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Abstract 

Single cell genomic techniques promise to yield key insights into the dynamic interplay between gene 

expression and epigenetic modification. However, the experimental difficulty of performing multiple 

measurements on the same cell currently limits efforts to combine multiple genomic data sets into a 

united picture of single cell variation. We show that it is possible to construct cell trajectories, reflecting 

the changes that occur in a sequential biological process, from single cell ATAC-seq, bisulfite sequencing, 

and ChIP-seq data. In addition, we present an approach called MATCHER that computationally 

circumvents the experimental difficulties inherent in performing multiple genomic measurements on a 

single cell by inferring correspondence between single cell transcriptomic and epigenetic measurements 

performed on different cells of the same type. MATCHER works by first learning a separate manifold for 

the trajectory of each kind of genomic data, then aligning the manifolds to infer a shared trajectory in 

which cells measured using different techniques are directly comparable. Using scM&T-seq data, we 

confirm that MATCHER accurately predicts true single cell correlations between DNA methylation and 

gene expression without using known cell correspondence information. We also used MATCHER to infer 

correlations among gene expression, chromatin accessibility, and histone modifications in single mouse 

embryonic stem cells. These results reveal the dynamic interplay between epigenetic changes and gene 

expression underlying the transition from pluripotency to differentiation priming. Our work is a first step 

toward a united picture of heterogeneous transcriptomic and epigenetic states in single cells. 
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Introduction 

Understanding the mechanisms that regulate gene expression across space and time is a fundamental 

challenge in biology. Epigenetic modifications such as DNA methylation, histone marks, and chromatin 

accessibility are known to regulate gene expression, but the precise details of this regulation are not 

well understood. Single cell genomic technologies reveal heterogeneity within populations of cells, 

including complex tissues, tumors, and cells undergoing temporal changes [1, 2]. Furthermore, because 

bulk data consist of measurements averaged across a population of cells, single cell genomic data 

enable, in principle, much more precise study of how epigenetic changes and gene expression vary 

together. 

Single cell RNA-seq has been applied with great success to the study of sequential cellular processes 

such as differentiation and reprogramming [3–7]. In such experiments, each sequenced cell is assumed 

to be at one point in the process, and sequencing enough cells can reveal the progression of gene 

expression changes that occur during the process [8, 9]. More recently, several experimental techniques 

for performing single cell epigenetic have been developed [10–17], and initial analyses have 

demonstrated that single cell epigenetic data can be used to elucidate the series of changes in a 

sequential process [16, 18, 19]. 

Identifying correlations among the epigenome and transcriptome dynamics would allow more complete 

understanding of the sequential changes that cells undergo during biological processes. Measuring 

multiple genomic quantities from a single cell, or multi-omic profiling [20, 21], would be the best way to 

identify such correlations. Unfortunately, performing single cell multi-omic profiling is very difficult 

experimentally, because an assay on chromatin or RNA destroys the respective molecules and only tiny 

amounts of DNA and RNA are present in a single cell. In certain cases, it is possible to assay RNA and 
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DNA [14, 22–24] or RNA and proteins [25, 26] from the same single cell, but experimentally performing 

multiple assays on either chromatin or RNA from the same cell is currently impossible. 

Our knowledge of epigenetic regulation suggests that any large changes in gene expression, such as 

those that occur during differentiation, are accompanied by epigenetic changes. Therefore, it should be 

possible, in principle, to infer sequential changes in cellular epigenetic state during a process. 

Furthermore, if cells undergoing a common process are sequenced using multiple genomic techniques, 

examining any of the genomic quantities should reveal the same underlying biological process. For 

example, the main difference among cells undergoing differentiation will be the extent of their 

differentiation progress, whether you look at the gene expression profiles or the chromatin accessibility 

profiles of the cells. 

We reasoned that this property of single cell data could be used to infer correspondence between 

different types of genomic data. To infer single cell correspondences, we use a technique called 

manifold alignment [27, 28]. Intuitively, manifold alignment constructs a low-dimensional 

representation (manifold) for each of the observed data types, then projects these representations into 

a common space (alignment) in which measurements of different types are directly comparable. To the 

best of our knowledge, manifold alignment has never been used in genomics. However, other 

application areas recognize the technique as a powerful tool for multimodal data fusion, such as 

retrieving images based on a text description, and multilingual search without direct translation [28]. 

We refer to our method as MATCHER (Manifold Alignment to CHaracterize Experimental Relationships). 

Using MATCHER, we identified correlations between transcriptomic and epigenetic changes in single 

mouse embryonic stem cells as they progressed along a trajectory from pluripotency to a differentiation 

primed state. 

Results 
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Overview of MATCHER 

Manifold alignment has previously been used to construct a shared, low-dimensional representation 

that recapitulates known correspondence information between two different kinds of data [27, 28]. The 

simplest example of manifold alignment is canonical correlation analysis (CCA), in which linear 

projections of each space are aligned. Gaussian process latent variable models have also been used to 

perform manifold alignment by learning completely [29, 30] or partially [29] shared latent 

representations of high-dimensional, multimodal data. Given a set of images and corresponding text 

descriptions, manifold alignment can be used to identify a low-dimensional representation that allows 

the prediction of a caption for a new image. This somewhat analogous to the problem of retrieving a 

corresponding epigenetic measurement for a given single cell transcriptome. However, in the context of 

single cell genomic data, correspondence information is not generally available to train a model, 

because it is impossible in most cases to measure more than one quantity on a single cell. Therefore, we 

developed a novel approach for manifold alignment without correspondence that leverages the unique 

aspects of this problem. 

