the small difference between the maximum and the minimum of the V -nullcline as explained earlier.

For low values of fin, just outside ∆fres (e.g., fin = 6; Fig. 11-A1) the trajectory moves up along

the V -nullcline as it raises towards its maximum level. The response trajectory reaches the upper knee

roughly at the same time as NV,t reaches its maximum level and moves down in a vicinity of the right

branch accompanying NV,t as it shifts down, then crossing roughly when NV,t reaches its minimum

level at a value of V < Vth.

For high enough values fin just outside ∆fres (e.g., fin = 11; Fig. 11-A4) NV,t moves faster than

for fin = 6 and reaches its maximum level while the response trajectory is moving along the left branch,

but relatively far away from the upper knee. Because of the larger distance between the trajectory and

the fixed-point, the response trajectory moves in a more horizontal direction in the vicinity of the middle

branch, but reaches values of V < Vth.

For values of fin within ∆fres the response trajectory reaches large enough values of V large enough

to reach (and cross) the Vth line to produce spikes. The transition from STO to spiking responses includes

a very small range of input frequencies for which the system exhibits a MMO response. This results from

a combination of the dynamics of the system for smaller (e.g., fin = 6) and larger (e.g., fin = 8) input

frequencies. Specifically, during one input cycle, after a spike has occurred, the response trajectory

follows NV,t as it raises from its minimum level and reaches the upper knee roughly at the same time as

NV,t reaches its maximum level. The response trajectory slows down as a consequence of its proximity

to the fixed-point while NV,t shifts down. The increasing distance between the two causes the response

trajectory to intersect the right side of the lower knee at a value of V < Vth. During the second cycle, the

response trajectory crosses the left branch when NV,t is already raising above its baseline, thus allowing

the response trajectory to reach a higher value of V and cross the Vth line.
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Figure 9: Suprathreshold response of the Ih+INap model 1 to sinusoidal inputs for representative parameter values and

Ain = 0.3. Voltage traces (left panels) and phase-plane diagrams (right panels) for representative values of Ain and fin. A.

Ain = 0.11. B. Ain = 0.3. Parameter values are as in Figs. 7-A and Fig. 8-D. Left panels: The solid-gray curves are

caricatures of the sinusoidal inputs. The dashed-gray vertical lines at the peaks of the sinusoidal inputs indicate Φspk = 0 (zero

phase-shift). Right panels: The dashed-red curves are the V -nullclines displace ±Ain units above and below the V -nullcline for

the autonomous system (solid-red). They indicate the boundaries of the cyclic displacement of the V -nullcline as time progress due

to the sinusoidal input. The V -nullcline reaches its lowest and highest levels (dashed-red curves) at a quarter and three quarters

of each cycle respectively.The arrow indicates the direction of motion of the trajectory from its reset point to the spiking regime. We

used the following parameter values: GL = 0.5, Gp = 0.5, Gh = 1.5, Iapp = −2.5, D = 0, Vth = −45, Vrst = −75, rrst = 0.
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Figure 10: Suprathreshold response of the

Ih+INap model 2 to sinusoidal inputs for represen-

tative parameter values (as in Figs. 7-B). Left pan-

els: Spike-frequency diagrams. The output spike

frequency fspk is the normalized inverse of the av-

erage length of the interspike intervals (Hz). The

dashed-red lines (from top to bottom) indicate the

1:1, 2:1, and 3:1 output spikes versus input cycle

patterns, respectively. Right panels: Spike-phase

diagrams. The output spike phase Φspk (blue dots)

was computed as the difference between the output

spike-time and the closest input peak-time normal-

ized by the cycle length. Φspk = 0 for spikes at

the input peak and Φspk = ±0.5 for spikes at the

immediate prior and posterior input troughs. The

red line indicates the average Φspk for each input

frequency. We used the following parameter val-

ues: GL = 0.3, Gp = 0.08, Gh = 1.5, Iapp = 0.3,

D = 0, Vth = −51, Vrst = −75, rrst = 0.

