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ABSTRACT 41 

 42 

Causal genes and variants within genome-wide association study (GWAS) loci 43 

can be identified by integrating GWAS statistics with expression quantitative trait 44 

loci (eQTL) and determining which SNPs underlie both GWAS and eQTL signals. 45 

Most analyses, however, consider only the marginal eQTL signal, rather than 46 

dissecting this signal into multiple independent eQTL for each gene. Here we 47 

show that analyzing conditional eQTL signatures, which could be important under 48 

specific cellular or temporal contexts, leads to improved fine mapping of GWAS 49 

associations. Using genotypes and gene expression levels from post-mortem 50 

human brain samples (N=467) reported by the CommonMind Consortium (CMC), 51 

we find that conditional eQTL are widespread; 63% of genes with primary eQTL 52 

also have conditional eQTL. In addition, genomic features associated with 53 

conditional eQTL are consistent with context specific (i.e. tissue, cell type, or 54 

developmental time point specific) regulation of gene expression. Integrating the 55 

Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC 56 

conditional eQTL data reveals forty loci with strong evidence for co-localization 57 

(posterior probability >0.8), including six loci with co-localization of conditional 58 

eQTL. Our co-localization analyses support previously reported genes and 59 

identify novel genes for schizophrenia risk, and provide specific hypotheses for 60 

their functional follow-up. 61 

 62 

 63 
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INTRODUCTION 64 

 65 

Significant advances in understanding the genetic architecture of schizophrenia 66 

have occurred over the last ten years. However, for common variants identified in 67 

genome-wide association studies (GWAS), the success in locus identification is 68 

not yet matched by an understanding of their underlying basic mechanism or 69 

effect on pathophysiology.  Expression quantitative trait loci (eQTL), which are 70 

responsible for a significant proportion of variation in gene expression, could 71 

serve as a link between the numerous non-coding genetic associations that have 72 

been identified in GWAS and susceptibility to common diseases directly through 73 

their association with gene expression regulation.1-4 Indeed, results from eQTL 74 

mapping studies have been successfully utilized to identify genes and causal 75 

variants from GWAS for various complex phenotypes, including asthma, body 76 

mass index, celiac disease, and Crohn’s disease.5-8  77 

 78 

Studies integrating eQTL and GWAS data have almost exclusively used marginal 79 

association statistics which typically represent the primary, or most significant, 80 

eQTL signal when assessing co-localization with GWAS, ignoring other SNPs 81 

that affect expression independently of the primary eQTL for a given gene. 82 

However, recent findings indicating that conditionally independent eQTL are 83 

widespread9-11 motivate examination of the extent to which considering 84 

conditional eQTL may provide additional power to identify likely causal genes in a 85 

GWAS locus. Recent reports provide evidence that conditional eQTL are less 86 
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frequently shared across tissues than primary eQTL9 and, like tissue and cell 87 

type specific eQTL, are often found more distally to the genes they regulate.9; 12; 88 

13 These lines of evidence suggest that conditionally independent eQTL may 89 

contribute to tissue- or other context-specific gene regulation (e.g. specific to a 90 

particular cell type, developmental stage, or stimulation condition). 91 

 92 

Here, we leveraged genotype and dorsolateral prefrontal cortex (DLPFC) 93 

expression data provided by the CommonMind Consortium (CMC) to elucidate 94 

the role of conditional eQTL in the etiology of schizophrenia (SCZ). Currently 95 

comprising the largest existing postmortem brain genomic resource at nearly 600 96 

samples, the CMC is generating and making publicly available an unprecedented 97 

array of functional genomic data, including gene expression (RNA-sequencing), 98 

histone modification (chromatin immunoprecipitation, ChIP-seq), and SNP 99 

genotypes, from individuals with psychiatric disorders as well as unaffected 100 

controls.14 We utilized SNP dosage and RNA-sequencing (RNA-seq) data from 101 

the CMC to identify primary and conditionally independent eQTL. We then 102 

characterized the resulting eQTL on various genomic attributes including 103 

distance to transcription start site, and their genes’ specificity across tissues, cell-104 

types, and developmental periods. In addition, we quantified enrichment of 105 

primary and conditional eQTL in promoter and enhancer functional genomic 106 

elements inferred from epigenomic data. Finally, we isolated each independent 107 

eQTL signal by conducting a series of “all-but-one” conditional analyses for 108 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/129429doi: bioRxiv preprint 

https://doi.org/10.1101/129429
http://creativecommons.org/licenses/by-nc-nd/4.0/


genes with multiple independent eQTL, and assessed the overlap between all 109 

eQTL association signals and the SCZ GWAS signals.  110 

 111 

MATERIAL AND METHODS 112 

 113 

CommonMind Consortium Data 114 

 115 

We used pre-QC’ed genotype and expression data made available from the 116 

CommonMind Consortium, and detailed information on quality control, data 117 

adjustment and normalization procedures can be found in Fromer et. al.14 Briefly, 118 

samples were genotyped at 958,178 markers using the Illumina Infinium 119 

HumanOmniExpressExome array, and markers were removed on the basis of 120 

having no alternate alleles, having a genotyping call rate d 0.98, or a Hardy-121 

Weinberg P-value < 5x10-5. After phasing and imputation using the 1000 122 

Genomes Phase 1 integrated reference then filtering out variants with INFO < 0.8 123 

or MAF < 0.05, the total number of markers included in the analysis increased to 124 

approximately 6.4 million. Gene expression was assayed via RNA-seq using 100 125 

base pair paired end reads, and mapped to human Ensembl gene reference 126 

(v70) using TopHat version 2.0.9 and Bowtie version 2.1.0. After discarding 127 

genes with less than 1 CPM (counts per million) in at least 50% of the samples, 128 

RNA-seq data for a total of 16,423 Ensembl genes were considered for analysis. 129 

The expression data was voom-adjusted for both known covariates (RIN, library 130 

batch, institution, diagnosis, post-mortem interval, and sex) and surrogate 131 
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variable analysis (SVA) identified surrogate variables. After the removal of 132 

individuals that did not pass RNA sample QC (including but not limited to: having 133 