We assume that: 

1.  Single cell genomic data from cells proceeding through a biological process lie along a one-

dimensional manifold. Another way of saying this is that the variation among cells can be 

explained mainly by a single latent variable (“pseudotime”) corresponding to position within the 

process. 

2.  Each of the genomic quantities under consideration changes in response to the same 

underlying process. 
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3. The biological process is monotonic, meaning that progress occurs only in one direction. 

Processes that alternate between forward and backward progress or repeat cyclically would 

violate this assumption. 

4. The cells in each experiment are sampled from the same population, process, and cell type. 

Given these assumptions, there are only three possible types of differences among the one-dimensional 

manifold representations of each data type: orientation, scale, and “time warping” (Fig. 1a). We can 

perform manifold alignment without correspondence information by accounting for these three types of 

differences. Differences in orientation can occur if the biological process corresponds to increasing 

manifold coordinates for one type of genomic data but decreasing coordinates for another data type. 

We can reconcile different orientations by simply reversing the order of one set of manifold coordinates. 

It is not possible to infer the correct orientation from data, so we use biological prior knowledge to 

choose the correct orientation for the manifold inferred from each type of data. To address scale 

differences, we can normalize the manifold coordinates to lie between 0 and 1. Time warping effects 

can occur if different genomic quantities change at different rates. For example, gene expression 

changes may occur slowly at the beginning of a process and gradually speed up, while changes in 

chromatin accessibility may show exactly the opposite trend during the process (Fig. 1a). We account for 

time warping effects by learning a monotonic warping function for each type of data (see below for 

details). 

We use a Gaussian process latent variable model (GPLVM) to infer pseudotime values separately for 

each type of data. A GPLVM is a nonlinear, probabilistic, generative dimensionality reduction technique 

that models high-dimensional observations as a function of one or more latent variables [31]. The key 

property of a GPLVM is that the generating function is a Gaussian process, which allows Bayesian 

inference of latent variables nonlinearly related to the high-dimensional observations [32, 33]. The 

nonlinear nature of this model makes it more flexible and robust to noise than a linear model such as 
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principal component analysis (PCA). In fact, PCA can be derived as a special case of a GPLVM in which 

the Gaussian process generating function uses a linear kernel [31]. Importantly, GPLVMs are also 

generative models, meaning that they can answer the counterfactual question of what an unobserved 

high-dimensional datapoint at a certain location on a manifold would look like. The generative nature of 

GPLVMs is particularly important to our approach: We use this property to infer correspondence among 

single cell genomic quantities measured in different ways. We note that GPLVMs have previously been 

used to infer latent variables underlying differences among single cell gene expression profiles [34–36]; 

our approach differs from these previous approaches in that we use GPLVMs as part of a manifold 

alignment approach and generate measurements from unobserved cells to integrate multiple types of 

single cell measurements. 

After inferring pseudotime separately for each type of data, we learn a monotonic warping function (Fig. 

1b-c) that maps pseudotime values to “master time” values, which are uniformly distributed between 0 

and 1 (Fig. 1d). This is equivalent to aligning the quantiles of the pseudotime distribution to match the 

quantiles of a uniform random variable. Master time values inferred from different data types are then 

directly comparable, corresponding to the same points in the underlying biological process. 

The model (Fig. 1e) that we use to infer master time values allows us to generate corresponding cell 

measurements even from datasets where the measurements were performed on different single cells. 

The different types of measurements may produce datasets with cells from different positions in the 

biological process, and even different numbers of cells (Fig. 1e). To generate a corresponding 

measurement for a cell, we take the master time value inferred for a given cell, such as one measured 

with RNA-seq. Then we map this master time value through the warping function to a pseudotime value 

for a different type of data, such as ATAC-seq. Using the GPLVM trained on ATAC-seq data, we can 

output a corresponding cell based on this pseudotime value. As Fig. 1f shows, the generative nature of 

the model allows MATCHER to infer what unobserved cells measured with one experimental technique 
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would look like if they corresponded exactly to the cells measured using a different technique. These 

corresponding cell measurements can then be used in a variety of ways, such as computing correlation 

between gene expression and chromatin accessibility. 

Although it is very difficult in general to measure multiple genomic quantities on the same single cell, 

one particular protocol (scM&T-seq) has been developed for measuring DNA methylation and gene 

expression in the same single cell [14]. It is possible that future protocols will enable other joint 

measurements. In such cases, we can incorporate the known correspondence information into our 

model by using a shared GPLVM [29] to infer a shared pseudotime latent variable for both data types. 

Data Description and Processing 

Several high-throughput single cell versions of epigenetic assays have been developed, including single 

cell bisulfite sequencing (DNA methylation) [14], ATAC-seq (chromatin accessibility) [13], and ChIP-seq 

(histone modification) [12]. Each of the initial studies that pioneered these methods applied them to 

mouse embryonic stem cells (mESCs) grown in serum, a classic model system of stem cell biology. Cells 

in this system are heterogeneous, differing depending on where they are located along a spectrum 

ranging from a pluripotent ground state to a differentiation primed state [37]. Note that mESCs grown in 

serum have different properties than mESCs cultured in 2i medium, which are much more homogeneous 

and differ primarily in their cell cycle stage [34, 37].  

