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Abstract 

Protein superfamilies can be divided into subfamilies of proteins with different functional 

characteristics. Their sequences can be classified hierarchically, which is part of sequence 

function assignation. Typically, there are no clear subfamily hallmarks that would allow 

pattern-based function assignation by which this task is mostly achieved based on the 30 

similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and 

specific. 

 HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold 

to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of 

training sequences such that the cluster-specific HMMER profiles show 100% precision 

and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and 

threshold are then used as classifiers to screen a target dataset. Iterative inclusion of 

novel sequences to groups and the corresponding HMMER profiles results in high 

sensitivity while specificity is maintained by imposing 100% P&R. In three presented case 

studies of protein superfamilies, classification of large datasets with 100% P&R was 40 

achieved with over 95% coverage. Limits and caveats are presented and explained. 

 HMMERCTTER is a promising protein superfamily sequence classifier provided 

high quality training datasets are used. It provides a decision support system that aids in 

the difficult task of sequence function assignation in the twilight zone of sequence 

similarity. A package containing source code and full dataset will be deposited at Github 

and is available for reviewers at: 

https://www.dropbox.com/s/aacao6ggcak30bg/Repo.tar.gz?dl=0 
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Author summary 50 

The enormous amount of genome sequences made available in the last decade provide 

new challenges for scientists. An important step in genome sequence processing is 

function assignation of the encoded protein sequences, typically based on the similarity 

principle: The more similar sequences are, the more likely they encode the same function. 

However, evolution generated many protein superfamilies that consist of various 

subfamilies with different functional characteristics, such as substrate specificity, optimal 

activity conditions or the catalyzed reaction. The classification of superfamily sequences to 

their respective subfamilies can be performed based on similarity but since the different 

subfamilies also remain similar, it requires a reliable similarity score cut-off.  

 We present a tool that clusters training sequences and describes them in profiles 60 

that identify cluster members with higher similarity scores than non-cluster members, i.e. 

with 100% precision and recall. This defines a score cut-off threshold. Profiles and 

thresholds are then used to classify other sequences. Classified sequences are included in 

the profiles in order to improve sensitivity while maintaining specificity by imposing 100% 

precision and recall. Results on three case studies show that the tool can correctly classify 

complex superfamilies with over 95% coverage. 

  HMMERCTTER is meant as a decision support system for the expert biologist 

rather than the computational biologist. 

 

 70 
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Introduction 

Protein sequence function annotation is one of the major tasks of computational genomics. 

The most widely applied tools are based on the similarity principle: the higher the similarity 

between sequences, the higher the probability these have the same function. For instance 

BLAST [1]� is a search machine, routinely used by biologists in order to identify the 

function of their query sequences. Although the functional protein sequence space 

conforms only a minor part of the polypeptide sequence space, similarity based sequence 

annotation is hampered by many problems.  

 The requirement of a set of reliably annotated sequences is fundamental and 80 

despite the steady development of UniProt [2]�, incorrectly annotated sequences form a 

major obstacle in sequence function annotation. A second problem is that of the high 

sequence variation that apparently is allowed for large numbers of protein families. The 

resulting sensitivity problem becomes more apparent when protein superfamilies are 

considered. The evolution of proteins has for a large part been instigated by gene 

duplications and the resulting process of functional redundancy and diversification [3]�. 

Paralogs can obtain novel functions due to relaxed functional constraints, often while 

maintaining its original function. All together this results in intricate superfamilies where 

function annotation by similarity scoring is hampered by problems of sensitivity and 

specificity combined with imperfect annotation of reference sequences. This problem 90 

increases when taking into account the fact that, in the post genome era, biologists want to 

obtain annotations at the subfamily level, rather than the superfamily level. In other words, 

queries are performed to identify orthologs rather than homologs. Pattern based search 

strategies, such as provided by, for instance, Prosite [4]� can be applied to increase 

specificity, as for instance when combined with BLAST [5]�. 

 HMMER [6]� is another tool for sequence function annotation. Rather than 
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comparing a query with a reference sequence database, it uses a database of 

mathematical profiles that describe multiple sequence alignments of protein families. 