RIN < 5.5, having less than 50 million total reads or more than 5% of reads 134 

aligning to rRNA, having any discordance between genotyping and RNA-seq 135 

data, and having RNA outlier status or evidence for contamination), and retaining 136 

only genetically-identified European-ancestry individuals, a total of 467 samples 137 

were used for downstream analyses. These 467 individuals comprised 209 SCZ 138 

cases, 52 AFF (Bipolar, Major depressive disorder, or Mood disorder, 139 

unspecified) cases, and 206 controls. 140 

 141 

eQTL Identification 142 

 143 

To identify primary and conditional cis-eQTL, we a conducted forward stepwise 144 

conditional analysis implemented in MatrixEQTL15 using genotype data at 6.4 145 

million markers and RNA-seq data for 16,423 genes. For each gene with at least 146 

one cis-eQTL (gene r 1 Mb) association at a 5% false discovery rate (FDR), the 147 

most significant SNP was added as a covariate in order to identify additional 148 

independent associations. This procedure was repeated iteratively until no further 149 

FDR significant eQTL were identified.  We used a linear regression model, 150 

adjusting for diagnosis and five ancestry covariates inferred by GemTools. 151 

Following eQTL identification, only autosomal eQTL were retained for 152 

downstream analyses. 153 

 154 
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Replication in Independent Datasets 155 

 156 

Replication was performed in HBCC microarray cohort (dbGaP ID phs000979, 157 

see Web Resources) and in the ROSMAP16 RNA-seq cohort by fitting the 158 

stepwise regression models identified in the CMC data. For cases in which a 159 

marker was unavailable in the replication cohort, all models including that marker 160 

(i.e. for that eQTL and higher-order eQTL conditional on it, for a given gene) 161 

were omitted from replication.  162 

 163 

Data from the HBCC cohort was QC’ed and normalized as described in Fromer 164 

et al.14 DLPFC tissue was profiled on the Illumina HumanHT-12_V4 Beadchips 165 

and normalized in an analogous manner to the CMC data. Genotypes were 166 

obtained using the HumanHap650Yv3 or Human1MDuov3 chips and imputed to 167 

1000 Genomes Phase 1. Replication of the eQTL models was performed on 279 168 

genetically inferred Caucasian samples (76 controls, 72 SCZ, 43 BP, 88 MDD) 169 

adjusting for diagnosis and five ancestry components. 170 

 171 

ROSMAP data were obtained from the AMP-AD Knowledge Portal (see Web 172 

Resources). Quantile normalized FPKM expression values were adjusted for Age 173 

of Death, RIN, PMI, and hidden confounders from SVA, conditional on diagnosis. 174 

Only genes with FPKM > 0 in > 50 samples were considered in analyses. QC’ed 175 

genotypes were also obtained from the AMP-AD Knowledge Portal and imputed 176 

to the Haplotype Reference Consortium (v1.1)17 reference panel via the Michigan 177 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/129429doi: bioRxiv preprint 

https://doi.org/10.1101/129429
http://creativecommons.org/licenses/by-nc-nd/4.0/


Imputation Server.18 Only markers with imputation quality score R2 ≥ 0.7 were 178 

considered in the replication analysis. GemTools was used to infer ancestry 179 

components as for CMC above. After QC, 494 samples were used for eQTL 180 

replication in a linear regression model that also adjusted for diagnosis 181 

(Alzheimer’s disease, mild cognitive impairment, no cognitive impairment and 182 

other) and four ancestry components.  183 

 184 

Modeling Number of eQTL per Gene on Genomic Features 185 

 186 

We considered three genomic features (gene length, number of LD blocks in the 187 

cis-region, and genic constraint score) for our modeling analyses. Gene lengths 188 

were calculated using Ensembl gene locations. We obtained LD blocks from the 189 

LDetect Bitbucket site to tally the number of LD blocks overlapping each gene’s 190 

cis-region (gene r 1Mb). We obtained Loss-of-Function-based genic constraint 191 

scores from the Exome Aggregation Consortium (ExAC). A negative-binomial 192 

generalized linear regression model was used to model the number of eQTL per 193 

gene based on the above variables; results were qualitatively the same using 194 

linear regression of Box-Cox transformed eQTL numbers. Backward-forward 195 

stepwise regression using the full model with interaction terms for these three 196 

variables was used to determine the relationship between genomic conditions 197 

and eQTL number. These analyses were implemented in R. 198 

 199 
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Cis-heritability of gene expression was estimated using the same CMC data used 200 

for eQTL detection, using all markers in the cis-region using GCTA19, and SNP-201 

heritability estimates were included in the modeling described above.  202 

 203 

Tissue, cell type, and developmental time point specificity were measured using 204 

the expression specificity metric Tau.20; 21 Tissue specificity for each gene was 205 

calculated using publicly available expression data for 53 tissues from the GTEx 206 

project22 (release V6p). Expression for each tissue was summarized as the log2 207 

of the median expression plus one, and then used to calculate tissue specificity 208 

Tau. Cell type specificity for each gene was computed using publicly available 209 

single-cell RNA-sequencing expression data23 generated from human cortex and 210 

hippocampus tissues. Raw expression counts for 285 cells comprising six major 211 

cell types of the brain were obtained from GEO (GSE67835) and counts data 212 

were library normalized to CPM. Expression for each cell type was then 213 

summarized as the log2 of the mean expression plus one, and then used to 214 

compute cell type specificity Tau. Developmental time point specificity for each 215 

gene was calculated using publicly available DLPFC expression data for 27 time 216 

points, clustered into eight biologically relevant groups, from the BrainSpan atlas 217 

(see Web resources). Eight developmental periods24 were defined as follows: 218 

early prenatal (8-12 pcw), early mid-prenatal (13-17 pcw), late mid-prenatal (19-219 

24 pcw), late prenatal (25-37 pcw), infancy (4 mos - 1 yr), childhood (2 - 11 yr), 220 

adolescence (13 - 19 yr), and adulthood (21 yr +). Expression for each time point 221 

was summarized as the log2 of the median expression plus one, and then used 222 
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to calculate developmental period specificity (Tau). Each Tau was added to the 223 

above modeling of eQTL number in turn, as well as all together. 224 

 225 

Enrichment Analyses 226 

 227 

We divided eQTL into separate subgroups by stepwise conditional order (first, 228 

second, third, and greater than third), and created sets of matched SNPs drawn 229 

from the SNPsnap database for each subgroup, matching on minor allele 230 

frequency, gene density (number of genes within 1Mb of the SNP), distance from 231 

SNP to TSS of the nearest gene, and LD (number of LD-partners within r2 t 0.8). 232 

For each subgroup of eQTL, we performed a logistic regression of status as 233 

eQTL or matched SNP on overlap with functional annotation, including the four 234 