We collected the publicly available data from these papers. In total, we have four kinds of single cell 

data from a total of 4,974 cells: 250 cells with gene expression data [37], 61 with DNA methylation [14], 

76 with chromatin accessibility [13], and 4,587 with H3K4me2 ChIP [12]. The DNA methylation data 

were collected using the scM&T-seq protocol, which measures gene expression and DNA methylation 

simultaneously in a single cell [14]. 
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The processing of single cell epigenetic data is more difficult than RNA-seq, because the epigenetic data 

are nearly binary at each genomic position (apart from allele-specific effects and copy number 

variations) and extremely sparse, with only a few thousand reads per cell in many cases. This makes it 

very difficult to extract any meaningful information at base pair resolution from a single cell. Instead, we 

followed the data processing steps laid out in each of the respective papers that developed these 

techniques and aggregated the reads across related genomic intervals. For example, we followed the 

authors' lead in summing the chromatin accessibility data values from ATAC-seq in a given cell across all 

of the binding sites for a given transcription factor. Doing this for each of 186 transcription factors 

results in a matrix of 186 chromatin accessibility signatures across the set of cells. The DNA methylation 

data and H3K4me2 ChIP-seq data were aggregated in a similar way. We obtained the processed DNA 

methylation and ChIP-seq data from the initial publications. The processed ATAC-seq data are not 

publicly available, so we processed the data by implementing ourselves the pipeline described in the 

paper. We found that the DNA methylation data showed the highest detection rate per cell; the ChIP-

seq data had the lowest detection rate. Consequently, we were able to aggregate the DNA methylation 

data over relatively small genomic intervals such as individual promoters or CpG islands. 

Single cell transcriptome and epigenome data show common modes of variation 

It seems likely that gene expression, DNA methylation, chromatin accessibility, and histone 

modifications will all change during the transition from pluripotency to a differentiation primed state. 

However, we wanted to investigate that this crucial assumption holds in this particular system. 

To test our hypothesis that each of these epigenetic data types are changing over the course of a 

common underlying process, we first attempted to construct a cell trajectory for each type of data. 

Using SLICER, a method we previously developed [9], we visualized each type of data as a two-

dimensional projection and inferred a one-dimensional ordering for the cells. The 2D projections show 
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that each type of data resembles a one-dimensional trajectory rather than a 2D blob of points (Fig. 2a-

d). Note that these 2D projections do not force the data into a one-dimensional shape; the plots could 

look like a diffuse point cloud, and the fact that they instead resemble trajectories shows that the 

differences among cells are predominantly one dimensional. Furthermore, the projections of each kind 

of data are strikingly similar visually (Fig. 2a-d). 

We further investigated these trajectories to determine whether they correspond to the same 

underlying process. The trajectory built from RNA data shows decreasing expression of pluripotency 

genes such as SOX2, consistent with previously published analyses [37] (Fig. 2e). DNA methylation of the 

gene body of Rex1, a gene that is shut off during the transition from pluripotency to differentiation 

priming [38], increases during the process (Fig. 2f). The single cell ATAC-seq data show that the 

chromatin accessibility of binding sites for the SOX2 transcription factor decreases over pseudotime (Fig. 

2g). Similarly, the levels of H3K4me2, a histone modification associated with active enhancers and 

promoters, decrease at SOX2 binding sites (Fig. 2h). The RNA-seq data show increasing expression of 

previously identified differentiation markers [37] such as Krt8 (Fig. 2i). DNA methylation of the promoter 

for Mael increases, consistent with previous findings [38] (Fig. 2j). Both the chromatin accessibility (Fig. 

2k) and H3K4me2 levels (Fig. 2l) at REST binding sites increase, consistent with the known role of REST in 

repressing key lineage-specifying genes [39, 40]. In summary, our analysis indicates that each type of 

single cell data varies along a trajectory, establishing a continuum that ranges from pluripotency to a 

differentiation primed state. 

We used SLICER to perform this initial exploratory analysis, but for the rest of this study, we use 

MATCHER, which is completely separate from SLICER and does not rely on the method in any way. We 

did confirm, however, that the master time values inferred by MATCHER are highly correlated with the 

pseudotime values inferred by SLICER (Supplementary Figure 1). Note also that SLICER cannot be used to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2017. ; https://doi.org/10.1101/130336doi: bioRxiv preprint 

https://doi.org/10.1101/130336


integrate multiple types of single cell measurements in the way the MATCHER does, because the model 

underlying SLICER is not generative.  

MATCHER accurately models synthetic and real data 

To evaluate the accuracy of MATCHER, we generated synthetic data for which ground truth master time 

is known. We generated data by sampling 100 master time values uniformly at random from the interval 

[0,1], then mapping these to pseudotime values through a warping function. Using the resulting 

pseudotime values, we generated 600 “genes” each following a slightly different “expression pattern” 

(function of pseudotime). Normally distributed noise was added to each gene expression value. We then 

used MATCHER to infer master time from these simulated gene expression values, and measured 

accuracy as the correlation between true and inferred master time values. Note that we use Pearson 

rather than Spearman correlation because we expect true and inferred master time to be linearly 

related (equal, in fact), and a nonlinear relationship would indicate that the inference process is 

inaccurate. The results of our simulations indicate that MATCHER accurately infers master time across a 

range of different warping functions and noise levels (Supplementary Figs. 2-3). The method is very 

robust to noise in the simulated genes, yielding a correlation of 0.92 at a noise level of 𝜎 = 9, which is 

greater than 50% of the range of the simulated features. 