3.4.2 Evoked theta spiking resonance vanishes for larger values of Ain: evoked broad-

band and low-pass filters

Both models 1 and 2 exhibit evoked spiking resonance for low enough values of Ain above the sub-

threshold level because only a small portion of the upper envelope of the voltage response, around the
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Figure 11: Suprathreshold response of the Ih+INap model 2 to sinusoidal inputs for representative parameter values.

Voltage traces (left panels) and phase-plane diagrams (right panels) for representative values of Ain and fin. Parameter values

are as in Figs. 7-B and Fig. 8-C. A. Ain = 0.19. B. Ain = 0.45. Left panels: The solid-gray curves are caricatures of the

sinusoidal inputs. The dashed-gray vertical lines at the peaks of the sinusoidal inputs indicate Φspk = 0 (zero phase-shift). Right

panels: The dashed-red curves are the V -nullclines displace ±Ain units above and below the V -nullcline for the autonomous

system (solid-red). They indicate the boundaries of the cyclic displacement of the V -nullcline as time progress due to the sinusoidal

input. The V -nullcline reaches its lowest and highest levels (dashed-red curves) at a quarter and three quarters of each cycle

respectively.The arrow indicates the direction of motion of the trajectory from its reset point to the spiking regime. We used the

following parameter values: GL = 0.3, Gp = 0.08, Gh = 1.5, Iapp = 0.3, D = 0, Vth = −51, Vrst = −75, rrst = 0.
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subthreshold resonance peak (Figs. 6-A2 and -B2), raises above threshold. As Ain increases further, the

range of input frequencies that is able to evoke a spiking response expands (Figs. 8-B1 to -E1 and 10-B1

to -E1), eventually creating an evoked spiking low-pass filter (Figs. 8-E1 and 10-E1), where all input

frequencies below some value produce a spiking response. While for intermediate values of Ain (e.g.,

Figs. 8-B1 to -D1 and 10-B1 and -C1) the input frequency band that is able to evoke a spiking response

is bounded from both below and above, it is too broad and exceeds the theta frequency band.

The mechanisms that prevented spiking for input frequencies outside ∆fres in Figs. 8-A1 and -A4

(model 1) and 10-A1 and -A4 (model 2) are dependent on balances between the speed of motion of

NV,t (a input frequency time scale) and the input amplitude Ain that causes the trajectory to cross the

right branch before it is able to escape the subthreshold regime (model 1) or cross the Vth line (model

2). Increasing values of Ain disrupt this balance, thus generating spiking for a broader range of input

frequencies.

3.4.3 Spiking phasonance is created as Ain increases and persists for larger values of Ain

Spiking phasonance (Figs. 8-B2 to -E2 an 10-B2 to -E2) occurs when the neuron spikes at the peak

of the input cycle. This phenomenon also requires a balance between the speed of motion of NV,t

and the input amplitude Ain so that the trajectory is neither too fast nor too slow as compared to the

dynamics of NV,t and is able to reache the spiking regime exactly at the same time as NV,t reaches its

minimum level (input peak). If Ain is too small, then the subthreshold response may be synchronized

in phase with the input oscillations, but no spikes are produced. Clearly, the mechanism of generation

of spiking phasonance depends on the mechanisms of spike generation and trajectory reset after a spike

has occurred. We consider other scenarios later in the paper.

3.4.4 Model 1 exhibits theta output resonance for intermediate values of Ain

For small enough suprathreshold values of Ain the output spiking frequency increases with increas-

ing values of the input frequency f (Fig. 8-A1) and both the evoked and output frequency bands are

within the theta range. As Ain increases within some range (Figs. 8-B1, -C1 and -D1), the output fre-

quency band remains within the theta range, while the evoked frequency band increases beyond theta

frequencies. The spiking frequency patterns (left panels) are non-monotonic functions of f showing

the existence complex patterns including the 2:1 and 3:1 ones in addition to the 1:1 for lower values of

f . These patterns are generated by cycle skipping mechanisms (Figs. 9-B, left panels) as f increases

beyond the theta range.

