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Abstract 

The dorsal anterior cingulate cortex (dACC) is central in higher-order cognition and 

in the pathogenesis of several mental disorders. Reinforcement Learning (RL), 

Bayesian decision-making, and cognitive control are currently the three main 

theoretical frameworks attempting to capture the elusive computational nature of this 

brain area. Although theoretical effort to explain the dACC functions is intense, no 

single theoretical framework managed so far to account for the myriad of relevant 

experimental data. Here we propose that dACC plays, in concert with midbrain 

catecholamine nuclei, the role of a reinforcement meta-learner. This cortical-

subcortical system not only can learn and make decisions based on RL principles, but 

it can also learn to control the learning process itself, for both its own circuits and for 

other brain areas. We show that a neural model implementing this theory, the 

Reinforcement Meta-Learner (RML), can account for an unprecedented number of 

experimental findings include effort exertion, higher-order conditioning and working 

memory. The RML performs meta-learning by means of approximate Bayesian 

inference; moreover, it respects several neuro-functional, neuro-anatomical, and 

behavioral constraints, providing a perspective that assimilates the other theoretical 

proposals in a single computational framework. 
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Introduction 

 

Adapting behavior to uncertain and changing environments is the foundation of 

intelligence. Important theoretical progress was made by considering this behavioural 

adaptation as a problem of decision-making (Frank et al., 2004; Rushworth and 

Behrens, 2008). At anatomical-functional level, the dorsal anterior cingulate cortex 

(dACC) was proposed as a multifunctional hub with a pivotal role in decision-making 

(Rushworth and Behrens, 2008). In recent years, Reinforcement Learning (RL) neural 

models (Silvetti et al., 2014) showed that many signals recorded in the dACC (e.g., 

error, error likelihood, response conflict) can be explained in terms of reward 

expectation and prediction error (PE) (i.e. the difference between expectation and 

outcome) for the purpose of optimal decision-making. This framework proposed that 

the dACC is a multi-domain estimator of stimulus and action values for the dACC, 

aimed at maximizing long-term reward.  

 Nonetheless, other recent studies showed that the function of dACC extends 

beyond the role of expectation-outcome comparator, revealing its capability of 

adaptive control over internal parameters determining behaviour. For example, from a 

cognitive control perspective it has been proposed that dACC controls effort exertion 

(Shenhav et al., 2013, 2014; Vassena et al., 2014; Verguts et al., 2015). Further, from 

a Bayesian perspective the dACC controls learning rate to optimize behavioural 

adaptation (Behrens et al., 2007; Kolling et al., 2016). Despite several recent 

theoretical proposals on the role of dACC in RL, cognitive control and Bayesian 

adaptation (Ebitz and Hayden, 2016), no theoretical convergence was reached yet and 

no concrete computational model has been developed to reconcile (or allow 

competition between) the different theoretical positions.  

 Here we propose a new perspective on dACC function, which is that the 

dACC performs meta-learning operations. From this perspective, the dACC learns to 

control the parameters that drive learning itself and decision-making, resulting in a 

more flexible system, better capable of adapting to the environment (Doya, 2002; 

Khamassi et al., 2011). In addition to dACC, midbrain catecholamine nuclei (the 

ventral tegmental area (VTA) and the locus coeruleus (LC)) probably play a crucial 

role in meta-learning as well (Doya, 2002). Dopamine (DA) and norepinephrine (Ne) 

are involved in control over both physical and cognitive effort exertion (Salamone et 
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al., 1994; Walton et al., 2009; Varazzani et al., 2015). Further, Ne levels have been 

linked with promoting knowledge update in case of environmental changes, balancing 

the trade-off between knowledge stability and plasticity (Nassar et al., 2012; Silvetti 

et al., 2013a). 

 We propose that the heterogeneity of dACC signals can be explained by 

considering it as a subsystem of a broader cortical-subcortical circuit involved in 

learning and meta-learning, including the dACC itself and the midbrain 

catecholamine nuclei. We implemented this hypothesis in a novel RL neural model, 

the Reinforcement Meta-Learner (RML). The RML goal is to maximize reward not 

only by making decisions toward the external environment, but also by self-

modulating catecholamines release, thus to modify (i.e., meta-learn) its own 

parameters. We show how this model has sufficient flexibility for RL, cognitive 

control and (approximate) Bayesian adaptation to emerge in complete autonomy (free 

from the intervention of the “homunculus”), in a (systems-level) neurophysiologically 

plausible way. The RML can also work as a central “server” of cognitive control, 

providing control signals to other brain areas to optimize performance. The RML 

accounts for an unprecedented variety of data, including volatility estimation, effort 

processing, and working memory (WM), higher-order classical and instrumental 

conditioning.  

In the next sections, we briefly describe the model structure. Then, we present 

the results on both neural and behavioural dynamics of the RML in eight (eleven 

including Supplementary Results) key experimental paradigms, selected based on 

their widely accepted effectiveness in testing RL, cognitive control and Bayesian 

adaptation phenomena.  
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Figure 1. Model overview. The RML has nine channels of information exchange 

(black arrows) with the environment (input = empty bars; output = filled bars). The 

input channels consist of one channel encoding action costs, three encoding 

environmental states and one encoding primary rewards. The output consists of three 

channels coding each for one action, plus one channel conveying LC signals to other 

brain areas. The entire model is composed of four reciprocally connected modules 

(each a different color). The upper modules (blue and green) simulate the dACC, 

while the lower modules (red and orange) simulate the midbrain catecholamine nuclei 

(VTA and LC). dACCAction selects actions directed toward the environment and learns 

higher-order conditioning. dACCBoost selects actions directed toward the 

catecholamine nuclei, modulating their output. Both dACC modules are Actor-Critic 

systems. The VTA module provides DA training signals to both dACC modules, 

while the LC controls learning rate (yellow bidirectional arrow) in both dACC 

modules, and costs estimation in the dACCAction module (orange arrow), influencing 

their decisions. Finally, the same signal controlling costs estimation in the dACCAction 

is directed toward other brain areas for neuro-modulation. 
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Model description 

 

In this section, we describe the general RML principles (including simplified 

equations); for a detailed description, the reader can consult the Supplementary 

Methods. The model approximates optimal decision-making (to maximize long-term 

reward) based on action-outcome comparisons (by the dACC; blue and green modules 

in Figure 1) augmented by meta-learning (LC and VTA; orange and red modules in 

Figure 1). It does this via value estimation of states (s) and actions (a), which are 

subsequently used for decision making (Sutton and Barto, 1998). Communication 

with the external environment is based on 9 channels. There are six channels 

representing environmental states and RML actions (3 states and 3 actions). The first 

two actions are aimed at changing the environmental state (e.g. turning right or left), 

while the 3rd action means “Stay”, i.e. refusing to engage in the task. This action is 

never rewarded and has no associated costs. Neural units are modeled by stochastic 

leaky integrators simulating neural activity with time resolution of 10 ms (the time 

length assigned to each network cycle). The model is scalable by design, i.e. there is 

no theoretical limit to the order of conditional learning (although we here simulated 

up to the 3rd order of conditioning) and to the number state/action channels, while the 

number of parameters does not change as a function of task complexity. As specified 

also below, we used a single set of parameters across all simulations (see 

Supplementary Methods). 

 

dACCAction 

The dACCAction module consists of an Actor-Critic system. The Critic is a 

performance evaluator and computes reward expectation and PE for either primary or 

non-primary rewards (higher-order conditioning), learning to associate stimuli and 

actions to environmental outcomes. We simulated a hierarchy of abstraction levels for 

higher-order conditioning, up to 3rd order. The lowest level learns from primary 

reward, the other levels learn by signals from TD-like signals that are generated by 

the VTA (Figure 1; see VTA module description below). The Actor selects motor 

actions (based on Critic expectation) to maximize long-term reward.  