We also tested MATCHER on real data. We used scM&T-seq data, in which DNA methylation and gene 

expression are measured in the same single cells [14], so that the true correspondence between single 

cell measurements is known. Note that we used the known cell correspondence information for 

validation only, not during the inference process. We first checked the relationship between master 

time inferred by MATCHER from RNA-seq and DNA methylation data by calculating the correlation 

between inferred master time values for corresponding DNA methylation and RNA-seq cells. This 

showed that the master time values, although not identical, are highly concordant (Pearson 𝜌 = 0.63). 
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Predicting covariance of multiple genomic quantities across single cells is one of the key applications of 

MATCHER. Therefore, as an additional test, we investigated whether MATCHER can accurately infer 

correlations between DNA methylation events and gene expression. Here, we used Spearman 

correlation because we are interested in both linear and nonlinear relationships. We selected a set of 

genes and proximal methylated loci that showed statistically significant correlation in the original 

analysis of the scM&T-seq data [14]. Angermueller et al. grouped these pairs according to the type of 

region where the methylation site occurred. We selected the three types of regions with the largest 

number of significant pairs (low methylation regions, H3K27me3 peaks, and P300 binding sites). Then, 

for each significant pair, we compared the true correlation (calculated using true cell correspondences) 

and correlation inferred by MATCHER (calculated using inferred cell correspondences). We also used 

MATCHER to compute correlations for the same gene-locus pairs using a single cell RNA-seq dataset 

published by a different lab [37]. In this dataset, the cells measured using RNA-seq are the same cell 

type, but not the same physical cells as those assayed for DNA methylation by Angermueller et al. In 

both cases, the inferred correlations closely match the true correlations (Fig. 3). The correlations 

computed using the Kolodziejczyk data show slightly less concordance with the ground truth, likely due 

to the inevitable biological and technical variation that occur when different labs repeat an experiment. 

Even so, the vast majority of inferred correlations have the correct sign, and the relative magnitude of 

correlations tends to be preserved. 

Correlations among single cell gene expression, chromatin accessibility, and histone modifications 

We next used MATCHER to investigate the relationships among gene expression, chromatin accessibility, 

and histone modifications during the transition from pluripotency to a differentiation primed state. To 

our knowledge, this is the first time that investigation of the relationship among these three genomic 

quantities has been performed in single cells. 
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Because H3K4me2 is a histone modification associated with promoter and enhancer activation, we 

expect levels of the modification to correlate positively with chromatin accessibility. We confirmed this 

is, indeed, the case by inferring correlations between chromatin accessibility and H3K4me2 at the 

respective regions bound by 186 transcription factors and DNA binding proteins (Fig. 4a). The majority of 

these correlations are strongly positive, indicating that activating histone modifications and chromatin 

accessibilty tend to change in unison during preparation for differentiation. 

While investigating the correlation between H3K4me2 and chromatin accessibility, we found that the 

genomic binding regions clustered into two main groups: (1) pluripotency transcription factors and the 

NuRD complex and (2) chromatin remodeling factors that repress or activate lineage specific genes (Fig. 

4b). Rotem et al. noted a similar relationship in the H3K4me2 data [12]. The accessibility of binding sites 

for OCT4 (also known as POU5F1), NANOG, and SOX2, well-established pluripotency transcription 

factors, is strongly anticorrelated with the accessibility of binding sites for EZH2, RING1B, and SUZ12, 

which are Polycomb Group proteins (PcG) [41]. The targets of the transcription factor YY1, which 

recruits PcG proteins [42], show a similar trend to the PcG proteins. Given that PcG proteins play a key 

role in repressing neuronal lineage genes in pluripotent cells [43], this anticorrelation suggests that 

chromatin is being remodeled to prime lineage-specific genes while shutting down regions associated 

with pluripotency. REST and COREST show a similar pattern to the PcG proteins; these proteins are 

known to co-associate with the polycomb repressive complex (PRC2) and also to repress key lineage 

specific genes in pluripotent cells [39, 40]. Interestingly, the targets of USF1, which is known to recruit 

Trithorax Group (TrxG) proteins [44], also show a pattern of increasing chromatin accessibility. The TrxG 

proteins are chromatin activators that regulate lineage differentiation genes [43–45], suggesting that 

the activation of certain differentiation genes is occurring while their repression by PRC2 is being lifted. 

Finally, targets of LSD1, MI2, HDAC1, and HDAC2, components of the NuRD complex, show positive 

correlation with targets of pluripotency factors. The NuRD complex contains chromatin remodeling 
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proteins that remove histone methylation and histone acetylation marks and function to 

“decommission” pluripotency enhancers during early differentiation [46]. In summary, our analysis of 

correlation between chromatin accessibility and H3K4me2 marks indicate that the overall trend in both 

types of data is toward chromatin changes that shut off pluripotency and begin to lift lineage repression 

in preparation for differentiation. 

We also computed correlations between gene expression and chromatin accessibility, and between 

gene expression and H3K4me2. To identify populations of RNA molecules with a clear relationship to the 

aggregated genomic regions used to compute chromatin accessibility measurements, we combined 

gene expression levels from genes whose promoters overlapped the binding sites for several proteins. 

We looked specifically at binding regions for EZH2, RING1B, TCF3, OCT4, SOX2, and NANOG. After 

locating genes whose promoters overlapped each of these binding regions, we filtered the sets of genes 

to remove genes that occurred in multiple binding regions. We then normalized the expression of each 

gene (zero mean, unit variance) and calculated the aggregate expression for each set of genes. The 

aggregate expression of these sets of genes correlates well with the chromatin accessibility and 

H3K4me2 of the gene promoters (Fig. 4c-d), with the exception of OCT4. The expression of OCT4 targets 

are only weakly correlated with the aggregate chromatin accessibility and H3K4me2. Supplementary 

Figures 4 and 5 show the corresponding values inferred by MATCHER for gene expression, chromatin 

accessibility, and H3K4me2 values in the same single cells. 