Because of the higher value of Ain the V -nullclines in Fig. 9-B reach higher and lower levels as

they raise and shift down, respectively, following the dynamics of the sinusoidal input as compared to

the V -nullclines in Fig. 9-A . This allows the response trajectory for the 1:1 pattern in Fig. 9-B1 to reach

the spiking region of the phase-plane while the V -nullcline is near its minimum level, and therefore it

produces a spike without “interferences”. More specifically, the response trajectory moves along NV,t as

it raises during the descending phase of the input. During the ascending phase, while NV,t shifts down,

the response trajectory moves around the knee of the NV,t and produces a spike when the V -nullcline is

close to its minimum level.

As f increases the response trajectory evolves slower. For f above the theta range (Figs. 9-B3) NV,t

completes a full cycle (returns to the solid-red baseline) when the response trajectory is still moving along

it, but still didn’t reach the knee. The response trajectory reaches the knee when NV,t is raising from its

minimum level on the subsequent cycle. As this happens, the response trajectory is “caught inside” the

V -nullcline and therefore is forced to reverse direction and move along the NV,t as it continues to raise,

giving rise to the bump STO. Spiking occurs within this second cycle when after the V -nullcline shifts

down.

A similar mechanism is responsible for the generation of theta output patterns in Fig. 9-B4. However,

in these 3:1 patterns spiking occurs close to the trough of the input signal instead of its peak as for the

1:1 and 2:1 patterns in Figs. 9-B1 to -B3. For the 3:1 patterns the onset of spikes occurs as the response

trajectory is able to move past the knee of the V -nullcline when the latter is raising, without being

“caught inside”. Spiking occurs later in the cycle when the V -nullcline is at a higher level than the
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response trajectory. For this to happen it is crucial that the speed of the response trajectory is high

enough to overcome the motion of the V -nullcline. As f increases further, the speed of the response

trajectory is lower, and spiking is no longer produced. Instead, the response trajectory moves around the

knee of the V -nullcline (not shown) as in Fig. 9-A4.

3.4.5 Model 2 exhibits a broad-band output response for intermediate values of Ain

Similar to model 1, for small enough suprathreshold values of Ain the output spiking frequency increases

with increasing values of the input frequency f (Fig. 8-A1) and both the evoked and output frequency

bands are within the theta range. In contrast to model 1, the response patterns of model 2 are 1:1. As

Ain increases (Figs. 10-B1 to -D1) the output spiking patterns continue to be 1:1 and the output spiking

frequency increases linearly with the input frequency. Therefore, when the evoked frequency band is

outside the theta range so does the output frequency band.

The qualitative differences between the output patterns in the two models are due to the differences

in their dynamic structures, particularly both the shapes of the V -nullclines and the underlying vector

fields, and the spiking mechanisms. In model 2 (Fig. 11-B1 to -B3), the response trajectory moves in a

vicinity of the V -nullcline, first as the V -nullcline raises (descending input phase) and then as it shifts

back down (ascending input phase). Spiking is produced as long as the trajectory is fast enough to reach

threshold without intersecting the V -nullcline. Otherwise, response STOs are produced (Fig. 11-B4).

Model 2 does not exhibit theta output spiking resonance because the cubic-like dynamic structure

does not admit the type of 2:1 and 3:1 MMO response patterns displayed by model 1. In contrast to

model 1, the response trajectory for model 2 moves along the upper dotted V -nullcline during the initial

portion of the cycle (compare Figs. 11-B3 and 9-B3) as the V -nullcline raises. When the V -nullcline

shifts down, the response trajectory is away from the region of slow motion and it moves faster towards

the spiking regime than the response trajectory in model 1 (Fig. 9-B3) when it arrives at the vicinity of

the parabolic-like nullcline during the STO response cycle.

One could in principle think that the fact that the baseline V -nullcline in model 1 is higher than the

baseline V -nullcline in model 2 plays a role in determining the response patterns in the two models.