Besides that the higher information usage generates a higher sensitivity, profile databases 

are more easily curated and improved curation results in significantly improved annotation. 100 

Several web servers that use HMMER to search their profile databases exist, all based on 

different objectives and principles. Pfam [7]� is a collection of domain profiles whereas 

Superfamily [8]� describes proteins based on the Structural Classification of Proteins [9]�. 

Although both platforms show moderate levels of hierarchical organization, the objective of 

these major function annotation tools is to annotate at a superfamily rather than a 

subfamily level.  

 A more recent trend is that of phylogenomics [10]� and hierarchical sub-clustering 

of superfamilies. Phylogenomics is based on the correct idea that phylogeny allows for a 

better clustering than similarity since it is based on evolutionary models. Since phylogeny 

is a form of hierarchical clustering, it also allows for the identification of subfamilies. A 110 

number of algorithms and phylogenomics-based sequence annotation platforms have 

been developed in the last two decades. RIO [11]� is dedicated to the identification of 

orthologs and paralogs using bootstrapping to calculate a confidence value for orthology. 

SCI-PHY [12]� and GEMMA [13]� use agglomerative clustering. SCI-PHY implements a 

subfamily encoding cost minimization to define sub-clusters whereas GEMMA's sub-

clustering is based on E-value. The coding cost minimization algorithm from SCI-PHY has 

been applied to Pfam and the identified subfamilies were analyzed for function shifts by 

means of the identification of Specificity Determining Positions (SDPs), resulting in the 

FunShift database [14]�. GEMMA was used to subcluster the CATH-Gene3D resource 

resulting in FunFHMMER [15]�. Here an automated cut-off was provided by a functional 120 

coherence index, also based on SDPs. CDD [16]� is a domain database that includes an 
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automated hierarchical classification of subfamilies, based on Bayesian analysis of what 

basically constitute SDPs [17]�. Sifter [18,19]� uses an empirical Bayesian approach to 

combine function evidence from for the Gene Ontology Annotation (GOA) [20]� database 

with a phylogenetic tree. Panther [21]� is a database with curated protein families that, 

besides GOA data and phylogenetic trees, includes manually curated metabolic pathways. 

Hence, basically phylogenomics platforms apply SDPs, either computationally predicted or 

empirically identified, to obtain more specific partitions. 

 Since the ultimate goal of the above mentioned methods is to provide HMMER 

databases that cover functional protein space, they depend on heuristics. Partitions and 130 

classifications might therefore contain errors when compared with the real phylogeny. 

Furthermore, most of the methods are fully automated, which can result in clusters that do 

not correspond with functional clusters as determined by experts, the identified clusters 

being either too small or too large. More importantly however, is the fact that current 

sequence function annotation methods lack a cut-off that results both in high precision and 

in high recall. Certain platforms, such as Pfam, use curated trusted thresholds providing 

high precision. Others, such as Panther and CDD, are redundant and show either the hit 

with best E value or all significant hits. Combining high specificity with high sensitivity is 

arguably problematic. 

 Interestingly, the high information usage of HMMER has principally been deployed 140 

to increase sensitivity whereas in principle high information content can also be applied to 

increase specificity. Basically, HMMER aligns a sequence to an MSA and computes a 

score of residue-profile correspondence. The variation among the sequences, which take 

part in the underlying MSA, affects the score of a query-profile alignment. Sites with high 

information content, i.e. highly conserved sites, will give either high rewards or high 

penalties whereas sites with low information content, i.e. highly variable sites, will hardly 
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contribute to the total score. Thus, a HMMER profile made from a variable superfamily-

MSA will be less specific than a HMMER profile made from a conserved subfamily-MSA. 