 The central equation in this module governs Critic state/action value update: 
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    asTvBasv ttt ,, 1       (1) 

 

where v(s,a) indicates the value (outcome prediction) of a specific action a given a 

state s. In a continuous time representation, T is a timing function modeling the 

outcome onset expectation (Silvetti et al., 2011). T can be either set or autonomously 

learned (Silvetti et al., 2013b). A dedicated signal for time representation allows to go 

beyond some important limitations of temporal difference learning algorithms, as we 

describe in the General Discussion and in the Supplementary Methods. Equation 1 

ensures that v comes to resemble the outcome (B) as veridically as possible. It entails 

that the update of v at time step t is based on the difference between prediction (v) and 

outcome (B), which defines the concept of PE. The latter is weighted by learning rate 

, making the update more (high lambda) or less (low lambda) dependent on recent 

events. In the most general case, outcome B is defined by a reward function f:  

 

 brfB tt ,      (2) 

 

where the output f of the VTA module (see Equation 7) is a function of r (the external 

feedback signal) with parameter b, regulating its gain. The meaning of r can be either 

a primary reward or a conditioned cue (in case of higher-order conditioning; Equation 

7).  

 Action a is selected by the Actor subsystem, which implements softmax action 

selection (with temperature ) based on state/action values discounted by action costs 

C: 

 

     ,,,softmax)|( aCasvsap     (3) 

 

Regardless of the algebraic form of f and C, these functions contain parameters (b and 

) that (together with learning rate ) are typically fixed and optimized before task 

engagement. However, this approach suffers from limited flexibility. The RML solves 

this problem by autonomously modulating parameters and b. First, modulation 

of learning rate () can make sure knowledge (stored in v) is updated only when there 

are relevant environmental changes, protecting it from non-informative random 

fluctuations. This addresses the classical stability-plasticity trade-off (Grossberg, 
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1980). Second, modulation of costs estimation (by control over ) allows optimization 

when the benefit-cost balance changes over time and/or it is particularly challenging 

to estimate (e.g. when it is necessary to pay a sure high cost to get an uncertain higher 

reward). Third, dynamic modulation of reward signals (by means of control over b) is 

the foundation for emancipating learning from primary rewards (see Equation 7 and 

Equation s5), allowing the RML to learn complex tasks without the immediate 

availability of primary rewards (higher order conditioning).  

 

dACCboost 

The dACCBoost module consists of one Critic and one Actor. This module 

controls the parameters for cost and reward signals in equations 2-3 (dACCAction), via 

modulation of VTA and LC activity (boosting catecholamines). In other words, 

whereas the dACCAction decides on actions toward the external environment, the 

dACCBoost decides on actions toward the internal environment: It modulates midbrain 

nuclei (VTA and LC), given a specific environmental state. This is implemented by 

selecting the modulatory signal b (boost signal), by RL-based decision-making. In our 

model, b is a discrete signal that can assume ten different values (integers 1-10), each 

corresponding to one action selectable by the dACCBoost. The Critic submodule inside 

the dACCBoost estimates the boost values via the equation: 

 

      bsTvbrbsv tt ,, 1      (4) 

 

Equation 4 represents the value update of boosting level b in the environmental state 

s. The Actor submodule selects boosting actions to maximize long-term reward. 

Function  b  represents the cost of boosting (Kool et al., 2010; Kool and Botvinick, 

2013; Shenhav et al., 2013). Referring to Equation 2, the dACCBoost modulates the 

reward signal by changing the parameter b in function  brf , , where function f is 

coded in VTA. Furthermore, dACCBoost also modulates the cost signal by changing 

parameter  (via LC module, Equation 5) in the function representing action cost 

 ,aC  (Equation 3; represented in the Actor within the dACCAction). 

 

LC 
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The LC module plays a double role. First it controls cost via parameter  as a 

function of boosting value b selected by the dACCBoost module: 

 

 bLC       (5) 

 

Parameter  is modulated by boosting b, via the monotonically increasing LC 

function. The cost C decreases when increases, so action costs C decrease when b 

increases. The Ne output () is directed also toward external brain areas as a 

performance modulation signal (Figure 2; Simulation 2b). 

In addition to cost, the LC module dynamically optimizes learning rate () in 

the two dACC modules. The approximation of optimal  solves the trade-off between 

stability and plasticity, increasing learning speed when the environment changes and 

lowering it when the environment is simply noisy. In this way, the RML updates its 

knowledge when needed (plasticity), protecting it from random fluctuations. This 

function is performed by means of recurrent connections between each Critic-unit and 

the LC module. The resulting algorithm approximates Kalman filtering (Kalman, 

1960; Welch and Bishop, 1995), which is a recursive Bayesian estimator. In its 

simplest formulation, Kalman filter computes expectations (posteriors) from current 

estimates (priors) plus PE weighted by an adaptive learning rate (called Kalman gain). 

If we define process variance as the outcome variance due to volatility of the 

environment, Kalman filter computes the Kalman gain as the ratio between process 

variance and total variance (i.e. the sum of process and noise variance). From the 

Bayesian perspective, the Kalman gain reflects the confidence about the prior, so that 

high values reflect low confidence in priors and more influence of evidence on 

posteriors estimation. The RML approximates this ratio based on environmental 

outcomes, without knowing a priori neither process nor noise variance. In order to do 

that, the LC modulates  as a function of the ratio between the estimated variance of 

state/action-value (  vrâV ) over the estimated squared PE (Û ): 

 

 
 

  2,ˆ

râV
,

asU

v
as

t

t
t       (6) 
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In Equation 6, process variance is approximated by  vrâV ; total variance by squared 

PE (which is due to both noise and volatility). The LC module computes  vrâV , 

with the minimal assumption that noise-related variability occurs at a faster time scale 

than volatility-related variability (Equation s15 in Supplementary Methods). Equation 

6 is implemented independently for each of the Critic submodules in the two dACC 

modules, so that each Critic (equations 1,4) interacts with the LC to modulate its own 

learning rate. The dACC modules and the LC play complementary roles in controlling 

: The dACC modules provide the LC with the time course of expectations and PEs 

occurring during a task, while the LC integrates them to compute Equation 6. 

 

VTA 

The VTA provides training signal f(r,b) to both dACC modules, either for 

action selection directed toward the environment (by dACCAction) or for boosting-level 

selection (by dACCBoost) directed to the midbrain catecholamine nuclei. The VTA 

module also learns to link dopamine signals to arbitrary environmental stimuli (non-

primary rewards) to allow higher-order conditioning. We hypothesize that this 

mechanism is based on DA shifting from primary reward onset to conditioned 

stimulus (s, a, or both) onset (Ljungberg et al., 1992). As in the earlier model (Silvetti 

et al., 2011), DA shifting from reward onset to cue onset is modeled by a combination 

of the time derivatives of the neural units in dACCAction (Silvetti et al., 2011): 

 

        
  vbbrf ,     (7) 

 

where v indicates the output of the value unit,  + and  - indicate respectively positive 

and negative PE activity and    xx ,0max


. Temporal derivatives were chosen to 

simulate transient activation that characterizes VTA response (Cohen et al., 2012), 

and rectifications prevent negative neural input when derivatives are negative. 

Equation 7 plays a role similar to a temporal difference (TD) signal (Schultz et al., 

1997); for detailed comparison between our algorithm and TD-learning see the 

Discussion section. Here we anticipate that Equation 7 is based on the hypothesis that 

VTA activity is strongly determined by the contribution of the RL signals from the 

dACC, and that the TD-like VTA dynamics during conditioning is due to the 
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combination of reward expectation (v) and PE () signals. For further specifications 

see also the Supplementary Methods (Equation s5b). 

 

Client/server system 

Finally, the RML can optimize performance of other brain areas. It does so via 

the LC-based control signal, which is the same signal that modulates costs (Equation 

5; Figure 2). Indeed, the Actor-Critic function of the dACCAction module is domain-

independent (i.e. the state/action channels can come from any brain area outside 

dACC), and this allows a dialogue with any other area. Moreover, because 

optimization of any brain area improves behavioural performance, the dACCBoost can 

modulate (via LC signals defined by Equation 5) any cortical area to improve 

performance.  