Specifically, it would be plausible to think that the response trajectory for model 2 is able to reach

threshold without displaying MMO response patterns as does model 1 simply because it has to move

along a shorter distance than the response trajectory for model 1. In order to rule out this possibility we

modified models 1 and 2 in such a way that the baseline V -nullcline for model 1 is lower (Fig. 12) and

th baseline V -nullcline for model 2 is higher (13). Fig. 12 shows that model 1 displays the same type of

MMO response patterns as in Fig. 9 -B and Figs. 13-A1 to -A3 shows that MMO response patterns are

absent for model 2 for comparable input frequencies as in Fig. 11-B. Figs. 13-A4 and -A5 show MMO

patterns for higher frequencies reflecting the fact that the transition from response spiking to absence of

spikes is not abrupt as in Fig. 10. These MMO response patterns are generated by a different mechanism

than these more model 1 (e.g., Fig. 12) where the STO portions of the response trajectory move around

the cubic-like V -nullcline.

3.4.6 Theta output resonance vanishes for higher values of Ain for model 1

As Ain increases further the output frequency band for model 1 increases beyond the theta regime (Figs.

8-E) as the result of the increase in the length of the 1:1 response branch. The increase in Ain causes the

V -nullcline to move further away from the baseline V -nullcline, thus allowing the generation of spikes

for a larger range of input frequencies without the response trajectories being “caught” by the V -nullcline

on its way back up (descending phase) and being forced to produce STOs. In spite of the fact that theta

output resonance is lost, the evoked spiking response remains in a relatively bounded output frequency

band.
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Figure 12: Suprathreshold response of the Ih+INap model 1 to sinusoidal inputs for representative parameter values and

Ain = 0.45. Voltage traces (left panels) and phase-plane diagrams (right panels) for representative values of fin. Parameter

values are as in Figs. 8 and 9 (and Figs. 7-A and Fig. 8-D) with two exceptions: The r-nullcline was shifted to the left to

accommodate the change in Iapp that shifted the V -nullcline down. Left panels: The solid-gray curves are caricatures of the

sinusoidal inputs. The dashed-gray vertical lines at the peaks of the sinusoidal inputs indicate Φspk = 0 (zero phase-shift). Right

panels: The dashed-red curves are the V -nullclines displace ±Ain units above and below the V -nullcline for the autonomous

system (solid-red). They indicate the boundaries of the cyclic displacement of the V -nullcline as time progress due to the sinusoidal

input. The V -nullcline reaches its lowest and highest levels (dashed-red curves) at a quarter and three quarters of each cycle

respectively.The arrow indicates the direction of motion of the trajectory from its reset point to the spiking regime. We used the

following parameter values: GL = 0.5, Gp = 0.5, Gh = 1.5, Iapp = −1.2, D = 0, Vth = −45, Vrst = −75, rrst = 0.

3.4.7 Spiking phasonance is not necessarily inherited from subthreshold phasonance for

small values of Ain

Fig. 8-A2 shows that the existence of subthreshold phasonance does not necessarily imply the generation

of spiking phasonance even for small values of Ain. For this to occur at least two conditions need to

be satisfied: (i) fphas has to be close enough to fres, and (ii) the onset of spikes in response to the

sinusoidal inputs has to be fast enough. In the limit, both fres = fphas and the onset of spikes has to

be instantaneous. From our previous discussion, the onset of spikes is faster for model 2 than for model

1 and therefore it is not surprising that the latter exhibits spiking phasonance (Fig. 10-A2), while the

former does not.

3.4.8 Model 1 exhibits theta spiking phasonance for higher values of Ain

As Ain increases spiking occurs at earlier phases for the 1:1 patterns in model 1, and therefore it exhibits

spiking phasonance at theta frequencies (Fig. 8-B2 to -E2, right). The irregular patterns (in between pure

1:1 and 2:1) show a bimodal Φspk distribution with the lower values of Φspk close to phasonance. This

persists for higher values of Ain within some range (Fig. 8-B2 to -D2, right). Above this range (Fig.