Finally, we asked how the RNA expression levels of key pluripotency factors and chromatin remodeling 

proteins relate to the chromatin accessibility of their binding sites (Fig. 4e). Using the same transcription 

factors and DNA binding proteins as in Fig. 4a, we calculated the correlation between the expression 

level of each gene and the overall chromatin accessibility of the sites where its protein product binds to 

the genome. The pluripotency transcription factors ESRRB, NANOG, POU5F1, and SOX2 each show 

positive correlation between expression and chromatin accessibility. This indicates that the expression 
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of these genes is being shut off at the RNA level at the same time as the binding of the factors is shut off 

at the chromatin level. Interestingly, Tcf7l2 expression shows strong negative correlation with the 

chromatin accessibility of its targets. We speculate that this negative correlation may be due to the fact 

that TCF7L2 functions primarily as a transcriptional repressor [47], and thus increased expression will 

lead to more repression of its targets. In contrast to the pluripotency factors, the expression of genes 

involved in chromatin remodeling show weak negative correlation with the accessibility of their binding 

sites. The fact that these correlations are nearly zero indicates that changes in the chromatin 

accessibility of the targets of these chromatin remodeling complexes occurs primarily without 

accompanying changes in the gene expression levels of the remodelers. The one exception is Rest, 

whose expression shows strong negative correlation with the accessibility of its binding sites. 

Warping functions inferred by MATCHER suggest rapid transition between two metastable states 

Upon inspecting the warping functions inferred by MATCHER for the gene expression, chromatin 

accessibility, and H3K4me2 data, we noticed that the curves all had similar shapes (Fig. 5a-c). The 

Angermueller single cell RNA-seq dataset [14] also shows a similar pattern (see Supplementary Figure 6 

for plots of all warping functions). The warping functions are nearly flat at the beginning and end of 

pseudotime, and steeply sloped in between. One possible explanation for this pattern is a process in 

which cells transition rapidly from one metastable state to another. We hypothesize that the shapes of 

the warping functions may reflect the biology of embryonic stem cells grown in serum, in which some 

pluripotent cells begin to “lose control” and transition to a differentiation primed state [37, 38]. In 

support of this hypothesis, a recent paper utilizing single cell FISH characterized such a transition 

between metastable states in mouse embryonic stem cells [38]. Interestingly, the warping function for 

the DNA methylation data does not show this switch-like behavior (Fig. 5d). We suspect that this may be 

due to partial decoupling of DNA methylation and gene expression changes (see next section). 
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Incorporating known cell correspondence information 

The study that pioneered scM&T-seq found variability in the strength of coupling between gene 

expression and DNA methylation across the set of cells [14]. We investigated this phenomenon further 

by plotting DNA methylation master time as a function of RNA master time (Fig. 6a). This plot revealed 

an intriguing trend: DNA methylation and RNA master time track together quite well until a specific 

point in RNA master time. After that point, the degree of coupling suddenly decreases. We speculate 

that this trend may occur because specific DNA methylation changes are required to trigger a key step in 

the process of gene expression changes that occur moving from a pluripotent to a primed state. After 

this point in the process, the sequential gene expression changes proceed somewhat independently 

from the DNA methylation changes. In support of this hypothesis, the cells in which DNA methylation 

and gene expression match show high levels of Rex1 expression, while the remaining cells show much 

lower expression (Fig. 6a). The Rex1 gene was previously shown to be a marker for two distinct 

metastable expression states in mouse embryonic stem cells [38]. The transition between these two 

states is dependent on the activity of DNA methyltransferase (DNMT) enzymes, and knocking out DNMT 

activity greatly increases the proportion of cells in the Rex1-high state [38]. 

To test the significance of the partial decoupling between DNA methylation and gene expression, we 

computed separate Pearson correlation values for cells with RNA-seq master time less than 0.5 and 

greater than 0.5. Then we performed Fisher’s 𝑟-to-𝑧 transformation on the correlations and computed a 

𝑝-value for the null hypothesis that the two correlations are equal (one-tailed test). The 𝑝-value was 

0.0039, indicating a highly significant difference.  

We next used MATCHER to infer a shared master time value using both DNA methylation and gene 

expression data for each cell (Fig. 6b-c).  The resulting shared master time values reconcile the sequence 

of changes occurring in both genomic quantities. The Pearson correlation between DNA methylation 
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master time and RNA master time is 0.63. In contrast, the correlation between DNA methylation master 

time and shared master time is 0.93, and the correlation between RNA master time and shared master 

time is 0.84. Thus, we have used MATCHER to infer master time that reflects the known correspondence 

information available from scM&T-seq data. This demonstrates the capability of MATCHER to model 

single cell data either with or without the use of known correspondence information. 

Discussion 

In this study, we used MATCHER to characterize the corresponding transcriptomic and epigenetic 

changes in embryonic stem cells undergoing the transition from pluripotency to a differentiation primed 

state. Interesting future directions of research include extending the model to align manifolds with 

dimensionality higher than one, as well as adapting the method for cell populations whose cells fall into 

discrete clusters rather than along one continuous spectrum. In addition, our model does not explicitly 

account for branching trajectories, which can arise in biological processes with multiple outcomes [3, 9]. 