SNP matching parameters as covariates. Enrichment was taken as the 235 

regression coefficient estimate, interpretable as the log-odds ratio for being an 236 

eQTL given a functional annotation. Functional annotations tested included: 237 

DLPFC promoters and enhancers (TssA and Enh+EnhG, respectively, from the 238 

NIH Roadmap Epigenomics Project25 ChromHMM26 core 15-state model), Brain 239 

promoters and enhancers (union of all brain region TssA and Enh+EnhG, 240 

respectively, from the NIH Roadmap Epigenomics Project ChromHMM core 15-241 

state model), and pre-frontal cortex (PFC) neuronal (NeuN+) and non-neuronal 242 

(NeuN-) nuclei H3K4me3 and H3K27ac ChIP-seq marks from the CMC. For each 243 

data source, Roadmap DLPFC, brain, CMC NeuN+, NeuN-, active promoter and 244 
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enhancer (or H3K4me3 and H3K27ac) annotation were tested for enrichment 245 

jointly. 246 

 247 

Conditional eQTL Analyses 248 

 249 

In order to isolate each conditionally independent cis-eQTL association, we 250 

carried out a series of “all-but-one” conditional analyses, implemented within 251 

MatrixEQTL15, for each gene possessing more than one independent eQTL. As 252 

these conditional eQTL signals were to be used to test for co-localization with the 253 

SCZ GWAS signals, we limited these analyses to those genes (346 in total) with 254 

eQTL overlapping GWAS loci. For each of these genes, we conducted an ‘”all-255 

but-one” analysis for each independent eQTL by regressing the given gene’s 256 

expression data on the dosage data, including all of the other independent eQTL 257 

for that gene as covariates in addition to diagnosis and five ancestry 258 

components. For example, three conditional analyses would be conducted for a 259 

gene with three independent eQTL: one analysis conditioning on the secondary 260 

and tertiary eQTL, one analysis conditioning on the primary and tertiary, and one 261 

analysis conditioning on the primary and secondary. In this manner we generated 262 

summary statistics for each independent eQTL in isolation, conditional on all of 263 

the other independent eQTL for that gene.  264 

 265 

 266 

 267 
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Co-localization Analyses 268 

 269 

For our co-localization analyses, we used summary statistics and genomic 270 

intervals from the 2014 PGC SCZ GWAS.27 We included 217 loci at a P-value 271 

threshold of 1x10-6 (omitting the complex MHC locus), defined these loci by their 272 

LD r2 t 0.6 with the lead SNP, and then merged overlapping loci. GWAS and 273 

eQTL signatures were qualitatively compared using P-P plots, rendered in R, and 274 

LocusZoom28 plots. 275 

 276 

We tested for co-localization using an updated version of COLOC29 R functions, 277 

which we name COLOC2 (see Web Resources) which incorporates several 278 

improvements to the method. First, COLOC2 preprocesses data by aligning 279 

eQTL and GWAS summary statistics for each eQTL cis-region. Second, the 280 

COLOC2 model optionally incorporates changes implemented in gwas-pw30. 281 

Briefly, we implemented learning mixture proportions of five hypotheses (H0, no 282 

association; H1, GWAS association only; H2, eQTL association only; H3, both but 283 

not co-localized; and H4, both and co-localized) from the data. COLOC2 uses 284 

these proportions as priors (or optionally, COLOC default or user specified priors) 285 

in the empirical Bayesian calculation of the posterior probability of co-localization 286 

for each locus (eQTL cis-region). COLOC2 averages per-SNP Wakefield 287 

asymptotic Bayes factors (WABF)31 across three different values for the WABF 288 

prior variance term, 0.01, 0.1, and 0.5, and provides options for specifying 289 
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phenotypic variance, estimating it from case-control proportions, or estimating it 290 

from the data.  291 

 292 

RESULTS 293 

 294 

Identification of eQTL 295 

 296 

Primary and conditional eQTL were identified using genotype and RNA-seq data 297 

from the CommonMind Consortium post-mortem DLPFC samples (467 298 

European-ancestry cases and controls).14 We identified 16,273 conditional eQTL 299 

in addition to the 13,137 primary eQTL we previously reported14 for a total of 300 

29,410 independent cis-eQTL for 15,817 autosomal genes. Of the genes tested, 301 

81% (12,813 genes) had at least one eQTL and 63% of these (51% of all genes) 302 

also had at least one conditional eQTL, with an average of 1.83 independent 303 

eQTL per gene (2.26 among those with at least one eQTL), and a maximum of 304 

16 eQTL (Figure 1). Conversely, when examining the distributions for the number 305 

of genes whose expression was affected by each eQTL (Table S1), the majority 306 

of eQTL were specific for a single gene, and only a small fraction of eQTL, 307 

1.47%, affected more than one gene, with a maximum of six genes affected by a 308 

single eQTL. 309 

 310 

We tested conditional eQTL for replication in two independent data sets, the 311 

National Institute of Mental Health’s Human Brain Collection Core (HBCC, 312 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/129429doi: bioRxiv preprint 

https://doi.org/10.1101/129429
http://creativecommons.org/licenses/by-nc-nd/4.0/


!
!
!
!

!
!
Figure!1.!Distribution!of!the!Number!of!Independent!eQTL!per!Gene!
!
Counts!of!the!numbers!of!genes!(y>axis)!regulated!by!N!(1!≤!N!≤!16)!independent!eQTL!
(x>axis).!Plotted!are!28,895!cis>eQTL!with!FDR!≤!5%,!for!12,813!autosomal!genes.!For!
genes!with!eQTL,!there!are!an!average!of!2.26!eQTL!per!gene!and!a!maximum!of!16!
eQTL!per!gene.!!
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N=279, microarray expression data) and the Religious Orders Study / Memory 313 

and Aging Project16 (ROSMAP, N=494, RNA-seq expression). For each gene the 314 

same models were evaluated that were identified in forward-stepwise conditional 315 

analysis in the CMC data. We observed strong evidence of replication for both 316 

primary and conditional eQTL in the HBCC and ROSMAP post-mortem brain 317 

cohorts (Table S2). The estimated proportion of true associations (π1) in 318 

ROSMAP was 0.57 and 0.26 for primary and conditional eQTL, respectively; in 319 

HBCC π1 was 0.46 and 0.20 for primary and conditional eQTL. Thus replication 320 

was stronger for primary than for conditional eQTL, as expected given their 321 

stronger effect sizes. Replication rates were somewhat higher in the RNA-seq 322 

ROSMAP data than in HBCC.  323 

 324 

Genomic Characterization of Primary and Conditional eQTL 325 

 326 

According to prior results, eQTL that are shared across tissues and cell types 327 

tend to be located closer to transcription start sites (TSS) than context specific 328 

eQTL.9; 12; 13 We therefore examined the relationship between primary or 329 

conditional eQTL status and distance to its gene’s transcription start site. Primary 330 

eQTL fall closer to the TSS than conditional eQTL (Figure 2): primary eQTL 331 

occur at a median distance of 70.4 Kb from the TSS versus a median distance of 332 