8-E2, right) model 1 exhibits phasonance at theta frequencies for the regular patterns and above the theta

frequency range for the irregular patterns.

3.4.9 The phasonant frequency in model 2 increases with increasing values of Ain and

exceeds the theta frequency range for high enough values of Ain

This is shown in Figs. 11 (right). The patterns are more regular than for model 1, except for the combi-

nation of lower frequencies and higher values of Ain that produce burst-like patterns (Figs. 11-D2 and
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Figure 13: Suprathreshold response of the Ih+INap model 2 to sinusoidal inputs for representative parameter values.

Voltage traces (left panels) and phase-plane diagrams (right panels) for Ain = 0.45 and representative values of fin. Parameter

values are as in Figs. 10 and 11 (and Figs. 7-B and Fig. 8-C) with two exceptions: The r-nullcline was shifted to the right

to accommodate the change in Iapp that shifted the V -nullcline up. Left panels: The solid-gray curves are caricatures of the

sinusoidal inputs. The dashed-gray vertical lines at the peaks of the sinusoidal inputs indicate Φspk = 0 (zero phase-shift). Right

panels: The dashed-red curves are the V -nullclines displace ±Ain units above and below the V -nullcline for the autonomous

system (solid-red). They indicate the boundaries of the cyclic displacement of the V -nullcline as time progress due to the sinusoidal

input. The V -nullcline reaches its lowest and highest levels (dashed-red curves) at a quarter and three quarters of each cycle

respectively.The arrow indicates the direction of motion of the trajectory from its reset point to the spiking regime. We used the

following parameter values: GL = 0.3, Gp = 0.09, Gh = 1.5, Iapp = −1.2, D = 0, Vth = −51, Vrst = −75, rrst = 0.
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-E2, right). The monotonic dependence of fphas with Ain is due to the fact that as Ain increases, spik-

ing occurs earlier in the cycle for for a given input frequency because for these frequencies V crosses

threshold at lower values. For spiking to occur at the input peak time, the input frequency has to be

higher.

3.4.10 The response patterns for both models 1 and 2 do not qualitatively change for

higher values of Vrst and rrst

Here we investigate whether the spiking patterns obtained in the previous sections for models 1 and 2 and

the qualitative differences between the patterns for the two models depend on the specific reset values

Vrst and rrst. In Figs. 8 to 13 (Vrst, rrst) is to the left of the stable fixed-point in the respective phase-

plane diagrams and rrst = 0. The response patterns involve the evolution of the response trajectories

along the corresponding slow manifolds until they reach the region of parabolic- or cubic-like nonlin-

earities according to the model type. Here we consider models 1 and 2 with the same parameter values

as before (Figs. 8, 10 and 12 for model 1 and Figs. 9, 11 and 13 for model 2), except for (Vrst, rrst),
which is to the right of the fixed-point in the phase plane and within the region of the corresponding

nonlinearities as in Fig. 3.

Our results, presented in Figs. 14 to 17, show that our findings discussed in the previous sections

persists for the changes in (Vrst, rrst). There are some differences between the patterns obtained for the

two different sets of reset values for the two models, but these differences are rather quantitative than

qualitative. For example, model 1 has almost no 3:1 response patterns (Fig. 14, right panels). However,

the 2:1 response patterns are generate by similar mechanisms as the ones described above (Fig. 16). In

addition, model 2 displays response bursting patterns for high enough values of Ain and intermediate

input frequencies (Fig. 15-D and -E, black dots). This bursts are generated on top of 1:1 subthreshold

oscillations (Fig. 17-B2 and -B3).

4 Discussion

Neuronal models have been classified using different criteria. The most natural one is based on the

identify of the participating ionic currents [58, 67]. According to this biophysical classification the Ih
+ INap and IKs + INap models are different. An alternative classification scheme is based on the

geometric and dynamic properties of the phase-space diagrams. In the subthreshold voltage regime, the

voltage nullclines (or nullsurfaces) are typically quasilinear, parabolic-like or cubic-like [58, 62, 64, 68].