Thus, representing large, complex superfamilies by the various subfamilies' HMMER 

profiles will result in higher specificity, while presumably maintaining high sensitivity. Based 150 

on this principle, we developed a semi-automated, user-supervised procedure and pipeline 

that splits a superfamily into component subfamilies with the primary objective to cluster 

and classify its sequences with high P&R. Using a high quality phylogeny, HMMER Cut-off 

Threshold Tool or HMMERCTTER automatically identifies monophyletic sequence clusters 

that have 100% precision and recall (P&R) in a HMMER screening. In other words, it 

generates profiles made from cluster-specific MSAs that by hmmsearch identify all the 

cluster's sequences with a score higher than that of any other sequence provided by the 

training set. This cluster-specific score threshold provides a specific inclusion cut-off. 

Subsequently, these clusters can be accepted or rejected by the user assisted with 

information presented in hmmsearch score plots. In the classification phase, target 160 

sequences are classified using searches with the cluster-specific HMMER profiles and the 

established cut-off threshold as classifiers. Both profiles and corresponding cut-offs are 

iteratively updated upon the inclusion of novel sequences during an automated and a 

subsequent user-controlled classification, while imposing 100% P&R.  

 The pipeline, which connects various existing softwares, is briefly described and 

demonstrated by detailed case studies of the alpha-crystallin domain (ACD) protein, the 

polygalacturonase (PG) and the phospholipase C (PLC) superfamilies. In the near future, 

HMMERCTTER will be extended towards the analysis of complete proteomes. 
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Results 

Design of Method and Pipeline 170 

Fig 1 outlines the HMMERCTTER training procedure and target sequence analysis, which 

are described in brief below and in detail in S Appendix 1. The training sequences are 

clustered using a user provided phylogeny. All possible monophyletic clusters are 

determined, sorted by size and tested as follows. The cluster's sequences are aligned and 

used to generate a HMMER profile that is subsequently used to screen the cluster's 

sequences as well as all training sequences. Obtained HMMER scores are compared and 

100% P&R is obtained when the lowest scoring cluster sequence has a higher score than 

the highest scoring non-cluster sequence. 100% P&R clusters are provisionally accepted 

whereas non 100% P&R clusters are automatically rejected, 

 180 

Fig 1: Flowchart of HMMERCTTER Pipeline 

Training and target phase are separated by the dotted line. Monophyletic clusters of the 

training set are tested for 100% P&R, in descending size order. Iteration 1 is performed 

when a group is not accepted (either automatically or by user intervention) and the 

procedure is repeated with a smaller monophyletic group until no more groups are 

available for analysis. Accepted groups with corresponding HMMER profile and specific 

cut-off, defined by the 100% P&R rule, are used later to classify target sequences. 

Automated iteration cycle 2 is performed upon inclusion of sequences with prior 100% 

P&R. Upon convergence and user acceptance, supervised iteration 3 includes seemingly 

negatives upon a test for posterior 100% P&R, i.e. upon construction of a novel profile. 190 

Note that iteration 2 is nested inside iteration 3, albeit user controlled.* indicates that final 

clustering and classification do not necessarily show 100% coverage. 
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An interface showing score plots of cluster and training sequences as well as a tree with 

the provisional clustering is presented as shown in S Fig 1A, at which point the user can 

reject or accept the cluster. Upon rejection, the program proceeds with the next cluster on 

the size-ordered list. Upon acceptance of a cluster, all its nested and overlapping clusters 

are removed from the list, and the program proceeds with the next cluster in the sorted list 

until no more clusters are encountered. This yields a number of clusters that show 100% 

P&R in HMMER profiling as well as, possibly, a number of unclustered orphan sequences.  200 

 The HMMER profiles and corresponding cut-off scores, which equal the lowest 

scores of the clusters' sequences, form the initial classifiers that are used for screening the 

target dataset. In order to clarify whether we refer to the clustering or the classification 

phase of the pipeline, a cluster results from the clustering phase whereas a group is the 

result of the classification phase. Sequences with scores equal or above the cluster 

threshold are automatically accepted and added to the cluster, forming a group. We refer 

to these sequences as prior positives since they were not yet included in the cluster or 

group when tested. Sequences are realigned to construct a new HMMER profile with a 

new cut-off score in order to obtain higher sensitivity in subsequent HMMER profiling. As 

such, groups remain 100% P&R provided classification overlap is prevented. When a 210 

target sequence becomes classified by more than one group, all groups are excluded from 

subsequent iterations. Conflicting training sequences are removed from all but the original 

group whereas conflicting target sequences are removed from all groups and target 

dataset. 