 

Example of RML dynamics 

To visualize the RML functions, we show in Figure 3 the state-action 

transitions during a trial in a higher-order instrumental conditioning paradigm (a 

simplified version of the task described in Figure 10), where the RML needs to 

perform two different actions (and transit through two different environment states) 

before obtaining the final reward. As we will show in more detail in Simulation 3, the 

transition to a new state, closer to primary reward, plays the role of a non-primary 

reward that is used by the RML to update the value of the action that determined the 

transition to that state. 

In the following sections, we describe four different simulations where we 

show how the RML implements meta-learning, controlling autonomously (in order of 

simulation description): learning rate (), physical effort exertion (modulation of 

action costs C), modulation of the dorsolateral prefrontal cortex (DLPFC) via LC 

efferent signals (), and reward signals for higher-order conditioning (b, Equation 7), 

each of which divided in sub-sections, for a total of eleven experimental results 

(including three in the Supplementary Results). Across all simulations, the exact same 

RML architecture and parameter setting was used.  

 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/130195doi: bioRxiv preprint 

https://doi.org/10.1101/130195
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

 

Figure 2. Example of how the RML can provide control signals to other brain areas. 

The schema represents the connection of one external system (client; e.g. the DLPFC) 

to the RML (server). The communication between the two systems is ensured by the 

blue state/action channels. The LC module provides external control signal, to 

modulate DLPFC activity (e.g. signal-to-noise ratio). Boosting LC activation is 

decided by the dACCBoost module to maximize long-term reward (see also Simulation 

2b). 
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Figure 3. Example of input-output RML dynamics (right sequence) during a trial in a 

higher-order instrumental conditioning task (left sequence). The task is represented 

like a 2-armed bandit task, where two options (red and blue squares) can be selected 

(joystick). The RML needs to select a sequence of two actions before achieving a 

primary reward (sun). Each action determines an environmental state transition 

(colored disks) a) Trial starts in environmental State 1 (purple disk on selection 

screen). This state is encoded in the state input layer of the RML (black arrow to the 

first RML input pin), while the LC output level to external brain areas (same level of 

internal LC output) has been selected based on prior knowledge (black arrow from LC 

output). b) The RML decides to select the right gate (black arrow from the second 

RML output pin and black arrow indicating joystick movement). c) The environment 

changes state (green disk on display) as a consequence of the RML action. The new 

environment state is encoded by the RML (black arrow to the third RML input pin). 

Based on the new environment state, the RML makes a new decision about the LC 

output intensity (longer black arrow from LC output pin). As before, the new LC 

output will influence both the RML itself and external brain areas receiving the LC 

output. d) The RML selects a new action (left gate). e) The environment transits to the 

final state of the trial, reward (sun), which is received by the RML (black arrow to the 

RML primary reward pin). In this example, action cost estimations (black arrow to the 

action cost RML input pin) remain constant during the trial. 
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Results 

 

Simulation 1: learning rate and Bayesian inference 

 

Adaptive control of learning rate is a fundamental aspect of cognition. Humans can 

solve the tradeoff between stability and plasticity in a Bayesian fashion, by changing 

the learning rate as a function of environmental changes (Behrens et al., 2007; Yu, 

2007), and distinguishing between variability due to noise versus variability due to 

actual changes of the environment (Yu and Dayan, 2005; Silvetti et al., 2013a). The 

RML implements learning rate meta-learning by means of recurrent interaction 

between the dACC and the LC (Equation 6), allowing it to estimate these quantities 

too, thus to approximate optimal control. As described in the Model Description 

section, the RML controls learning rate by approximating a Kalman filter (Bayesian 

estimator). More precisely, the dACC-LC interaction approximates optimal learning 

rate as the ratio between process variance (outcome variance due to environmental 

changes) and total variance (i.e. the sum of process and noise variance). To do so, the 

RML estimates online both type of variances, as described in detail in equations s8-17 

in Supplementary Material. 

 Furthermore, we will investigate not only whether the model can capture and 

explain human adaptive control of learning rate at behavioural level, but also a set of 

experimental findings at neural level, which have not been reconciled yet under one 

single theoretical framework. In particular, LC activity (and thus Ne release) has been 

shown to track volatility (probably controlling learning rate); in sharp contrast, dACC 

activation was more sensitive to global environmental uncertainty, rather than to 

volatility (Nassar et al., 2012; Silvetti et al., 2013a, 2013b).  

 

Simulation methods 

We administered to the RML a 2-armed bandit task in three different stochastic 

environments (Figure 4a-b, see also Suppl. Material). The three environments were: 

stationary environment (Stat, where the links between reward probabilities and 

options were stable over time, either 70 or 30%), stationary with high uncertainty 

(Stat2, also stable reward probabilities, but all the options led to a reward in 60% of 

times), and volatile (Vol, where the links between reward probabilities and options 
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randomly changed over time) (see also Table s2). We assigned higher reward 

magnitudes to choices with lower reward probability, to promote switching between 

choices and to make the task more challenging (cf. Behrens et al. 2007). Nonetheless, 

the value of each choice (probability  magnitude) remained higher for higher reward 

probability (see Supplementary Methods for details), meaning that reward probability 

was the relevant variable to be tracked. A second experiment, where we manipulated 

reward magnitude instead of reward probability (Suppl. Results and Methods), led to 

very similar results. Here and elsewhere, to mimic standard experimental paradigms 

as closely as possible, we ran just 12 simulations (simulated subjects) for each task, to 

show a substantial effect size of results. Obviously, here and elsewhere p-values 

improved (but not the effect sizes) when running more simulated subjects. 

 

Simulation Results and Discussion 

The RML performance in terms of optimal choice percentages was: Stat = 66.5% (± 

4% s.e.m.), Vol = 63.6% (± 1.4% s.e.m.). For Stat2 condition there was no optimal 

choice, as both options led to reward in 60% of times. Importantly, the model 

successfully distinguished not only between Stat and Vol environments, but also 

between Stat2 and Vol, increasing the learning rate exclusively in the latter (Figure 

4d). There was a main effect of volatility on learning rate  (F(2,11) = 29, p < 

0.0001). Post-hoc analysis showed that stationary conditions did not differ (Stat2 > 

Stat, t(11) = 1.65, p = 0.13), while in volatile condition learning rate was higher than 

in stationary conditions (Vol > Stat2, t(11) = 5.54, p < 0.0001; Vol > Stat, t(11) = 

5.76, p < 0.0001). Hence, interaction between dACC and LC allows disentangling 

uncertainty due to noise from uncertainty due to actual changes (Yu and Dayan, 2005; 

Silvetti et al., 2013a), promoting flexibility (high learning rate) when new information 

must be acquired, and stability (low learning rate) when acquired information must be 

protected from noise. This mechanism controls learning rates in both the dACCAction 

and the dACCBoost modules, thus influencing the whole RML dynamics. The same 

learning rate effect was found in experimental data (Figure 4e). Indeed, humans 

increased both learning rate and LC activity only in Vol environments (Silvetti et al., 

2013). Thus, humans could distinguish between outcome variance due to noise (Stat2 

environment) and outcome variance due to actual environmental change (Vol 

environment). 
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 The model was also consistent with the fMRI data cited above (Silvetti et al., 

see Figure 5). During a RL task executed in the same three statistical environments 

used in this simulation, the human dACC activity did not follow the pattern in Figure 

4d but instead peaked for Stat2 environment, suggesting that activity of human dACC 

is dominated by prediction error operations rather than by explicit estimation of 

environmental volatility (Figure 5a). The RML captures these results (Figure 5b) by 

its PE activity (activity of  units from equations s3-4). Finally, it is worth noting that 

Vol-related activity of both model and human dACC was higher than in Stat 

environment (stationary with low uncertainty), thus replicating the results of previous 

fMRI studies by Behrens et al. (2007). 

 

 

 

 

 

 

Figure 4. a) The task (2-armed bandit) is represented like a binary choice task (blue 

or red squares), where the model decisions are represented as joystick movements. 