A simple way to handle such situations would be to assign cells to branches before running MATCHER, 

and then perform manifold alignment on each branch separately.  

Although the Hi-C protocol for measuring chromatin conformation has been adapted to single cells [10], 

we did not include single cell Hi-C data in this study for two reasons. First, to the best of our knowledge, 

there are no published single cell Hi-C datasets from mouse embryonic stem cells. In addition, Hi-C data 

are a set of pairwise interactions (a matrix for each cell, rather than a vector), and it is not clear how to 

construct a trajectory from this type of data. Further work is necessary to investigate whether chromatin 

conformation shows sequential changes during biological processes, as well as the best ways infer such 

sequential changes and integrate them with other types of data. 

One promising application of the method is aggregating single cell measurements into biologically 

meaningful groups. Cells can be grouped by their inferred master time values, and measurements within 
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these groups can be aggregated. In experiments with thousands of cells, this will likely enable 

correlation between individual loci and related genes, which is currently impossible because of the 

extreme sparsity of the epigenetic data. Computational aggregation of measurements from many similar 

single cells may be the most immediate way to address the sparsity of single cell epigenetic 

measurements, although experimental protocols will likely improve over the long term. 

MATCHER gives insight into the sequential changes of genomic information, allowing the use of both 

single cell gene expression and epigenetic data in the construction of cell trajectories. In addition, it 

reveals the connections among these changes, enabling investigation of gene regulatory mechanisms at 

single cell resolution. MATCHER promises to be useful for studying a variety of biological processes, such 

as differentiation, reprogramming, immune cell activation, and tumorigenesis. 

Methods 

RNA-seq Data Processing 

We obtained the processed RNA-seq data for 250 cells from Kolodziejczyk et al. [37] In the original 

paper, gene quantification was performed using read counts that were normalized for sequencing depth 

and batch effects [37]. We log transformed these normalized counts and used our previously published 

neighborhood variance method to select an informative subset of genes to feed into MATCHER.  

To identify populations of RNA molecules with a clear relationship to the aggregated genomic regions 

used to compute chromatin accessibility and histone modification measurements (see below), we 

computed analogous aggregated gene expression measurements. We did this by identifying genes 

whose promoters overlap binding sites for each of 6 proteins (EZH2, RING1B, TCF3, OCT4, SOX2, and 

NANOG). We then filtered the gene lists so that a given gene appears on only one of the six lists. Then 

we scaled and centered each gene to have zero mean and unit variance and computed the sum of the 

genes on each list per cell, as well as the total sum of expressed genes in each cell. The final values used 
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to compute correlations shown in Fig. 4c-d are the centered and scaled differences of the sum for each 

list of genes and the total sum of gene expression per cell.  

ATAC-seq Data Processing 

The processed single cell ATAC-seq data are not publicly available, so we implemented the data 

processing pipeline described by Buenrostro et al. [13] For each cell, we aligned reads to mm10 using 

bowtie2, removed PCR duplicates, and counted the number of reads aligning to each of the 50000 peaks 

identified in the initial paper [13]. We converted these integer read counts, which are predominantly 1 

or 0 at a given peak, into binary values (1 for accessible chromatin, 0 for inaccessible) to avoid potential 

confounding factors that could cause high counts such as copy number variations and repeat elements. 

Then we used FIMO [48] to identify, for each peak, which of the 186 transcription factor motifs in the 

JASPAR database [49] occurs in the peak region. Using this peak-to-TF mapping, we aggregated the peak 

counts for each cell by summing the peaks for each transcription factor motif. This gave a matrix with 

186 features across 96 cells. We subsequently removed all cells with fewer than 1000 peaks detected 

per cell, leaving 77 cells. Dimensionality reduction using PCA and a GPLVM on the 77 cells indicated that 

one cell was a significant outlier, so we removed this additional cell. The remaining 76 cells were used 

for all subsequent analyses. We then normalized the 186 ×  76 count matrix to account for differences 

among cells in numbers of peaks detected. We normalized the value of 𝑓𝑖𝑗 (feature 𝑖 in cell 𝑗) by 

multiplying by the following scale factor: 𝑠𝑖𝑗 =
∑ 𝑡𝑗/𝑛𝑗

1000𝑡𝑗
, where 𝑡𝑗 is the total number of accessible peaks in 

cell 𝑗. (The 1000 in the denominator of the scale factor scales the measurements so that the 𝑓𝑖𝑗 are close 

to 1.) 

ChIP-seq Data Processing 

We obtained the processed data from Rotem et al. [12], which consists of H3K4me2 ChIP-seq reads from 

4587 cells, aggregated using 91 chromatin signatures. We found that these data required further 
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normalization for the total sum of signature values per cell. We normalized the value of 𝑓𝑖𝑗 (signature 𝑖 

in cell 𝑗) by multiplying by the following scale factor: 𝑠𝑖𝑗 =  10 ×  
∑ 𝑡𝑗/𝑛𝑗

𝑡𝑗
, where 𝑡𝑗 is the total sum of 

signatures in cell 𝑗. (The 10 in the numerator of the scale factor scales the measurements so that the 𝑓𝑖𝑗 

are close to 1.) 

scM&T-seq Data Processing 

RNA-seq and DNA methylation data from Angermueller et al. [14] are publicly available in fully 

processed form, so we did not perform any further processing. In the original paper, the gene 

expression levels were computed by counting unique molecular identifiers (UMIs) and subsequently 

normalized. The DNA methylation values from Angermueller were also normalized in the original paper 

[14]. 