According to this classification, the parabolic- and cubic-like Ih + INap models are different and so they

are the corresponding IKs + INap models, and the parabolic-like Ih + INap and IKs + INap belong to

the same class and so they do the corresponding cubic-like models [58]. This classification is useful to

understand the similarities and differences among the various mechanisms underlying the generation of

STOs and other patterns that are, at least, partially controlled by the neuron’s subthreshold currents. In

previous work, we compared the STO properties of these models and we showed that while some of

these properties depend on the specific types of ionic currents involved, and they are different for the

INap + Ih and the INap +IKs models, others depend on the type of voltage nullclines involved and are

shared by models with different ionic currents. This suggested that the responses to oscillatory inputs of

parabolic- and cubic-like models having the same type of ionic currents might be different.

We set out to examine these issues in the context of the parabolic- and cubic-like Ih + INap models

investigated in [58] (referred to as model 1 and 2 respectively in this paper). The salient outcomes of

our study are (i) the identification of the similarities and differences in the subthreshold and spiking

resonant properties between the parabolic- and cubic-like model versions, (ii) the explanation of the

mechanisms that underlie these phenomena, and (iii) the identification of conditions under which the

subthreshold resonant properties are communicated to the spiking regime. Overall, our results show that

the effective time scales that operate in the subthreshold regime to generate intrinsic STOs, MMOs and

subthreshold resonance do not necessarily determine the spiking response to oscillatory inputs to be in

the same frequency band.
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Figure 14: Suprathreshold response of the

Ih+INap model 1 to sinusoidal inputs for represen-

tative parameter values (as in Figs. 7-A). Left pan-

els: Spike-frequency diagrams. The output spike fre-

quency fspk is the inverse of the average length of the

interspike intervals. The dashed-red lines (from top to

bottom) indicate the 1:1, 2:1, and 3:1 output spikes

versus input cycle patterns, respectively. Right pan-

els: Spike-phase diagrams. The output spike phase

Φspk (blue dots) was computed as the difference be-

tween the output spike-time and the closest input peak-

time normalized by the cycle length. Φspk = 0 for

spikes at the input peak and Φspk = ±0.5 for spikes at

the immediate input troughs. The red line indicates the

average Φspk for each input frequency. We used the

following parameter values: GL = 0.5, Gp = 0.5,

Gh = 1.5, Iapp = −2.5, D = 0, Vth = −45,

Vrst = −52, rrst = 0.05.

Both models exhibit subthreshold resonance in the theta frequency band, but for values of the input

amplitude Ain close to the threshold for spike generation the voltage response is nonlinearly amplified

(the impedance increases with increasing values of Ain) for the parabolic-like model as predicted in [61],

while it is nonlinearly attenuated (the impedance decreases with increasing values of Ain) for the cubic-

like model.
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Figure 15: Suprathreshold response of the

Ih+INap model 2 to sinusoidal inputs for represen-

tative parameter values (as in Figs. 7-B). Left pan-

els: Spike-frequency diagrams. The output spike fre-

quency fspk is the inverse of the average length of the

interspike intervals. The dashed-red lines (from top to

bottom) indicate the 1:1, 2:1, and 3:1 output spikes

versus input cycle patterns, respectively. The black

dots indicates bursting behavior at a much higher

intra-burst frequency. Right panels: Spike-phase di-

agrams. The output spike phase Φspk (blue dots) was

computed as the difference between the output spike-

time and the closest input peak-time normalized by the

cycle length. Φspk = 0 for spikes at the input peak

and Φspk = ±0.5 for spikes at the immediate input

troughs. The red line indicates the average Φspk for

each input frequency. We used the following param-

eter values: GL = 0.3, Gp = 0.08, Gh = 1.5,

Iapp = 0.3, D = 0, Vth = −51, Vrst = −52,

rrst = 0.035.