302 Kb for conditional eQTL. This difference holds true even more proximally to 333 

TSS (Figure S1); 8.1 and 2.5 percent of primary and conditional eQTL, 334 

respectively, fall within three Kb of the TSS.  335 
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!
Figure!2.!Distance!from!eQTL!to!transcription!start!site!(TSS)!
!
Overlapping!histograms!showing!the!numbers!of!eQTL!(yAaxis)!occurring!at!increasing!
distances!to!TSS!(xAaxis),!for!primary!eQTL!(blue)!and!conditional!eQTL!(pink).!!
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 336 

We next characterized the relationship between the number of independent 337 

eQTL per gene and three different genomic features: gene length, number of LD 338 

blocks32 in the gene’s cis-region (r1 Mb) and Exome Aggregation Consortium 339 

(ExAC) genic constraint score,33 including possible interactions. The best 340 

multivariate model for eQTL number included gene length, number of LD blocks 341 

and genic constraint as predictors, as well as a gene length-LD blocks interaction 342 

(Table 1). The number of independent eQTL was positively correlated with gene 343 

length and number of LD blocks, and negatively correlated with genic constraint 344 

score (Figure S2).  345 

 346 

We next examined the variance of gene expression explained by cis-region 347 

SNPs, or cis-SNP-heritability, estimated by linear mixed model variance 348 

component analysis19 (Figure S3).  We found a strong effect of estimated cis-349 

heritability on number of independent eQTL (Table 1, Figure S4). In a joint model 350 

with cis-SNP-heritability, the main effects of gene length, number of LD blocks 351 

and genic constraint on eQTL number remained at least nominally significant.  352 

 353 

Finally we addressed whether genes with conditional eQTL exhibit greater 354 

context specificity as measured by the robust expression specificity metric Tau.20; 355 

21 We calculated Tau across 53 tissues from the Genotype-Tissue Expression 356 

(GTEx) project, across six DLPFC cell types (astrocytes, endothelial cells, 357 

microglia, neurons, oligodendrocytes, and oligodendrocyte progenitor cells) from 358 
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Table 1. Number of Independent eQTL Modeled on Genomic Features 
 

Predictor Model 1 
Estimate 

Model 1 
Robust SE 

Model 1 
Pr(>|z|) 

Model 2 
Estimate 

Model 2 
Robust SE 

Model 2 
Pr(>|z|) 

Model 3 
Estimate 

Model 3 
Robust SE 

Model 3 
Pr(>|z|) 

log(Gene length) 0.27 0.04 5.16E-12 0.16 0.03 2.20E-06 0.17 0.03 9.87E-07 

LD blocks 0.59 0.17 6.47E-04 0.33 0.15 2.92E-02 0.37 0.15 1.55E-02 

log(Gene length) : LD 
blocks -0.03 0.02 7.77E-02 -0.01 0.01 5.65E-01 -0.01 0.01 4.11E-01 

Constraint -0.61 0.03 5.93E-85 -0.20 0.03 2.93E-13 -0.15 0.03 5.41E-08 

Cis-heritability - - - 7.03 0.18 0.00 7.02 0.18 0.00 

Tau (tissue) - - - - - - 0.08 0.08 2.76E-01 

Tau (DLPFC cell type) - - - - - - 0.20 0.09 3.69E-02 

Tau (developmental 
time point) - - - - - - 0.17 0.09 5.99E-02 
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single cell RNA-seq23, and across eight developmental periods24 (early prenatal, 359 

early mid-prenatal, late mid-prenatal, late prenatal, infant, child, adolescent, and 360 

adult) from the BrainSpan atlas DLPFC RNA-seq data. We confirmed that higher 361 

values of Tau reflect expression specificity, by comparing the distributions of all 362 

three Tau measures for all genes with the distributions for a subset of 363 

housekeeping genes34 (Figure S5). We found positive correlations between 364 

eQTL number and tissue, cell type, and developmental specificities (Table 1, 365 

Table S3, Figure S6). The strongest correlation was with DLPFC cell type Tau, 366 

which is consistent with previous data demonstrating tissue specific, cell type 367 

dependent expression in blood;35 however, we note that all three Tau sets were 368 

inter-correlated (Table S3).  369 

 370 

Epigenetic Enrichment Analyses 371 

 372 

One way in which eQTL may affect gene expression is through alteration of cis-373 

regulatory elements such as promoters and enhancers. Putative causal eQTL 374 

variants have been shown to be enriched in genomic regions containing 375 

functional annotations such as DNase hypersensitive sites, transcription factor 376 

binding sites, promoters, and enhancers.36-39 Our observation that conditional 377 

eQTL fall farther from transcription start sites than primary eQTL led us to 378 

hypothesize that primary eQTL may affect transcription levels by altering 379 

functional sites in promoters whereas conditional eQTL may do so by altering 380 

more distal regulatory elements such as enhancers. We therefore assessed 381 
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enrichment of primary and conditional eQTL in DLPFC and brain active promoter 382 

(TssA) and enhancer (merged Enh and EnhG) states derived from the NIH 383 

Roadmap Epigenomics Project,25; 26 and in H3K4me3 and H3K27ac ChIP-seq 384 

peaks from a subset of the CMC post-mortem DLPFC samples. We performed 385 

logistic regression of SNP status (eQTL versus random matched SNP) on 386 

overlap with functional annotations, separately for each eQTL order (primary, 387 

secondary, tertiary, and greater than tertiary).  388 

 389 

Both primary and conditional eQTL were significantly enriched in both promoter 390 

and enhancer chromatin states (Figure 3A-B, Table S4). Chromatin states from 391 

the DLPFC showed stronger eQTL enrichment than did the Brain annotation 392 

formed by merging all individual brain region chromatin states. We found that 393 

enrichments in both the DLPFC and Brain annotations generally decreased with 394 

higher conditional order of eQTL, particularly for the active promoter state. A 395 