After each choice, the model received either a reward (sun) or not (cross). b) Example 

of time line of statistical environments (order of presentation of different 

environments was randomized across simulations). The plot shows reward probability 

linked to each option (blue or red) as a function of trial number. In this case the model 

executed the task first in a stationary environment (Stat), then in a stationary 

environment with high uncertainty (Stat2), and finally in a volatile (Vol) environment. 
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c) Model schema showing where we recorded the signal to measure the learning rate 

variation (dashed black circle). d) Learning rate as a function of environmental 

volatility (± s.e.m.) in the RML and humans e) (modified from: Silvetti et al., 2013a). 

f) human LC activity (inferred by pupil size; Joshi et al. 2016; Varazzani et al. 2015; 

Aston-Jones and Cohen 2005) during the same task. 

 

 

 

 

Figure 5. a) dACC activity effect size (extracted from the ROI indicated by cross) in 

a RL task executed during fMRI scanning. The task was performed in the same three 

environments we used in our simulations. dACC activity peaked in Stat2 and not in 

Vol condition (modified from: Silvetti et al., 2013b). b) dACCAction average prediction 

error activity (sum of  units activity ± s.e.m.) as a function of environmental 

uncertainty. Differently from the LC, the dACC is maximally active in stationary 

uncertain environments (Stat2).  

 

 

 

Simulation 2: Adaptive physical and cognitive effort control 

A long list of experimental results indicates DA and Ne neuromodulators as crucial 

not only for learning environmental regularities, but also for exerting cognitive 

control (e.g. Aston-Jones & Cohen 2005; Sara 2009; Vijayraghavan et al. 2007; 

Langner & Eickhoff 2013; D’Esposito & Postle 2015). Although these mechanisms 

have been widely studied, only few computational theories explain how the midbrain 

catecholamine output is controlled to maximize performance (Doya, 2002; Yu and 
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Dayan, 2005), and how the dACC is involved in such a process. In this section, we 

describe how the dACCBoost module learns to regulate LC and VTA activity to control 

effort exertion, at both cognitive and physical level (Chong et al., 2017), to maximize 

long-term reward. In Simulation 2a, we test the cortical-subcortical dynamics 

regulating catecholamine release in experimental paradigms involving decision-

making in physically effortful tasks, where cost/benefit trade –off must be optimized 

(Salamone et al., 1994). In Simulation 2b, we show how the LC (controlled by the 

dACCBoost) can provide a Ne signal to external “client” systems to optimize cognitive 

effort allocation and thus behavioural performance in a visuo-spatial WM task. In 

both simulations, we also test the RML dynamics and behaviour after DA lesion. 

 

 

Simulation 2a: Physical effort control and decision-making in challenging 

cost/benefit trade off conditions 

 

Deciding how much effort to invest to obtain a reward is crucial for human and non-

human animals. Animals can choose high effort-high reward options when reward is 

sufficiently high. The impairment of the DA system strongly disrupts such decision-

making (Salamone et al., 1994; Walton et al., 2009). Besides the VTA, experimental 

data indicate also the dACC as having a pivotal role in decision-making in this 

domain (Kennerley et al., 2011; Apps and Ramnani, 2014; Vassena et al., 2014). In 

this simulation, we show how cortical-subcortical interactions between the dACC, 

VTA and LC drive optimal decision-making when effortful choices leading to large 

rewards compete with low effort choices leading to smaller rewards, testing whether 

the RML can account for both behavioral and physiological experimental data. 

Moreover, we test whether simulated DA depletion in the model can replicate (and 

explain) the disruption of optimal decision-making, and, finally, how effective 

behaviour can be restored. 

 

Simulation Methods 

We administered to the RML a 2-armed bandit task with one option requiring high 

effort to obtain a large reward, and one option requiring low effort to obtain a small 

reward (Walton et al. 2009; here called Effort task; Figure 6a). The task was also 
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administered to a DA lesioned RML (simulated by forcedly reducing VTA activity to 

60%, see Suppl. Methods). 

 

 

 

 

Figure 6. a) Effort task, where a high effort choice (thick arrow from joystick) 

resulting in high reward (HR, large sun) was in competition with a low effort choice 

(thin arrow) leading to low reward (LR, small sun). b) Catecholamines boosting (b) as 

a function of task type (Effort or No Effort task) and DA lesion. The boosting value 

(recorded from the decision units within the dACCBoost module) is higher in the Effort 

task (main effect of task), but there is also a task x lesion interaction indicating the 
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dACCBoost attempts to compensate the loss of DA, to achieve at least LR (see main 

text). c) Behavioural results (average HR/(LR+HR) ratio ±s.e.m., and average Stay-

to-total choices ratio percentage ±s.e.m.) from RML and d) empirical data. e) 

Behavioural results after DA lesion in RML and f) in empirical data. In this case 

animals and the RML switch their preference toward the LR option (requiring low 

effort). In both d) and f), animal data are from Walton et al. (2009).  

 

 

Like in Walton et al. (2009), before the execution of the Effort task, the RML learned 

the reward values in a task where both options implied low effort (No Effort task, 

Supplementary material, Figure S8a). Besides the high effort and low effort choices, 

the model could choose to execute no action if it evaluated that no action was worth 

the reward (“Stay” option).  

 

Simulation Results and Discussion 

As shown in Figure 6b, the dACCBoost increased the boosting level (b) in the Effort 

task (main effect of task, F(1,11) = 231.73, p < 0.0001) enhancing both LC and VTA 

output (equations 5, 7). The RML learned that boosting is cost/benefit effective when 

it results in large rewards. Increased Ne (in Equation 5) influences the Actor (effect 

of  on costs estimation in decision-making process, Equation 3), facilitating effortful 

actions; increased DA affects the learning process of the Critic (equations 1, 2, 7), 

increasing the reward signal related to effortful actions. After DA lesion, the 

dACCBoost decreased the boosting output during the Effort task, while it increased the 

boosting output during the No Effort task (task x lesion interaction F(1,11) = 249.26, 

p < 0.0001). Increased boosting in No Effort task can be interpreted as a 

compensatory mechanism ensuring the minimal catecholamines level to achieve the 

large reward when just a low effort is necessary (Figure s8a,b). Indeed, the lack of 

compensation in No Effort task would result in an “apathic” policy, where the RML 

would often select the “Stay” action, saving on minimal costs of moving but also 

reducing the amount of reward. We can say that when the incentive is high (high 

reward available) and the effort required to get the reward is low, the RML predicts 

that the DA lesioned animal would choose to exert some effort (boosting up the 
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remaining catecholamines) to promote active behaviour versus apathy (see also 

Figure S8b in Simulation S2a). 

At behavioural level, in the Effort task, the RML preferred the high effort 

option to get a large reward (Figure 6c; t(11) = 4.71, p = 0.0042). After the DA lesion, 

the preference toward high effort-high reward choice reversed (Figure 6d; t(11) = -

3.71, p = 0.0034). Both these results closely reproduce animal data (Walton et al., 

2009). Furthermore, the percentage of “Stay” choices increased dramatically 

(compare figures 5c and 5e; t(11) = 18.2, p < 0.0001). Interestingly, the latter result is 

also in agreement with animal data and could be interpreted as a simulation of apathy 

due to low catecholamines level. In agreement with animal data, the DA-lesioned 

RML performance recovers when a No Effort task is administered after the Effort task 

(Simulation S2a, Figure S8b, Supplementary Results), due to the compensatory 

boosting described above. The same performance recovery occurs in a task where 

both options are effortful (Double Effort task, Simulation S2b, Figure S8c, 

Supplementary Results), again in agreement with experimental data (Walton et al., 

2009). In the latter case, choosing the High effort-High reward option becomes 

appealing again (compared to High effort-Low reward option). However, forcing the 

DA lesioned agent to choose between two High Effort options results in a much 

greater probability of selecting the “Stay” option (Figure S8c), as from the agent 

perspective, minimizing the costs of moving is almost as valuable as working hard to 

get a large reward (High effort-High reward option). 

 

Simulation 2b: Cognitive effort control in a WM task 

Besides attention allocation, Ne neuromodulation plays a crucial role in WM, 

improving signal to noise ratio by gain modulation mediated by 2-A adrenoceptors 

(Aston-Jones and Cohen, 2005; Wang et al., 2007), and low level of Ne transmission 

leads to WM impairment (Li and Mei, 1994; Li et al., 1999). At the same time, it is a 

major biological marker of effort exertion (Kahneman, 1973; Varazzani et al., 2015). 