For low enough values of Ain the two models exhibit both evoked and output spiking resonance in

the theta frequency band, implying that the subthreshold resonances in both models are communicated

to the suprathreshold voltage regime. However, for higher values of Ain the evoked spiking resonance

disappears in both models reflecting the fact that the broader input frequency bands cause the voltage

responses to be above threshold. However, the parabolic model still exhibits output spiking resonance for
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Figure 16: Suprathreshold response of the Ih+INap model 1 to sinusoidal inputs for representative parameter values and

Ain = 0.3. Parameter values are as in Figs. 7-A and Fig. 8-D. A. Voltage traces (left panels) and phase-plane diagrams (right

panels) for representative values of the input frequency fin. Left panels: The solid-gray curves are caricatures of the sinusoidal

inputs. The dashed-gray vertical lines at the peaks of the sinusoidal inputs indicate Φspk = 0 (zero phase-shift). Right panels: The

dashed-red curves are the V -nullclines displace ±Ain units above and below the V -nullcline for the autonomous system (solid-

red). They indicate the boundaries of the cyclic displacement of the V -nullcline as time progress due to the sinusoidal input. The

V -nullcline reaches its lowest and highest levels (dashed-red curves) at a quarter and three quarters of each cycle respectively.The

arrow indicates the direction of motion of the trajectory from its reset point to the spiking regime. We used the following parameter

values: GL = 0.5, Gp = 0.5, Gh = 1.5, Iapp = −2.5, D = 0, Vth = −45, Vrst = −52, rrst = 0.05.
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Figure 17: Suprathreshold response of the Ih+INap model 2 to sinusoidal inputs for representative parameter values (as

in Figs. 7-B and Fig. 8-C). A. Ain = 0.45. Voltage traces (left panels) and phase-plane diagrams (right panels) for representative

values of the input frequency fin. Left panels: The solid-gray curves are caricatures of the sinusoidal inputs. The dashed-gray

vertical lines at the peaks of the sinusoidal inputs indicate Φspk = 0 (zero phase-shift). Right panels: The dashed-red curves are

the V -nullclines displace ±Ain units above and below the V -nullcline for the autonomous system (solid-red). They indicate the

boundaries of the cyclic displacement of the V -nullcline as time progress due to the sinusoidal input. The V -nullcline reaches its

lowest and highest levels (dashed-red curves) at a quarter and three quarters of each cycle respectively.The arrow indicates the

direction of motion of the trajectory from its reset point to the spiking regime. B. Ain = 0.6. Voltage traces. We used the following

parameter values: GL = 0.3, Gp = 0.08, Gh = 1.5, Iapp = 0.3, D = 0, Vth = −51, Vrst = −52, rrst = 0.035.
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these values of Ain, while the cubic-like model shows 1:1 entrainment where each input cycle generates

either a single spike or a burst (in the latter case it would be technically more appropriate to speak

of N:1 entrainment with N ≥ 1). The output spiking resonance in the parabolic-like model involves

the generation of MMOs by a cycle skipping mechanism. This cycle skipping mechanism is absent in

the cubic-like model for the relevant input frequencies. However, based on our results we cannot rule

out its presence for the higher input frequencies in other parameter regimes. More research is needed

to determine whether the transition from 1:1 entrainment to no spiking is abrupt or gradual (involving

MMOs) through a small input frequency range.

The parabolic- and cubic-like Ih + INap models we investigate in this paper have been used to study

the subthreshold properties of medial entorhinal cortex layer II stellate cells [61, 62, 64], are similar to

other models used with the same purpose [7], and are representative of a more general class of models

involving the interplay of these two currents. Moreover, they are representative of a more general class of

models involving the interplay of two ionic currents having a fast amplifying and a slow resonant gating

variables (e.g., IKs + INap models). Therefore, our findings have implications for a generic class of

systems exhibiting subthreshold and spiking resonance, such as the IKs + INap models mentioned above,

exhibiting resonances in a broad range of frequency bands. Importantly, models having multiplicative

amplifying and resonant gating variables (e.g, L-type high-threshold calcium currents) are excluded

from this group since their voltage nullclines are typically cubic-like and rarely (or never) parabolic-

like. The predictions generated by our results can be tested experimentally in a variety of systems.