similar pattern was observed when examining enrichment in neuronal nuclei 396 

(NeuN+) ChIP-seq peaks (Figure 3C), using the overlap of H3K4me3 and 397 

H3K27ac ChIP-seq peaks as a proxy for active promoters and H3K27ac peaks 398 

that do not overlap H3K4me3 peaks as a (relatively non-specific) proxy for 399 

enhancers.26 These analyses showed decreasing enrichment in both promoters 400 

and enhancers with increasing eQTL order, with a more marked decrease in the 401 

promoters. Though there was also significant enrichment of eQTL in non-402 

neuronal nuclei (NeuN-) ChIP-seq peaks, decreasing with higher eQTL order, 403 

this trend of a more marked decrease in active promoters was not observed in 404 
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!
Figure!3.!Enrichments!of!Primary!and!Conditional!eQTL!in!Active!Regulatory!
Annotations!
!
Plotted!are!enrichments!(estimate!±!95%!CI!from!logistic!regression,!yFaxes)!of!primary!
(xFaxis!eQTL!order!=!1)!and!conditional!(eQTL!order!=!2,!3,!>3)!eQTL!in!functional!
annotations.!Panels!(A)!and!(B)!show!enrichment!in!DLPFC!and!Brain!(union!of!all!
individual!Brain!regions)!active!promoter!(turquoise)!and!enhancer!(orange)!
ChromHMM!states!from!the!NIH!Roadmap!Epigenomics!Project.!Panel!(C)!shows!
enrichment!in!neuronal!nuclei!(NeuN+),!for!the!intersection!of!H3K4me3!and!H3K27ac!
ChIPFseq!peaks!(turquoise)!and!for!H3K27!peaks!that!do!not!overlap!H3K4me3!peaks!
(orange).!Panel!(D)!shows!enrichments!in!the!same!annotations,!but!for!nonFneuronal!
nuclei!(NeuNF).!!!
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non-neuronal DLPFC nuclei (Figure 3D). Enrichment results for H3K4me3 and 405 

H3K27ac ChIP-seq peaks are shown in Figure S7.  406 

 407 

eQTL Co-localization with SCZ GWAS 408 

 409 

We performed co-localization analyses in order to evaluate the extent of overlap 410 

between eQTL and GWAS signatures in schizophrenia, and to identify putative 411 

causal genes from GWAS associations. Considering 217 loci (Table S5) with 412 

lead SNPs reaching a significance threshold of P < 1x10-6 from the recent 413 

Psychiatric Genomics Consortium schizophrenia GWAS,27 we tabulated the 414 

number of eQTL (FDR d 5%) falling within GWAS loci. A total of 114 out of 217 415 

loci contained primary and/or conditional eQTL for 346 genes; 110 of these 416 

genes had one eQTL only, and 236 genes had more than one independent 417 

eQTL.  418 

 419 

To quantitatively compare the SCZ GWAS and eQTL association signatures, we 420 

modified the R package COLOC29 for Bayesian inference of co-localization 421 

between the two sets of summary statistics across each gene’s cis-region. 422 

COLOC2, our modified implementation of COLOC, analyzes the hierarchical 423 

model of pw-GWAS,30 with likelihood-based estimation of dataset-wide 424 

probabilities of five hypotheses (H0, no association; H1, GWAS association only; 425 

H2, eQTL association only; H3, both but not co-localized; and H4, both and co-426 

localized). We then used these probabilities as priors to calculate empirical 427 
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Bayesian posterior probabilities for the five hypotheses for each locus, in 428 

particular PPH4 for co-localization.  429 

 430 

For genes with conditional eQTL overlapping SCZ GWAS loci, summary 431 

statistics from “all-but-one” conditional eQTL analyses were assessed for co-432 

localization with the GWAS signature (Figure 4). To illustrate this analytical 433 

strategy, we show eQTL results for the iron responsive element binding protein 2 434 

gene IREB2 (chr15:78729773-78793798) as an example. Forward stepwise 435 

selection analysis identified two independent cis-eQTL for IREB2. In order to 436 

generate summary statistics for each eQTL in isolation, we conducted two “all-437 

but-one” conditional analyses, in each analysis conditioning on all but a focal 438 

independent eQTL (for IREB2 this entailed conditioning on only one eQTL per 439 

conditional analysis, but involved conditioning on up to six eQTL across genes in 440 

the SCZ co-localization analysis). We then tested for co-localization between the 441 

GWAS and all of the conditional summary statistics using COLOC2. In the case 442 

of IREB2, the conditional eQTL (rs7171869) was implicated as co-localized with 443 

the GWAS signal at this locus with a posterior probability for co-localization PPH4 444 

= 0.94. A qualitative examination of the IREB2 locus supported the COLOC2 445 

results: the correlation between the GWAS P-values and conditional eQTL P-446 

values was higher than that between the GWAS and primary eQTL P-values 447 

(Figure 5A). In addition, the GWAS signature for the locus more closely 448 

resembled the conditional eQTL signature than either the non-conditional eQTL 449 

signature or the primary eQTL signature (Figure 5B). 450 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/129429doi: bioRxiv preprint 

https://doi.org/10.1101/129429
http://creativecommons.org/licenses/by-nc-nd/4.0/


!
!

!
!
!
Figure!4.!Conditional!“All3but3One”!Analysis!to!Isolate!Independent!eQTL!Signatures!
!
Panel!(A)!shows!a!hypothetical!GWAS!signature!(top,!green)!at!a!given!locus,!and!an!
overlapping!hypothetical!eQTL!signature!(bottom,!purple),!which!comprises!two!
independent!eQTL.!Panel!(B)!shows!the!same!hypothetical!GWAS!and!eQTL!
signatures!after!the!“all3but3one”!conditional!eQTL!analysis!isolating!the!primary!(red)!
and!secondary!(blue)!eQTL!signatures.!Before!conditional!analysis!there!is!a!lack!of!co3
localization!between!the!GWAS!signature!and!eQTL!signature.!After!all3but3one!
conditional!analysis,!there!is!evidence!for!co3localization!between!the!secondary!eQTL!
and!GWAS!signatures.!!
!
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!
!
Figure!5.!GWAS!Signature!for!IREB2!Co4localizes!with!the!Conditional!eQTL!Signature!
!
Panel!(A)!shows!a!P4P!plot!comparing!4log10!P4values!from!GWAS!(y4axis)!and!“all4but4
one”!conditional!eQTL!analysis!(x4axis),!which!shows!the!highest!correlation!between!
the!GWAS!and!the!conditional!eQTL!(rs7171869,!turquoise!triangles).!Panel!(B)!shows!
LocusZoom!plots!for!the!IREB2!locus,!where!the!GWAS!signal!(top)!more!closely!
resembles!the!conditional!eQTL!signal!(rs7171869,!bottom)!than!the!primary!eQTL!
signal!(rs11639224,!third!from!top)!or!non4conditional!eQTL!signal!(second!from!top).!
For!all!LocusZoom!plots!LD!is!colored!with!respect!to!the!GWAS!lead!SNP!(rs8042374,!
labelled).!!
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 451 