Besides Ne release by the LC, experimental findings showed that also dACC activity 

increases as a function of effort in WM tasks, e.g. in mental arithmetic (Borst and 

Anderson, 2013; Vassena et al., 2014). Here we show that the same machinery that 

allows optimal physical effort exertion (Simulation 2a) may be responsible for 

optimal catecholamine management to control the activity of other brain areas, thus 
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rooting physical and cognitive effort exertion in a common decision-making 

mechanism. This is possible because the design of the RML allows easy interfacing 

with external systems. Stated otherwise, the macro-circuit dACC-midbrain works as a 

“server” providing control signals to “client” areas to optimize their function.  

 

Simulation Methods 

We connected the RML system to a WM system (FROST model; Ashby et al. 2005; 

DLPFC in Figure 2). Information was exchanged between the two systems through 

the state/action channels in the dACCAction module and the external LC output. The 

FROST model was chosen for convenience only; no theoretical assumptions 

prompted us to use this model specifically. FROST is a recurrent network simulating 

a macro-circuit involving the DLPFC, the parietal cortex and the basal ganglia. This 

model simulates behavioural and neurophysiological data in several visuo-spatial WM 

tasks. FROST dynamics simulates the effect of memory loads on information coding, 

with a decrement of coding precision proportional to memory load (i.e. the number of 

spatial locations to be maintained in memory). This feature allows to simulate the 

increment of behavioural errors when memory load increases (Ashby et al., 2005). 

The external LC output () improves the signal gain in the FROST DLPFC neurons, 

increasing the coding precision of spatial locations retained in memory (Equation s21 

in Supplementary Methods), thus improving behavioural performance. We 

administered to the RML-FROST circuit a delayed matching-to-sample task with 

different memory loads (a template of 1, 4 or 6 items to be retained; Figure 7a), 

running 12 simulations (simulated subjects) for each condition. We used a block 

design, where we administered three blocks of 70 trials, each with one specific 

memory load (1, 4, or 6). In 50% of all trials, the probe fell within the template. The 

statistical analysis was conducted by a repeated measure 3x2 ANOVA (memory load 

and DA lesion).  

 

Simulation Results and Discussion 

The dACCBoost module dynamically modulates Ne release (, Equation 5) as a 

function of memory load, in order to optimize performance (Figure 7b, left panel; 

main effect of memory load on LC output: F(2,22)= 16.74, p < 0.0001). Like in 

Simulation 2a, in case of DA lesion, the VTA-dACC-LC interaction is disrupted, 
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leading to a devaluation of boosting and the consequent decision (by the dACCBoost 

module) of downregulating LC activity (Figure 7c, left panel; main effect of DA 

lesion on LC output: F(1,11)= 24.88, p < 0.0001). This happened especially for high 

memory loads (lesion  memory-load interaction: F(2,22) = 7.1, p = 0.0042). LC 

modulation impairment results in poor performance in particular for high memory 

loads, when high level of Ne is necessary (Figure 7c, accuracy, right panel; lesion  

memory-load interaction: F(2,22) = 8.6, p = 0.0017).  

 

 

 

Figure 7. a) Delayed Matching-to-sample task: events occurring in one trial. b) Left: 

LC activity as a function of memory load (number of items presented in the template). 

Right: behavioural performance as a function of memory load. c) LC activity and 

behavioural performance after DA lesion. Error bars indicate ±s.e.m. 
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Simulation 3: Reinforcement Learning, meta-learning and higher-order 

conditioning 

 

Animal behavior in the real world is seldom motivated by conditioned stimuli directly 

leading to primary rewards. Usually, animals have to navigate through a problem 

space, selecting actions to come progressively closer to a primary reward. In order to 

do so, animals likely exploit both model-free and model-based learning (Niv et al., 

2006; Pezzulo et al., 2013; Walsh and Anderson, 2014). Nonetheless, model-free 

learning from non-primary rewards (i.e. higher-order conditioning) remains a basic 

key feature for fitness, and the simplest computational solution to obtain adaptive 

behaviour in complex environments. For this reason, we focus on model-free learning 

here.  

 A unifying account explaining behavioral results and underlying 

neurophysiological dynamics of higher-order conditioning is currently lacking. First, 

at behavioral level, literature suggests a sharp distinction between higher-order 

conditioning in instrumental or in classical paradigms. Indeed, although it is possible 

to train animals to execute complex chains of actions to obtain a reward (instrumental 

higher-order conditioning, Pierce and Cheney, 2004), it is impossible to install a third- 

or higher-order level of classical conditioning (i.e. when no action is required to get a 

reward; Denny and Ratner, 1970). Although the discrepancy has been well known for 

decades, its reason has not been resolved. 

Second, a number of models have considered how TD signals can support 

conditioning and learning more generally (Holroyd and Coles, 2002; Williams and 

Dayan, 2005). However, at the best of our knowledge, no TD model addressing DA 

temporal dynamics also simulated higher-order conditioning at behavioural level.  

Here we use the RML to provide a unified theory to account for learning in 

classical and instrumental conditioning. We show how the RML can closely simulate 

the DA shifting in classical conditioning. We also describe how the VTA-dACC 

interaction allows the model to emancipate itself from primary rewards (higher-order 

conditioning). Finally, we investigate how the synergy between the VTA-dACCBoost 

and LC-dACCBoost interactions (the catecholamines boosting dynamics) is necessary 

for obtaining higher-order instrumental conditioning. This provides a mechanistic 

theory on why higher-order conditioning is possible only in instrumental and not in 

classical conditioning.  
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Simulation 3a: Classical conditioning 

A typical experimental finding on DA dynamics is the progressive shifting of DA 

release onset from primary reward to CS (Schultz et al., 1993). At the same time, 

omission of expected primary reward typically leads to dips in neural activity in 

dopaminergic neurons, dropping their discharge rate to zero. DA shifting develops 

exclusively in the CS-locked and US-locked time windows, without the signal 

progressively propagating backward from US to CS (Schultz et al., 1993). We now 

investigate these properties in the RML. 

 

Simulation Methods 

We administered a classical conditioning task, where an environmental cue lasted for 

2s, followed by a primary reward on 80% of all trials. Inter trial interval was 4s. The 

model was trained with 40 trials for each simulation, for each of 12 simulations 

(subjects). 

 

Simulation Results and Discussion 

Figure 8 shows the VTA response (both from RML and animal data) during a 

classical conditioning paradigm. These results replicate our previous model RVPM 

simulations (Silvetti et al. 2011). We hypothesized (cf Equation 7) that DA dynamics 

during conditional learning is determined by dACC-VTA interaction, by combining 

the information from reward expectation and reward PE. More precisely, cue-locked 

VTA activity shown in Figure 8c-d is due to the reward prediction temporal 

difference ([ v ]+), while reward-locked activity is due to PE temporal difference (

       ). This mechanism can closely simulate the progressive shifting of DA 

activity from reward period to cue period (Figure 8c), and the DA dip when expected 

rewards are omitted (Figure 8d).  
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Figure 8. a) Classical conditioning task administered to the model. A cue was 

presented, then a primary reward was delivered. b) Recording site (dashed circle) of 

VTA activity plotted in c and d (see Supplementary material for more details). Black 

arrows indicate cue and reward input to the RML. c) Simulated VTA activity shifting 

from reward to cue period in three different training phases (early, mid and late). The 

bottom plot shows empirical data from Stuber et al. (2008). d) Simulated VTA 

baseline activity suppression when an expected reward is omitted after extensive 

conditional training (late training phase). The bottom plot shows empirical data from 

Schultz et al. (1997).  