 This automated step of classification terminates upon data convergence, when no 

novel sequences with a score above the threshold are identified. Hitherto, all accepted 

sequences were accepted based on a prior inclusion HMMER cut-off threshold, i.e. by a 

HMMER profile that did not include the to be accepted sequence(s). However, certain 
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sequences might only be accepted once their information has been included into the 

profile, i.e. according to a posterior inclusion HMMER cut-off threshold. Hence, in the 220 

subsequent classification step, sequences with a score below the threshold are 

considered. Candidates are included in the group and tested with a novel HMMER profile 

that includes the candidate. An interactive interface (S Fig 1B) allows the user to guide this 

process while 100% P&R remains imposed and classification conflicts remain prohibited 

as described for the automated phase. The process is terminated by the user, resulting in 

updated groups and a file that indicates which sequences generated conflicts. 

Algorithm Performance 

We set out to test the pipeline using three protein superfamilies. The major objective was 

to identify putative problems and limits of HMMERCTTER and to survey the general 

applicability of the procedure. In all cases classification was performed with optimal 230 

coverage as primary criterion. Manual override during classification (i.e. rejecting group 

updates) was applied only when the drop in the HMMER score decreased by at least an 

order of magnitude. Performance was measured as coverage of corresponding sequence 

space. The first case consists of a published dataset that therefore restricts the sequence 

space to that of the published phylogeny, resulting in a fixed reference dataset with known 

classification. The other cases consist of novel datasets in which the sets of target 

sequences are formed by all homologous sequences identified from large reference 

proteomes dataset as described in materials and methods. In these cases no clear 

reference clustering exists and coverage is expressed as Sequence Space Coverage 

Interval which is the interval between the lowest and highest possible coverage of each 240 

group, restricted by monophyly. 

The plant ACD protein superfamily: A complex case with paraphyletic groups and repeats 

Alpha crystallin domain (ACD) proteins form a large superfamily that include various 
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subfamilies of the well described small heat shock proteins (sHSPs) as well as a number 

of poorly or not described subfamilies [22]�. Recently we identified 824 ACD proteins in 17 

plant proteomes, using cluster-specific HMMER profiles manually made using a training 

set consisting of all ACD sequences identified in seven complete plant proteomes [22]�. 

This suggested the existence of 24 major and five minor subfamilies alongside two orphan 

sequences. Approximately half of the subfamilies are sHSPs, which functional 

classification is largely based on the cellular component of function. The remaining 250 

clusters include a family of transcriptional regulators, a family of salt stress induced 

proteins and 11 subfamilies of Uncharacterized ACD Proteins (UAP) [22]�. We took the 

datasets as previously used [22]� but removed sequences of the five minor subfamilies 

and a single orphan, all distant sequences that fall inside the major sHSP-C1 cluster and 

prevent detection of the sHSP-C1 cluster since the algorithm imposes monophyly. 

 We obtained a sequence clustering that is nearly identical to the described 

functional classification (Fig 2A). The major discrepancy consists of UAPVII that was not 

100% P&R and further divided into groups 11, 14, 19 and 24. In order to determine how 

the several groups behave in HMMERCTTER classification we compared its classification 

with the final reference phylogeny of the complete sequence set, under the assumption 260 

that the phylogeny is correct. 