These experiments may also serve to discriminate between different types of nonlinearities present in

the biophysical models.

Most of the results presented in this paper are based on the time constant for medial entorhinal cortex

stellate cells (τr = 80) used in [66] for the fast component of Ih, and are therefore restricted to the theta

frequency band. However, τr for Ih is highly variable across cells and species. Changes in the values

of time constants in neuronal models not only affect the oscillation frequency, but also other properties

such as the oscillation amplitude. In fact, decreasing values of τr causes the cells’ to behave closer to

their linearization [61]. We examined the effects of changes in τr on the main results presented in this

paper by using two representative values above and below τr = 80: τr = 200 and τr = 40 (close to the

value reported for CA1 pyramidal cells).

The differences between the two type of models persist for a large range of values of τr, but there are

some quantitative differences both between the two models and among the different values of τr for each

model. In all cases, for low enough suprathreshold values of Ain both models exhibit evoked and output

spiking resonance in frequency bands that coincide with the subthreshold resonant frequency band for

each value of τr. For the parabolic-like model and τr = 200 the output frequency band remains bounded,

roughly coincides with the subthreshold frequency band for larger values of Ain, and is narrower than the

output frequency band for τr = 80. For τr = 40 the cycle skipping mechanism giving raise to the MMO

response patterns is not strong enough to prevent the (1:1) entrainment for large enough values of Ain.

The output frequency band in these cases is therefore larger than the subthreshold resonant frequency

band, and therefore output resonance is no longer observed for largest values of Ain we used. For the

cubic-like model and τr = 200 a cycle skipping mechanism giving rise to MMO response patterns causes

the (1:1) entrainment to be weaker than for τr = 80, but still the entrainment is strong enough to produce

a relatively large output frequency band, well above the subthreshold frequency band. Evoked resonant

is present for a larger range of values of Ain as compared to τr = 80, but it disappears for values of Ain

beyond this range. For τr = 40, the (1:1) entrainment is as for τr = 80 and there is no output spiking

resonance, except for the low enough subthreshold values of Ain for which, as mentioned above, there

are both evoked and output spiking resonance. In these cases, the entrainment involves MMO patterns

(2:1 entrainment). This highlights the important role played by the time constant of the resonant current

in determining the resonant spike response patterns. Future research should address this issue.

The differences between the parabolic- and cubic-like models is not restricted to the shapes of the

V -nullclines but include also the spiking mechanisms. The parabolic-like model describes the onset of

spikes in addition to the subthreshold dynamics (Fig. 5-A3). Spikes occur when the trajectory moves

along a fast direction to the right of the V -nullcline and escapes the subthreshold regime. The voltage

threshold only indicates the occurrence of spikes and is not part of the spiking mechanism. In contrast,

the voltage threshold is part of the spiking mechanism in the cubic-like models (Fig. 5-B5). A more
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natural spiking mechanism for the cubic-like model would involve an additional ionic current, therefore

making it three-dimensional. The addition of the standard spiking currents (transient sodium and delayed

rectifier potassium) to the parabolic-like Ih + INap model that would generate “natural” spikes is not

expected to produce qualitative changes in our results, but perhaps minor quantitative differences in the

resonant frequency bands and other magnitudes. Whether or not this is the case for the cubic-like Ih +

INap model is an open question.

The results discussed in this paper highlight both the complexity of the suprathreshold responses to

oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the

fact that the identity of the participating ionic currents is not enough to predict the resulting patterns,

but additional dynamic information captured by the geometric properties of the phase-space diagram

is needed. This has implications for mechanistic studies on suprathreshold (firing rate and spiking)

resonances [2, 6, 78, 79] as well as other types of preferred frequency responses to oscillatory inputs

including phase-locking [47, 80, 81], synchronization [82, 83], synaptic [18, 84–86], and network [51–

53, 87–95] ones.
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