We initially tried using the methylation values from all positions in the genome, but PCA and GPLVM 

results on the full dataset showed no systematic variation related to pluripotency and differentiation. 

This is likely because only a subset of methylation sites show systematic biological variation in excess of 

technical variation during the transition from pluripotency to differentiation priming. We therefore 

selected methylation sites based on a previously validated marker, 𝑀𝑎𝑒𝑙, whose methylation is known 

to change during the transition to a differentiation primed state [38]. We selected all methylation sites 

whose correlation with the promoter methylation of Mael was at least 0.2. This gave a set of 

approximately 13,000 methylation sites. There were essentially no methylation sites anticorrelated with 

Mael, consistent with the fact that pluripotent cells are globally demethylated, so that methylation 

changes in preparation for differentiation occur primarily in a single direction. We also found that using 

only data from low methylation regions (LMRs), which are known to change methylation state 

dramatically during differentiation, gives similar results [50]. 

Inferring Pseudotime and Learning Warping Functions 
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We infer pseudotime using a Gaussian process latent variable model (GPLVM) with a single latent 

variable 𝒕. For a more thorough introduction to Gaussian processes and GPLVMs, see Rasmussen [51] or 

Damianou [33]. Under our model, the observed high-dimensional data (RNA-seq, ATAC-seq, ChIP-seq, 

DNA methylation, etc.) are generated from 𝒕 by a function 𝑓 with the addition of Gaussian noise: 

𝒀 =  𝑓(𝒕)  + 𝝐 

where 𝜖 ∼  𝒩 (𝟎, 𝜎2𝑰). 

The key property of a GPLVM is that the prior distribution of 𝑓 is a Gaussian process: 

𝑓(𝒕) ∼  𝒢𝒫(𝟎, 𝑘(𝒕, 𝒕′)) 

A linear kernel yields a model equivalent to probabilistic PCA, but if we choose the kernel function 𝑘 to 

be nonlinear, the GPLVM can infer nonlinear relationships between 𝑡 and 𝑌. We use the popular radial 

basis function (RBF) kernel, also called the squared exponential kernel.  

𝑘(𝑡𝑖, 𝑡𝑗) = 𝜎𝑟𝑏𝑓
2 exp (−

1

2𝑙2 (𝑡𝑖 − 𝑡𝑗)
2

) 

Because a Gaussian process is a collection of random variables for which the covariance of any finite set 

is a multivariate Gaussian, we have: 

𝑃(𝑌|𝒕, 𝜎2, 𝜎𝑟𝑏𝑓
2 , 𝑙)  =  𝒩(𝑌|𝟎, 𝐾𝑓𝑓 + 𝜎2𝑰) 

where 𝐾𝑓𝑓 is the covariance matrix defined by the kernel function 𝑘. A simple approach to inferring the 

latent variable 𝒕 would be to find the values that maximize the posterior distribution: 

𝒕𝑴𝑨𝑷  =  arg max
𝒕

𝑃(𝒀|𝒕)𝑃(𝒕)  

Instead of MAP estimation, we use the method of Damianou [33], which estimates the posterior using a 

variational approximation. A key advantage of this approach is that it provides a distributional estimate 
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of the latent variables rather than just a point estimate. The approximation relies on the introduction of 

auxiliary variables called inducing inputs to derive an analytical lower bound on the marginal likelihood. 

Inference is then performed by maximizing the lower bound with respect to the inducing inputs and the 

hyperparameters 𝜎2, 𝜎𝑟𝑏𝑓
2 , and 𝑙. We used 10 inducing inputs for all of our analyses, although we 

confirmed that the results are robust to the number of inducing inputs used.  

To learn warping functions from pseudotime to master time, we compute the sample quantiles of 

pseudotime for a specified number of quantiles, then align these sample quantiles with the theoretical 

quantiles of a uniform (0,1) random variable. We used 50 quantiles for all analyses in the manuscript, 

but found that the warping functions are robust to the number of quantiles used. Gaussian process 

regression is an attractive choice for learning a warping function due to the capability to capture 

nonlinear effects and uncertainty, but Gaussian processes are not theoretically guaranteed to be 

monotonic. In practice, we found that the mean of the Gaussian process fit is monotonic in most cases, 

because the training data are monotonically increasing quantiles. For cases when the mean of the 

Gaussian process is not monotonic (as is the case for the single cell ChIP-seq data), we use linear 

interpolation. The monotonicity of the quantiles guarantees that the linear interpolation will be 

monotonic. 
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Figure Legends 

Figure 1: MATCHER Method Overview (a) We infer manifold representations of each dataset using a 

Gaussian process latent variable model (GPLVM). However, the resulting “pseudotime” values from 

different genomic data types are not directly comparable due to differences in orientation, scale, and 

“time warping”. Both the color of the manifold (black to yellow) and cell morphology (blob to oblong) 

indicate position within this hypothetical process. (b)-(c) To account for these effects, pseudotime for 

each kind of data is modeled as a nonlinear function (warping function) of master time using a Gaussian 

process. (d) MATCHER infers “master time” in which the steps of a biological process correspond to 

values uniformly distributed between 0 and 1 and are comparable among different data types. However, 
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different datasets are measured from different physical cells, and thus may sample different points in 

the biological process and even different numbers of cells. (e) Diagram showing how MATCHER’s 

generative model can infer corresponding cell measurements. The generated cell is drawn with 

transparency to indicate that this is an inferred rather than observed quantity. (f) Applying MATCHER to 

multiple types of data provides exactly corresponding measurements from observed cells and 

unobserved cells (indicated with transparency) generated by MATCHER.  