 

 

 

Simulation 3b: Higher-order classical conditioning 

Given the progressive linking of DA response to conditioned stimuli, it is natural to 

wonder whether a conditioned stimulus can work as a reward itself, allowing to build 

a chain of progressively higher-order conditioning (i.e. not directly dependent on 

primary reward). However, for unknown reasons, classical higher-order conditioning 

is probably impossible to obtain in animal paradigms (Denny and Ratner, 1970; 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/130195doi: bioRxiv preprint 

https://doi.org/10.1101/130195
http://creativecommons.org/licenses/by-nd/4.0/


26 
 

O’Reilly et al., 2007). We thus investigate what happens in the model in such a 

paradigm. 

 

Simulation Methods 

We first administered the same first-order classical conditioning task of Simulation 

3a. We then conditioned a second cue by using the first CS as a non-primary reward. 

The same procedure was repeated up to third-order conditioning. Each cue was 

presented for 2s followed by the successive cue or by a primary reward. All cue 

transitions were deterministic and the reward rate after the third cue was 100%. The 

reward magnitude was set equal to 7. 

 

Simulation Results and Discussion 

In Figure 9 we show the VTA response locked to the onset of each conditioned 

stimulus. Surprisingly, but in agreement with experimental animal data, the 

conditioned cue-locked DA release is strongly blunted at the 2nd order, and 

disappeared almost completely at the 3rd order. This phenomenon is similar to TD 

signal decay in TD-learning algorithms, although a decay showing the same steepness 

would make the TD signal almost useless. From the computational viewpoint, this 

aspect of VTA dynamics is because at each order of conditioning, the cue-locked 

signal is computed as the temporal difference of reward prediction unit activity 

(Equation 7), losing part of its power at each conditioning step. This implies a steep 

decay of the conditioning effectiveness of non-primary rewards, as at each order of 

conditioning, the reinforcing property of cues is lower and lower. From the ecological 

viewpoint, it makes sense that the weaker is the link between a cue and a primary 

reward the weaker should be its conditioning effectiveness. Nonetheless, as we 

describe in the following paragraph, this phenomenon is in some way 

counterbalanced during instrumental conditioning. 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/130195doi: bioRxiv preprint 

https://doi.org/10.1101/130195
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

 

Figure 9. a) Experimental paradigm for higher-order classical conditioning. Sequence 

of conditioned stimuli (colored disks) followed by primary reward (sun). b) VTA 

activity locked to each of conditioned stimuli. Dashed black circle indicates where the 

plotted signals were recorded from (see also Supplementary Material).  

 

 

 

Simulation 3c: Chaining multiple actions and higher-order conditioning 

 Differently from classical conditioning paradigms, animal learning studies 

report that in instrumental conditioning it is possible to train complex action chains 

using conditioned stimuli (environmental cues) as reward proxies, delivering primary 

reward only at the end of the task (Pierce and Cheney, 2004).  

 

Simulation Methods 

We here administered to the RML a maze-like problem, structured as a series 

of binary choices before the achievement of a final reward (Figure s6). Each choice 

led to an environmental change (encoded by a colored disk, like in Figure 3). The 

training procedure was the same as used for higher-order classical conditioning. We 

first administered a first-order instrumental conditioning (2-armed bandit task). Then, 
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we used the conditioned environmental cue as non-primary reward to train the RML 

for second-order conditioning. The procedure was repeated up to third-order 

conditioning. State-to-state transitions were deterministic and primary reward rate 

was 100% for correct choices and 0% for wrong choices. Reward magnitude was 

again set equal to seven. 

 

Simulation Results and Discussion 

At the end of training, the system was able to perform three sequential choices 

before getting a final reward, for an average accuracy of 77.3% (90% C.I. = ±13%) 

for the first choice (furthest away from primary reward; purple disk, Figure 10a); 

95.8% (90% C.I. = [4.2, 5.6]%) for the second; and 98% (90% C.I. = ±0.4%) for the 

third choice (the one potentially leading to primary reward; orange disk, Figure 10a). 

Figure 10b shows the cue-locked VTA activity during a correct sequence of choices. 

Differently from classical conditioning, the DA signal amplitude persists over several 

orders of conditioning, making colored disks (also far away from final reward) 

effective non-primary rewards, able to shape behaviour. 

The reason for this difference between classical and instrumental conditioning, 

is in the role played by the dACCBoost module. This module learns to control the 

activity of both VTA and LC in order to maximize reward. Boosting catecholamines 

(Ne and DA) has a cost (Equation 4) and the decision of boosting is selected only 

when it can result in a substantial performance improvement (in terms of achieved 

rewards, Equation 4). Figure 10c compares average boosting levels b (selected by the 

dACCBoost) in classical and instrumental conditioning. The dACCBoost discovered that 

boosting Ne and DA was useful in instrumental conditioning; furthermore it 

discovered that it was not useful in classical conditioning (t(11) = 5.64, p < 0.0001). 

This decision amplified DA release during task execution only in instrumental 

conditioning (compare Figure 10b and Figure 9b). Enhanced VTA activity during the 

presentation of conditioned stimuli (the colored lights indicating a change in the 

problem space) means more effective higher-order conditioning, therefore a more 

efficient behaviour. Conversely, in classical conditioning, the model doesn’t need to 

make any motor decision, as the task consists exclusively of passive observation of 

incoming cues (colored lights). Therefore, boosting Ne and/or DA does not affect 

performance (reward amount), as this is completely decided by the environment. In 

this case, boosting would only be a cost, and the dACCBoost module decides not to 
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boost, with a low VTA activation for conditioned stimuli. This explains the strong 

limitations in getting higher-order classical conditioning. 

 

 

 

 

 

Figure 10. VTA dynamics during higher order instrumental conditioning. a) Events 

occurring during a sequence of correct choices in the task represented also in Figure 

3. See Supplementary Methods for details. b) Cue-locked (colored disk indicating the 

environment state) VTA activity. Dashed black circle on the model schema indicates 

where the plotted signals were recorded from. Differently from higher order classical 

conditioning, the DA release persists over progressive abstraction of rewards 

(associative distance from primary reward). c) Boosting level (b) is higher in 

instrumental conditioning as compared to classical conditioning (cfr. Figure 9). 
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General Discussion 

 

We proposed a novel account of the role of dACC in cognition, suggesting 

that its elusive computational role can be understood by considering its tight 

interaction with catecholaminergic midbrain nuclei. At a theoretical level, this 

reconciled three main theoretical frameworks of dACC function, namely behavioural 

adaptation from a Bayesian perspective (Kolling et al., 2016), effort modulation for 

cognitive control (Shenhav et al., 2016), and RL-based action-outcome comparison 

(Silvetti et al., 2014). At an empirical level, the model explained a number of 

heterogeneous neuroscientific and behavioral data, including error monitoring, 

learning rate optimization, effort exertion in physical and cognitive tasks, and higher-

order classical and instrumental conditioning. As described in the Introduction, our 

earlier model RVPM is one of the computational “bricks” constituting the RML. This 

implies (as shown in part in figures 5 and 8), that the RML can simulate all the 

experimental findings already simulated by the RVPM (e.g. error detection, error 

likelihood estimation, conflict monitoring etc.; Silvetti et al., 2011), for a total (so far) 

of 16 independent experimental findings from neurophysiology and behavioural 

neuroscience literature. 

The first meta-learning process we analyzed concerned learning rate 

(Simulation 1). Earlier Bayesian models (e.g. Kalman 1960; Behrens et al. 2007; 

Mathys et al. 2011) also adapted their learning rates, proposing a computational 

account of behavioural adaptation. The main limitations of those models are their 

loose anatomical-functional characterization, the fact that they are computationally 

hard (in particular for optimal Bayesian solutions, e.g. Behrens et al. 2007), and the 

need of free parameters specifying a priori the statistical structure of the environment 

variability (Kalman, 1960; Mathys et al., 2011). The RML instead provides an 

explicit theory and neuro-computational architecture of how autonomous control of 

learning rate can emerge from dACC-LC interaction. Moreover, it needed only one 

minimal and plausible a priori assumption about environmental variability, namely 

that noise affects environmental signals at much faster scale than volatility. 