We found that 40 loci contained genes with strong evidence of co-localization 452 

between eQTL and GWAS signatures, with posterior probability of H4 (PPH4) t 453 

0.8 (Table 2, Table S6). When restricting to genome-wide significance for the 454 

GWAS, we found co-localization in 24 of the 108 loci. Given the correlations 455 

between number of independent eQTL and expression specificity scores (Tau) 456 

across tissues, cell types and development, we tabulated the reported genes’ 457 

Tau percentiles and expression levels, to highlight contexts in which the genes 458 

are specifically expressed (Table 2, Table S9). We acknowledge that while 459 

posterior probability PPH4 t 0.8 demonstrates strong Bayesian evidence for co-460 

localization, it is an arbitrary threshold for characterizing loci as SCZ-eQTL co-461 

localized; we find that many loci with PPH4 t 0.5 appear qualitatively consistent 462 

with co-localization.  463 

 464 

Importantly, for six of the 40 co-localizing loci, a conditional rather than primary 465 

eQTL co-localized with the GWAS with compelling qualitative support (Table 2, 466 

Figure 5, Figures S8-S12). The genes showing strong evidence for conditional 467 

eQTL co-localization include SLC35E2, PROX1-AS1, PPM1M, SDAD1P1, 468 

STAT6, and IREB2. Also notable are the occurrences of complex patterns of co-469 

localization for some loci; for example, three loci showed evidence for co-470 

localization with a primary eQTL for one gene and a conditional eQTL for 471 

another.  472 

 473 



 

Table 2. GWAS-eQTL Co-localized Loci 
 

Chr Range.left Range.right GWAS 
SNP 

GWAS P-
value eSNP eSNP P-

value 
primary/ 

conditional PPH4 Gene Relevant tissue / cell type / develop. period 
(See Table S9) 

1 2372401 2402501 rs4648845 4.033E-09 rs12037821 6.4E-04 conditional 0.87 SLC35E2 - / - / Early mid-prenatal 

1 8355697 8638984 rs301797 2.7E-09 rs138050288 3.8E-05 primary 0.95 RERE - / - / - 

1 30412551 30443951 rs1498232 1.3E-09 rs2015244 9.7E-12 primary 0.99 PTPRU - / Neurons / Early mid-prenatal 

1 163582923 163766623 rs7521492 5.6E-07 rs10799961 2.4E-11 primary 0.91 PBX1 - / - / Early prenatal 

1 205015255 205189455 rs16937 8.7E-07 
rs12724651 5.3E-07 primary 0.89 TMEM81 - / Neurons / - 

rs12031350 8.2E-06 conditional 0.87 RBBP5 - / - / - 

1 214137889 214163689 rs7529073 9.7E-07 rs1431983 1.7E-04 conditional 0.93 PROX1-AS1 Cerebellar Hemisphere / Neurons / Adult 

2 73194203 73900439 rs56145559 8.4E-08 rs11679809 2.0E-37 primary 0.86 ALMS1P Testis / - / - 

2 110262036 110398236 rs9330316 7.7E-08 rs892464 1.3E-28 primary 0.92 SEPT10 - / - / Late prenatal 

2 198148577 198835577 rs6434928 1.5E-11 rs12621129 2.2E-12 primary 0.94 SF3B1 - / - / - 

2 200715237 201247789 rs281768 3.5E-14 
rs35220450 1.6E-10 primary 0.95 FTCDNL1, 

AC073043.2 - / - / Adult 

rs186546506 8.8E-04 conditional 0.83 LINC01792, 
AC007163.3 Putamen (basal ganglia) / - / Adult 

2 208371631 208531731 rs2709410 4.1E-06 
rs34171849 2.2E-16 primary 0.88 METTL21A - / - / - 

rs2551656 1.6E-09 primary 0.86 CREB1 - / - / Early prenatal 

2 220033801 220071601 rs6707588 9.5E-07 rs11236 1.1E-09 primary 0.92 CNPPD1 - / - / - 

3 36843183 36945783 rs75968099 3.4E-12 rs9834970 1.9E-05 primary 0.94 DCLK3 Nerve - Tibial / Neurons / Infant 

3 52281078 53539269 rs2535627 3.956E-11 rs6801235 2.8E-08 conditional 0.86 PPM1M - / Neurons / Late prenatal 

3 63792650 64004050 rs832187 2.6E-08 rs113386200 3.0E-12 primary 0.98 THOC7 - / - / - 

3 135807405 136615405 rs7432375 5.3E-11 rs10935184 7.7E-25 primary 0.93 PCCB - / - / - 

4 170357552 170646052 rs10520163 1.0E-08 rs7438 1.5E-10 primary 0.97 CLCN3 - / - / - 

5 45291475 46404116 rs1501357 1.2E-08 rs9292918 4.5E-05 primary 0.94 BRCAT54, RP11-
53O19.1 - / - / Adult 

6 83779798 84407274 rs3798869 1.2E-09 rs2016358 8.7E-13 primary 0.90 SNAP91 Cerebellar Hemisphere / - / - 

6 108875527 109019327 rs9398171 3.4E-08 rs111727905 3.8E-06 primary 0.97 ZNF259P1 - / - / Early mid-prenatal 



 

7 21485312 21545712 rs73060317 6.6E-07 rs12672629 3.6E-05 primary 0.92 SP4 - / - / Early prenatal 

8 8088038 10056127 rs2945232 2.0E-08 rs2980441 1.9E-36 primary 0.82 FAM86B3P - / - / Adolescence 

8 26181524 26279124 rs1042992 2.9E-07 rs17055186 5.9E-25 conditional 0.91 SDAD1P1 Testis / - / Adult 

8 38020424 38310924 rs57709857 2.3E-07 rs17175814 2.1E-07 primary 0.88 WHSC1L1 - / - / Early prenatal 

8 144822546 144871746 rs11784536 1.5E-05 rs12541792 2.7E-37 primary 0.90 FAM83H Esophagus - Mucosa / Oligodendrocytes / 
Adolescence 

9 26839508 26909408 rs10967586 4.7E-07 rs12345197 1.3E-06 primary 0.80 IFT74 - / - / - 

11 46340213 46751213 rs7951870 8.3E-11 rs10160701 5.1E-05 primary 0.88 MDK - / - / Early mid-prenatal 

12 57428314 57497814 rs324017 2.1E-07 rs4559 4.2E-08 conditional 0.91 STAT6 - / Microglia / Adolescence 

14 35421614 35847614 rs77477310 1.8E-07 rs1028449 8.1E-04 primary 0.84 RP11-85K15.2 - / - / -  