Figure 2: Single cell transcriptome and epigenome data show common modes of variation. (a)-(d): 

Single cell trajectories constructed by SLICER from RNA-seq, bisulfite sequencing, ATAC-seq, and 

H3K4me2 ChIP-seq of mouse embryonic stem cells grown in serum. (e)-(l) Levels of important gene 

expression, DNA methylation, chromatin accessibility, and H3K4me2 markers across the trajectories. 

Note: We used SLICER for the analysis in this figure because it is a previously published method for 

constructing cell trajectories that allowed us to investigate the hypothesis that single cell transcriptome 

and epigenome measurements share common sources of variation. SLICER and MATCHER are 

completely separate methods; MATCHER does not rely on SLICER in any way; and SLICER could not be 

used to integrate multiple types of measurements as MATCHER does, because SLICER lacks the ability to 

generate unobserved cell measurements. 

Figure 3: MATCHER accurately infers known correlations between DNA methylation and gene 

expression. (a)-(c) Heatmaps comparing true correlations between gene expression and DNA 

methylation of related regions (H3K27me3 peaks, LMRs, and P300 binding sites). The first column of 

each heatmap shows the true correlation based on known correspondence information, the second 

column shows the correlation inferred by MATCHER in the same dataset, and the third column is 

correlation inferred by MATCHER using a completely different single cell RNA-seq dataset from mESCs 

grown in serum. (d)-(e) Scatterplot representation of the results shown in (a)-(c). Panel (d) contains 

correlations computed using the Angermueller data; panel (e) is correlations computed from the 
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Kolodziejczyk data. Each point represents the true and inferred correlation for a single gene-site pair; 

ideal results would lie along the 𝑦 = 𝑥 line. Note that the sign of the inferred correlation is correct for 

the vast majority of pairs. 

Figure 4: Correlations among single cell gene expression, chromatin accessibility, and histone 

modifications. (a) Violin plot of correlations among chromatin accessibility and H3K4me2 of 

transcription factor binding sites for 186 transcription factors. Note that most correlations are strongly 

positive. (b) Correlation between chromatin accessibility and H3K4me2 data reveals that targets of 

pluripotency factors/NuRD complex and targets of Polycomb Group/Trithorax Group proteins are 

anticorrelated in single cells. (c) Correlation between gene expression signatures and chromatin 

accessibility signatures. (d) Correlation between gene expression signatures and H3K4me2 signatures. 

(e) Correlation between gene expression of DNA binding proteins and chromatin accessibility of their 

targets. 

Figure 5: Warping functions inferred by MATCHER suggest rapid transition between two metastable 

states. (a)-(d) Gaussian process warping functions for (a) RNA-seq, (b) ATAC-seq, (c) ChIP-seq, and (d) 

scM&T-seq. Note: Because the mean of Gaussian process warping function for ChIP-seq is not 

monotonic over the observed data range, we used linear interpolation for the ChIP-seq warping function 

in all of the analyses reported in the paper. 

Figure 6: Incorporating known cell correspondence information. (a) Scatterplot of master time inferred 

using gene expression (x-axis) and DNA methylation (y-axis) from the same single cells. Points are 

colored by the expression of Rex1. (b) Scatterplot of shared master time inferred from both gene 

expression and DNA methylation (x-axis) and master time inferred using DNA methylation only (y-axis). 

(c) Scatterplot of shared master time inferred from both gene expression and DNA methylation (x-axis) 

and master time inferred using gene expression only (y-axis). 
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Supplementary Figure 1: MATCHER master time is strongly correlated with SLICER pseudotime. 

Scatterplot of SLICER pseudotime versus MATCHER master time for (a) RNA-seq, (b) bisulfite sequencing, 

(c) ATAC-seq, and (d) H3K4me2 ChIP-seq. The points are colored by SLICER pseudotime. 

Supplementary Figure 2: Results from synthetic data generated from different underlying warping 

functions. Inferred warping functions for (a) linear, (b) square root, (c) quadratic, and (d) logit true 

underlying warping functions. (e)-(h) Scatterplot of true vs. inferred master time for the corresponding 

warp functions of panels (a)-(d). 

Supplementary Figure 3: Synthetic data results for increasing noise levels. 

Supplementary Figure 4: Corresponding values inferred by MATCHER for gene expression and 

chromatin accessibility signatures. Each point represents inferred correspondence from a single cell. 

The x-axis shows the value of the gene expression signature in that cell, and the y-axis shows the value 

of the chromatin accessibility signature. The points are colored by inferred master time. Note that these 

are the data used to generate the values on the diagonal of the heatmap in Fig. 4c. 

Supplementary Figure 5: Corresponding values inferred by MATCHER for gene expression and 

H3K4me2 signatures. Each point represents inferred correspondence from a single cell. The x-axis 

shows the value of the gene expression signature in that cell, and the y-axis shows the value of the 

H3K4me2 signature. The points are colored by inferred master time. Note that these are the data used 

to generate the values on the diagonal of the heatmap in Fig. 4d. 

Supplementary Figure 6: Inferred warping functions for all experimental datasets analyzed in the 

paper. (a) Kolodziejczyk single cell RNA-seq data, (b) Angermueller scM&T-seq methylation data, (c) 

ATAC-seq, (d) H3K4me2 ChIP data, (e) Angermueller scM&T-seq gene expression data, and (f) warping 

function resulting from linear interpolation of H3K4me2 ChIP-seq data. 
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