The second meta-learning process concerned effort exertion and optimal 

allocation of cognitive and physical resources to achieve a goal (the cognitive control 
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perspective; simulations 2a-b). We proposed that investing cognitive and physical 

effort and controlling the associated costs can be seen as an RL problem (Verguts et 

al., 2015). Differently from earlier models, the RML generalizes this mechanism to 

any cognitive domain, showing how the dACC-midbrain system could work as a 

server providing optimal control signals to other brain areas to maximize success 

while minimizing costs. Moreover, the RML provides an explicit theory about the 

role of catecholamines in cognitive control and effort exertion.  

The third meta-learning process that we simulated concerned control over 

reward signal for emancipating learning from primary reward (higher-order 

conditioning; simulations 3b-c). We hypothesized that TD-like DA signals from the 

VTA are generated thanks to the contribution of afferents from the dACC. Moreover, 

we modeled DA dynamics at both within and between trials time levels. This 

approach allowed simulating the DA release shifting in conditioning. At the same 

time, we showed that stimulus-linked DA signals could play the role of primary 

reward proxies, to allow reinforcement learning in the absence of primary rewards. 

Moreover, we showed how dynamic control of DA release by the dACC is necessary 

for allowing higher-order conditioning, differentiating classical (not effective) vs. 

instrumental (effective) higher-order conditioning. 

Although for sake of simplicity we separated these three domains, in the RML 

these three meta-learning processes are integrated. Dynamic control of learning rate 

influences decision-making processes for boosting the release of both Ne and DA, 

which regulate both effort exertion and DA linking to conditioned stimuli. Finally, 

DA modulation subserves higher-order conditioning, which allows access to primary 

rewards in complex tasks, influencing learning rate regulation and boosting levels. 

The model also contained two main limitations. First, in our model, DA 

neurotransmitter plays a role only in learning. Experimental results suggest that DA is 

involved not only in learning but also in performance (e.g. attention and WM) 

modulation (Wang et al., 2004; Vijayraghavan et al., 2007; Shiner et al., 2012; Van 

Opstal et al., 2014). Our model was intended to be minimalist in this respect, 

demonstrating how the two neuromodulators can influence each other for learning 

(DA) and performance (Ne). However, we stress that the ACCBoost control mechanism 

could be easily, and without further assumptions, extended to DA modulation in the 

mesocortical dopaminergic pathway, for performance control in synergy with Ne. 
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The second limitation is the separation of the LC functions of learning rate 

modulation and cognitive control exertion. The cost of this separation between these 

two functions is outweighed by stable approximate optimal control of learning rate 

and catecholamines boosting policy. It must be stressed that the ACCBoost module 

receives the LC signal  related to learning rate in any case, making the boosting 

policy adaptive to environmental changes.  

 

Temporal difference learning and the VTA 

 Many hypotheses were formulated for understanding both DA shifting from 

reward onset to CS onset and its computational role in learning. Temporal difference 

(TD) learning algorithms represent an important framework for explaining DA 

dynamics in conditional learning. First, in computational neuroscience, TD learning 

has been typically implemented with environmental state  time step conjunctions for 

input representations (complete serial compound stimulus; Sutton & Barto 1987). 

This solution allows learning of outcome timing within a trial and it is used to 

simulate DA dynamics in classical conditioning (Montague et al., 1996; Schultz et al., 

1997; Pan et al., 2005). However, this approach suffers from a series of limitations. It 

lacks biological plausibility about time representation in the brain, as it assumes that 

time is represented like a series of separate environmental states (Mauk and 

Buonomano, 2004; Jin et al., 2009; Bueti and Macaluso, 2010); moreover, it is 

computationally inefficient, because a separate value must be learned for each time-

state conjunction, with a limitation for temporal generalization (Ludvig et al. 2012). 

 Second, TD applications in machine learning typically implement just 

environmental states as input (that is, without time representations, Sutton & Barto 

1998). Although this solution can be efficient for solving complex tasks, it cannot 

account for the dynamics of VTA neurons either. In particular, when a reward is 

expected n seconds after a CS, a DA dip is typically observed n seconds after CS in 

trials where the reward does not actually occur (Schultz et al., 1993). A model that 

does not represent time in one way or another, could not possibly account for this 

finding.  

In contrast, our modified temporal difference signal is consistent with these 

empirical findings. Because the RML (just like its predecessor the RVPM and other 

models of conditioning, e.g. O’Reilly et al., 2007) learns and maintains a separate 
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time signal (T in equations 1 and 4), it does account for these two time-related 

empirical phenomena. This timing signal works as a gating mechanism for generating 

PEs, and it can be expressed by only two parameters to be learned, i.e. the expected 

onset of environmental outcome and its duration. This timing signal may reside in 

basal ganglia (Brown et al., 1999), cerebellum, or hippocampus, but speculation about 

this issue is beyond the scope of the current paper (but see e.g. Bueti, Bahrami, 

Walsh, & Rees, 2010; Jin et al., 2009). 

The temporal-difference algorithm implemented in the RML is based on the 

hypothesis that TD-like dynamics in DA neurons is due to a combination of expected 

value and PE signals from the dACC. In our model, (the temporal difference of) 

expected value (v activity) is the key factor allowing higher-order conditioning. This 

signal links the training DA signal to a conditioned stimulus, which becomes a 

primary reward proxy for conditioning other stimuli or actions. Since the contribution 

of  units is locked to outcome onset, it plays no role in higher-order conditioning, 

although it can contribute (together with primary reward signals) to DA signals for 

first order conditioning. As we describe also in the Supplementary Methods, although 

the iconic VTA dynamics during conditional learning is represented by a shifting of 

DA activity from reward to cue onset, in this area many “intermediate” neuronal 

behaviours were found, from neurons with persistent reward-locked activity, to 

neurons showing only a proportionally increasing cue-locked activity (e.g. Cohen et 

al., 2012). We hypothesize that such variety of responses could reflect the 

“components” related to reward expectation [ v ]+ and PE [ ]+ that can be 

stochastically combined as input to VTA neurons. Moreover, Eshel et al. (2015) 

demonstrated that VTA neurons subtract expected value (via GABA neurons). This 

subtraction would be consistent with the subtracted component in our VTA 

signal. Based on that, we represented in Equation 7 a prototypical neuron receiving 

afferents from all the dACC cell types. This solution not only allows simulating VTA 

dynamics but also provides a mechanistic theory about higher-order conditioning 

(Simulation 3c). 

There are several experimental data in support of the dACC origin of VTA 

dynamics, ranging from a well documented strong recurrent connectivity between the 

dACC and the VTA (Gariano and Groves, 1988; Devinsky et al., 1995; Margulies et 

al., 2007), to the fact that dACC and VTA activity correlates during RL tasks 
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(Behrens et al., 2007; Jessup et al., 2010; Silvetti et al., 2013b). The corollary of our 

approach to VTA dynamics modeling is that DA shifting in conditional learning is a 

byproduct of stochastic dACC-VTA connectivity, and that PE signals are originally 

generated in the dACC.  

 

 

Relationship to other models and the central role of RL in dACC function  

The RML belongs to a set of computational models suggesting RL as main function 

of mammalian dACC. Both the RVPM (RML direct predecessor; Silvetti et al., 2011) 

and the PRO model (Alexander and Brown, 2011) shares with the RML the main idea 

of the dACC as a state-action-outcome predictor. In all these models, PE plays a core 

role for learning and decision-making. The RML goes beyond this earlier work, 

however, by implementing meta-learning and higher-order conditioning. The latter 

capability emerges from the hierarchical organization of Critic sub-modules, each of 

which learns CS-outcome associations by using TD-like error signals deriving from 

hierarchically lower (i.e. closer to primary reward prediction) sub-modules.  

 Hierarchical organization appears also in other recent dACC models, although 

it acts on different aspects of learning and decision-making. Alexander and Brown 

(2015) proposed a hierarchical RL model (based on their previous PRO model), 

where hierarchical design is implemented within the dACC and it unfolds in parallel 

with a hierarchical model of the DLPFC. In this model, PE afferents from 

hierarchically lower dACC layers work as an outcome proxy to train higher layers 

(like the RML); at the same time, error predictions formulated at higher layers of 

DLPFC modulate outcome predictions at lower ones. This architecture successfully 

learned tasks where information is structured at different abstraction levels (like the 1-

2AX task), exploring the RL basis of autonomous control of information access to 

WM.  