15 78803032 78926732 rs8042374 1.865E-12 rs7171869 1.4E-04 conditional 0.94 IREB2 - / - /Early prenatal 

15 84661161 85153461 rs12902973 8.4E-11 rs35677834 1.6E-21 primary 0.80 LOC101929479, 
RP11-561C5.3 Ovary / - / Early mid-prenatal 

15 91416560 91436560 rs4702 2.3E-12 rs4702 9.3E-10 primary 1.00 FURIN - / Endothelial cells / Adolescence 

16 4447751 4596451 rs6500602 2.8E-07 
rs3747580 2.3E-16 primary 0.90 CORO7 - / - / - 

rs8046295 4.8E-15 primary 0.89 NMRAL1 - / - / - 

16 29924377 30144877 rs12691307 1.3E-10 

rs4788203 2.0E-05 primary 0.88 TMEM219 - / - / -  

rs3935873 7.5E-14 primary 0.87 INO80E - / Neurons / -  

rs4787491 3.5E-05 conditional 0.82 DOC2A Brain - Cortex / Neurons / Adolescence 

16 58669293 58691393 rs12325245 1.1E-08 rs11647976 4.8E-04 primary 0.94 CNOT1 - / - / -  

17 17722402 18030202 rs8082590 6.8E-09 rs4072739 3.6E-15 primary 0.92 DRG2 - / - / -  

19 11839736 11859736 rs3095917 1.6E-06 rs72986630 2.4E-07 primary 1.00 ZNF823 - / Endothelial cells / Early prenatal 

19 19374022 19658022 rs2905426 6.9E-09 rs2965199 9.2E-36 primary 0.87 GATAD2A - / - / - 

19 50067499 50135399 rs56873913 2.2E-07 rs5023763 5.5E-05 primary 0.93 SNRNP70 - / - / - 

22 41408556 42689414 rs9607782 6.8E-12 rs9607782 2.0E-04 primary 0.96 RANGAP1 - / - / - 

 
 
 



Comparison with Previous Co-localization Analyses 474 

 475 

In our prior analyses14 we reported a co-localization analysis of the 108 genome-476 

wide significant schizophrenia GWAS loci and non-conditional eQTL using 477 

Sherlock.40 Those results and our current findings are highly concordant (Table 478 

S7). Eleven loci were reported as co-localized in both analyses. Thirteen loci 479 

were co-localized (PPH4 t 0.8) in our analysis but not previously, twelve of which 480 

showed suggestive significance in Sherlock (P<2x10-4), or in one case involved a 481 

conditional eQTL (SLC35E2) in our analysis. Six loci were co-localized in the 482 

previous study but not in the current analysis; three of these resulted from 483 

differences in study design such as GWAS locus definition and eQTL overlap 484 

criteria, and two were suggestive in the current analysis (0.65< PPH4 <0.8). The 485 

one remaining discrepant locus (chr8:143302933-143403527) was found to co-486 

localize with TSNARE1 eQTL previously (Sherlock P=8.24x10-7), but not here 487 

(COLOC2 primary eQTL PPH4=0.074, PPH3=0.93), and indeed a qualitative 488 

comparison of the eQTL and GWAS data did not appear to support co-489 

localization (Figure S13).  490 

 491 

In the present analysis we considered not only primary but also conditional eQTL 492 

association signals for co-localization with the GWAS, allowing us to detect loci 493 

where co-localization may be obscured by multiple association signals in non-494 

conditional eQTL analysis. We also compared our conditional co-localization 495 

results with results using non-conditional eQTL analysis, using the same 496 



COLOC2 method and SCZ GWAS loci (Table S8). Conditional and non-497 

conditional COLOC2 results were highly concordant, with slightly higher PPH4s 498 

resulting from the same WABFs because of a higher prior probability of co-499 

localization estimated in the non-conditional COLOC2 analysis. Thirty-five loci 500 

were co-localized in both analyses, and five loci that were co-localized in the 501 

non-conditional analysis only were all highly suggestive in the conditional 502 

analysis (0.65 < PPH4 < 0.8). The five loci that were co-localized only in the 503 

conditional COLOC2 analysis involved conditional and not primary eQTL. 504 

 505 

DISCUSSION 506 

 507 

We utilized genotype and expression data from 467 human post-mortem brain 508 

samples from the DLPFC to conduct eQTL mapping analyses, to characterize 509 

both primary and conditionally independent eQTL. We then identified co-510 

localization between SCZ GWAS and our eQTL association signals, including 511 

conditional eQTL. Our principal findings include four major observations. First, 512 

we detect that conditional eQTL are widespread in the brain tissue samples we 513 

investigated. In 63% of genes with at least one eQTL, we found multiple 514 

statistically independent eQTL (8,136 genes). This demonstrates that genetic 515 

variation affecting RNA abundance is incompletely characterized by focusing 516 

only on one primary eQTL per gene, which is the case currently for most eQTL 517 

studies. We suggest that these conditional eQTL may represent regulatory 518 



variation specific to biological contexts not necessarily well represented in the 519 

transcriptomic data at hand.  520 

 521 

Second, we find the genomics of conditional eQTL and their genes are consistent 522 

with complex, context-specific regulation of gene expression. Conditional eQTL 523 

occur farther from transcription start sites than primary eQTL, consistent with 524 

effects on distal regulatory elements. Genes with more independent eQTL tend 525 

to be larger and span multiple recombination hotspot intervals, and tend to be 526 

less constrained at the protein level. While these associations may reflect in part 527 

greater power to detect independent eQTL that are not in linkage disequilibrium 528 

and that have greater phenotypic variance, they are also consistent with more 529 

complex regulation and greater potential for regulatory genetic variation. The 530 

strong association of eQTL number with gene expression cis-SNP-heritability 531 

shows that conditional eQTL contribute to regulatory genetic variation. 532 

Importantly, associations with specificity of expression across tissues, 533 

developmental periods, and cell types determined from single-cell RNA 534 

sequencing data, suggest that context specificity plays a role in the occurrence of 535 

multiple statistically independent eQTL. Cell type specificity is particularly 536 

strongly correlated with eQTL number, consistent with those cell types being 537 

present in the current tissue-homogenate data. 538 

 539 

Both primary and conditional eQTL are enriched in both active promoter and 540 

enhancer regions, and their enrichment in active promoters diminishes with 541 



increasing conditional eQTL order. In other words, conditional eQTL show 542 

greater enrichment in enhancers relative to promoters than do primary eQTL. We 543 

note that these enrichment analyses are less well powered for conditional eQTL 544 

than for primary eQTL, both because of smaller effect sizes of conditional eQTL, 545 