Another recent hierarchical RL model is by Holroyd and McClure (2015), 

who proposed a three layered hierarchical RL architecture, where the dorsal striatum 

played a role of action selector, the dACC of task selector and the prelimbic cortex (in 

rodents) of context (where and when to execute a task) selector. Moreover, each 

hierarchical layer implements a PE-based cognitive control signal that discounts 

option selection costs on the lower hierarchical level. 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/130195doi: bioRxiv preprint 

https://doi.org/10.1101/130195
http://creativecommons.org/licenses/by-nd/4.0/


35 
 

 Besides hierarchical organization, the RML represents cognitive control as 

dynamic selection of effort exertion, a mechanism that has been recently studied also 

by Verguts et al. (2015). In the latter model, effort exertion was dynamically 

optimized by the dACC as a process of RL-based decision-making, so that effort 

levels were selected to maximize long-term reward. This solution successfully 

simulated many experimental results from cognitive control and effort investment. A 

second model by Verguts (2017) described how dACC could implement cognitive 

control by functionally binding two or more brain areas by bursts of theta waves, 

whose amplitude would be proportional to the level of control. This theory describes 

how but not when (and neither how much) control should be exerted. The 

mechanisms proposed in the RML are an excellent complement to this theory, 

hypothesizing how and to what extent the dACC itself can decide to modulate theta 

bursts amplitude. 

 Finally, the work by khamassi et al. (2011) was one of the earliest 

hypothesizing the role of dACC in meta-learning. The authors proposed a neural 

model (embodied in a humanoid robotic platform) were the temperature of action 

selection process (i.e. the parameter controlling the trade-off between exploration and 

exploitation) was dynamically regulated as a function of PE signals. Like in the RML, 

dACC plays both a role in reward-based decision-making and in autonomous control 

of parameters involved in decision-making itself. Differently from the RML, this 

model provided a more classical view on PE origin, which were generated by the 

VTA and not by the dACC like in the RML. Moreover, the mechanism proposed for 

temperature control was reactive to overall environmental variance (PE), lacking the 

capability to disentangle noise from volatility.  

Summarizing, the RML shares with other recent computational models of 

dACC the conceptualization of PE as the core processing operation of this area, the 

dACC hierarchical architecture and the capability of dynamic effort exertion. 

Differently from previous models, the RML integrates all these perspectives, within 

approximate Bayesian framework, and providing at the same time an explicit theory 

on how meta-learning could be biologically implemented by the dialogue between the 

dACC and the midbrain catecholaminergic nuclei LC and VTA.  
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Future perspectives and experimental predictions 

The RML shows how meta-learning involving three interconnected neuro-cognitive 

domains can account for the flexibility of the mammalian brain. However, our model 

is not meant to cover all aspects of meta-learning. Many other parameters may be 

meta-learned too. One obvious candidate is the temperature parameter of the softmax 

decision process (Khamassi et al., 2015). We recently proposed that this parameter is 

similarly meta-learned trading off effort costs versus rewards (Verguts et al., 2015). 

Other parameters from the classical RL modeling include discounting rate or 

eligibility traces (Schweighofer and Doya, 2003); future work should investigate the 

computational and biological underpinnings of their optimization. 

Given the exceptionally extended dACC connectivity (Devinsky et al., 1995), 

other brain areas are likely relevant for the implementation of decision making in 

more complex settings. For example, we only considered model-free dynamics in RL 

and decision-making. However, both humans and nonhuman animals can rely also on 

complex environment models to improve learning and decision making (e.g. spatial 

maps for navigation or declarative rules about environment features). In this respect, 

future work should particularly focus on dACC-DLPFC-hippocampus interactions 

(Womelsdorf et al., 2014; Stoll et al., 2016), in order to investigate how environment 

models can modulate reward expectations and how the nervous system can represent 

and learn decision tree navigation (Pfeiffer and Foster, 2013). 

The flexibility of RML, and the explicit neurophysiological hypotheses on 

which it is based, allow several experimental predictions. For example, negative PE 

signals are coded by dACC neurons with much higher resolution, as DA neurons can 

encode negative PE only by suppressing their baseline activity (Rushworth and 

Behrens, 2008). This feature, together with the prominent role of the dACC in 

reward-based decision-making (Rushworth and Behrens, 2008) suggests that PE 

signals originate from the dACC and are transmitted to the VTA. At experimental 

level, this hypothesis could be easily tested as it predicts a disruption of DA dynamics 

in conditional learning after dACC lesion.  

A second neurophysiological prediction concerns the mechanisms subtending 

higher-order conditioning and the difference between classical and instrumental 

paradigms. In the RML, higher-order conditioning is possible only when the agent 

plays an active role in learning (i.e., instrumental conditioning). We predict that 

hijacking the dACC decision of boosting catecholamines (e.g., via optogenetic 
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intervention) would make possible higher-order conditioning in classical paradigms 

(ref. simulations 4-5). 

Furthermore, the model provides a promising platform for investigating the 

pathogenesis of several psychiatric disorders. In a previous computational work, we 

proposed how motivational and decision-making problems in attention-

deficit/hyperactivity disorder (ADHD) could originate from disrupted DA signals to 

the dACC (Silvetti et al., 2013c). In the current paper, we also simulated a deficit 

related to cognitive effort (Simulation 3) in case of DA deficit. Together, these 

findings suggest how DA deficit can cause both motivational and cognitive 

impairment in ADHD, with an explicit prediction on how DA deficit can impair also 

Ne dynamics (Hauser et al., 2016) in ADHD. This prediction could be tested by 

measuring performance and LC activation during decision-making or working 

memory tasks, while specifically modulating DA transmission in both patients (via 

pharmacological manipulation) and RML. 

Another result with potential translational implication comes from Simulation 

2 (and 2b in Supplementary Results), where the model suggested a possible 

mechanism linking boosting disruption and catecholamines dysregulation. This could 

be suggestive of pathogenesis of some depressive symptoms. More specifically, the 

RML predicts that DA antagonization intensifies effort in easy tasks (making them de 

facto subjectively harder) and decreases it in harder tasks (simulating apathy when 

effort is required by the environment; Figure 4b). Furthermore, it predicts an 

increased probability to refuse executing the task (thus simulating apathy). This effect 

could be experimentally tested by comparing effort-related dACC activation and 

behavioral patterns in tasks implying high and low effort with or without DA 

impairment. Another clinical application concerns a recent theory on autism spectrum 

disorder (ASD) pathogenesis. (Van de Cruys et al., 2014) proposed that a substantial 

number of ASD symptoms could be explained by dysfunctional control of learning 

rate and chronically elevate Ne release. This qualitative hypothesis could be easily 

implemented and explored quantitatively by altering learning rate meta-learning 

mechanisms in the RML leading to chronically high learning rate and LC activation. 

Finally, the neural units composing our model are designed as stochastic leaky 

integrators, making the RML able to function in continuous time and in the presence 

of noise. These features are crucial to make a model survive outside the simplified 

environment of trial-level simulations, and make possible to simulate behaviour in the 
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real world, like, for example, in robotics applications (under preparation). RML 

embodiment into robotic platforms could be useful for both neuroscience and 

robotics. Indeed, testing our model outside the simplified environment of computer 

simulations could reveal model weaknesses otherwise hidden. Moreover, closing the 

loop between decision-making, body and environment (Pezzulo et al., 2011) is 

important to have a complete theory on the biological and computational basis of 

decision-making in the mammalian brain. At the same time, the RML could suggest 

new perspectives on natural-like flexibility in machine learning, helping, for example, 

in optimizing plasticity as a function of environmental changes. 

Summing up, we formulated a model of how dACC-midbrain interactions may 

implement meta-learning in a broad variety of tasks. Besides understanding extant 

data and providing novel predictions, it holds the promise of taking cognitive control 

and, more in general, adaptive behaviour out of the experimental psychology lab and 

into the real world.  
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