and because of statistical error introduced by forward stepwise conditional 546 

analyses.41-43  547 

 548 

Third, we highlight the importance of examining conditional eQTL for co-549 

localization with GWAS. In at least six out of 40 loci showing GWAS-eQTL co-550 

localization, a conditional eQTL signal co-localizes with SCZ risk. If we had 551 

considered only primary eQTL in the analyses, these instances of co-localization 552 

would have been missed. Conditional eQTL that co-localize with disease risk 553 

may reflect regulatory mechanisms that are important in a key developmental 554 

period or individual cell type, and may be missed when focusing on primary 555 

eQTL discovered in adult whole tissue. As further efforts are made to generate 556 

data across ranges of tissues or individual cell-types, we may have a better 557 

ability to directly identify regulatory variants specific to these contexts. However if 558 

a variant is primarily active in a very specific time point or stimulus condition, 559 

capturing data reflecting this condition will remain challenging. Conditional co-560 

localization analysis in well-powered eQTL cohorts may best identify the genes 561 

driving these trait associations, though further validation work will be required to 562 

understand the mechanism by which the gene contributes to disease risk. 563 

 564 



Fourth, we have identified a number of candidate genes for which genetic 565 

variation for expression co-localizes with genetic variation for schizophrenia risk 566 

(Table 2), including cases of co-localization with conditional eQTL. Genetic co-567 

localization is expected if gene expression causally mediates disease risk, 568 

although we recognize that co-localization could also result from pleiotropy or 569 

linkage, particularly in regions of extensive linkage disequilibrium and haplotype 570 

structure.44; 45 Our analyses prioritize 24 genes among the 111 genes within 23 571 

genome-wide significant SCZ loci (GWAS P < 5x10-8), and 22 genes in 17 572 

suggestive (P < 1x10-6) loci. Among the candidates are genes that have 573 

previously been implicated in SCZ etiology, such as FURIN,14 as well as 574 

alternative candidates in well-known SCZ loci – DCLK3 in the TRANK1 locus,46 575 

PPM1M in the ITIH1 locus,47 IREB2 in the CHRNA3 locus,27 and GATAD2A in 576 

the NCAN locus.27 Our candidates include several genes not previously 577 

considered as candidates,27 in some cases - SLC35E2, PTPRU, LINC01792, 578 

DCLK3, PPM1M, LOC101929479 - because the genes themselves do not 579 

overlap the GWAS locus regions but their eQTL do. We also find several non-580 

coding RNA genes - PROX1-AS1, FTCDNL1, LINC01792, BRCAT54.  581 

 582 

In an effort to highlight specific developmental periods or cell types for follow-up, 583 

we have tabulated expression specificity in GTEx tissues, brain sample cell types 584 

from single-cell RNA-seq,23 and in BrainSpan DLPFC developmental periods, for 585 

all identified genes (Table 2, Table S9). Their expression contexts show a 586 

diversity of patterns, and can provide clues to generate specific hypotheses for 587 



functional follow-up of their potential roles in SCZ. Among DLPFC cell types, we 588 

find several genes that are specific to neurons and examples of genes specific to 589 

oligodendrocytes or endothelial cells (Table 2). Among DLPFC developmental 590 

periods, we see diverse expression patterns ranging from early prenatal and 591 

broader prenatal, to perinatal (late prenatal and infancy periods), to 592 

adolescent/adult expression. We note no clear pattern of correlation between cell 593 

type and developmental expression patterns, for example neuronal cell type 594 

expressed genes include genes with prenatal, perinatal and postnatal 595 

expression. Interestingly, however, all genes broadly expressed across cell types 596 

show prenatal expression (Table S9).  597 

 598 

IREB2 (iron regulatory element binding protein 2), highlighted in our analyses as 599 

a conditional eQTL hit, is a key regulator of iron homeostasis48; 49 and has been 600 

implicated in neurodegenerative disorders.50; 51 Mouse IREB2 homolog Irp2 601 

knockouts exhibit impairments in coordination and balance, exploration, and 602 

nociception.49 The IREB2 locus includes the CHRNA3-CHRNA5-CHRNB4 603 

nicotinic receptor cluster associated with schizophrenia27 as well as nicotine 604 

dependence and smoking behavior,52 lung cancer,53; 54 and COPD.55 We note 605 

that the IREB2 conditional eQTL is associated with CHRNA3 and CHRNA5 606 

expression in cerebellum, caudate and some non-brain tissues in GTEx, but both 607 

genes are too lowly expressed for eQTL analysis in the CMC DLPFC samples. 608 

Therefore, we cannot rule out the possibility that other genes may be causal of 609 

SCZ risk at this locus, perhaps in other brain regions.  610 



 611 

A conditional eQTL for STAT6 co-localizes with a suggestive SCZ GWAS signal 612 

(P=2x10-7).27 The immune related transcription factor STAT6 induces interleukin 613 

4 (IL4)-mediated anti-apoptotic activity of T helper cells, and the locus is 614 

associated with migraine56; 57 and brain glioma,58 as well as several 615 

immune/inflammatory diseases.59-61 STAT6 also activates neuronal 616 

progenitor/stem cells and neurogenesis,62 making it intriguing as an immune-617 

related SCZ candidate given recent observations about the role of complement 618 

factor 4 (C4) gene as a SCZ risk gene,63 and prior work potentially implicating 619 

microglia.64 Consistent with a role in immune-mediated synaptic pruning, STAT6 620 

expression is broadly postnatal and specific to microglia and neurons (Table S9).  621 

 622 

Finally, a conditional eQTL for PROX1 Antisense RNA 1 (PROX1-AS1; chr1, 623 

214Mb) co-localizes with a suggestive SCZ locus (P=9.7x10-7). The Prospero 624 

Homeobox 1 (PROX1) transcription factor, involved in development and cell 625 

differentiation in several tissues, including oligodendrocytes65 and GABAnergic 626 

interneurons66 in the brain. This lncRNA has been implicated as aberrantly 627 

expressed in several cancers, is upregulated in the cell cycle S-phase, and 628 

promotes G1/S transition in cell culture.67 Like STAT6, PROX1-AS1 expression is 629 

specific to neurons and mature oligodendrocytes, and is expressed postnatally 630 

(Table S9).  631 

 632 



In conclusion, we find that conditional eQTL are wide spread, and are consistent 633 

with complex and context specific regulation. Accounting for conditional eQTL 634 

leads to new findings of GWAS-eQTL co-localization, and generates specific 635 

hypotheses for gene expression possibly mediating disease risk.  636 

 637 
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