 

Fig 2: Optimized HMMERCTTER Clustering and Classification of Plant ACD Protein 

Superfamily. (A) Training tree with clustering; clusters numbered according to 

HMMERCTTER and codes applied by Bondino et al., [22]� (MI+ combines mitochondrial I 

(MI) and mitochondrial-like sHSPs (ML)). (B) Final and complete reference tree with 

classification made using clustering shown in A. Both A and B concern the second run as 

detailed in the text. Colors according to HMMERCTTER output, leaves in black could not 
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be clustered or classified. Scale bars indicate 1 amino acid substitution per site. Note that 

UAPVII is represented by four clusters. UAPI and II were originally identified in the final 17 270 

proteome dataset and correspond to a single clade in the training tree. * indicates a single 

orphan training sequence that becomes classified in a paraphyletic clade. ** points to a 

local difference in tree topology that does not affect clustering and classification. The table 

shows the numerical results of HMMERCTTER classification. R1: 1st run with specific 

columns in light-gray shade, R2: Optimized 2nd run with specific columns in dark-gray 

shade. R1-G11 is R2-G14; R1-G25 is R2-G24; and R2-G9 consists of R1-G15 and R1-

G22. For details see context and S Fig 2. Tr = Train; Ta = Target; TP = True Positives; FP = 

False Positives; FN = False Negatives; % = Coverage. Boldface numbers include 

paraphyletic sequences. * Concerns distant sequences as shown in S Fig. 3. Note that 

both the total number of train and target sequences include one orphan sequence each 280 

and that the single false positive is a training sequence. 

 

The classification of a first run showed 93% coverage (R1 in Table of Fig 1). However, 

group 11 had a coverage of 0, meaning that not a single novel sequence was detected. 

We compared trees and analyzed hmmsearch output and encountered two dataset 

complications. First, the analysis is based on the assumption that both phylogenies are 

correct and as such comparable. This assumption appeared incorrect since one training 

sequence (VV00193000) clusters differently in both trees (S Fig 2A and B) suggesting 

incorrect placement in the training tree, and, as a result, incorrect HMMERCTTER 

clustering and poor classification. This sequence was transferred from training dataset to 290 

target dataset. Furthermore, at least one target sequence was found to contain three 

partial ACDs, which resulted in an elevated total score in at least two groups, which 

generated another classification conflict. This sequence was removed from the target 
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dataset. We repeated the analysis resulting in an optimized clustering and classification 

(Fig 2). Clusters R1_C15 and R1_C22 combined with sequence VV00193000 to form a 

larger cluster, R2_C9, with 100% P&R in both clustering and classification. R2_C14 

corresponds with cluster R1_C11 and shows 80% classification coverage. Total coverage 

was 97%. In general false negatives are distant sequences as exemplified by the five false 

negatives indicated in S Fig 3. This concerns five sequences from Sorghum bicolor of 

which four appear to derive from the same locus. 300 

The PG superfamily: a case showing hierarchical clustering and compositional bias 

Pectin is an important structural heteropolysaccharide component of plant cell walls 

formed of linear chains of α-(1–4)-linked D-galacturonic acid. Rhamnose and xylose can 

intervene in the main chain and sugar hydroxyl groups can be substituted by methyl 

groups and a variety of small sugar polymers, resulting in a complex mixture of 

polycarbohydrates (For review see �[23]�). Plants and many of their pathogens, therefore 

require a number of enzymes that can degrade these polycarbohydrates, among which 

those of the superfamily of galacturonases (G) and polygalacturonases (PGs, SCOP 

identifier 51137). Many isoforms have been described and are biochemically classified 

according to their mode of action (exoPGs, endoPGs) and substrate specificity (PGs, 310 

rhamnoGs and xyloGs) [24]�. Then, the PG superfamily on its turn is part of the larger 

superfamily of pectin lyase like proteins (SCOP Identifier 51126). A number of 140 PG 

encoding sequences are documented in the UniProtKB/Swiss-Prot [2]� database and 

used to reconstruct a Maximum Likelihood phylogeny, together forming the training 

dataset. The target dataset consisted of 1255 PG homolog sequences identified from EBI's 

reference proteomes dataset amended with several complete proteomes from 

phytophagous organisms. 

 The training set could be clustered with 100% coverage in many ways (S Fig 4) and 
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each clustering was used for classification of the target sequence dataset. Highest 

coverage (97%) was obtained using C7 (Fig 3A) (seven clusters named C7_C1 to C7-C7 320 

and final groups C7-G1 to C7-G7), which is used as reference classification. However, the 

C7 clustering does not correspond perfectly with the functional clustering. C7-C2 contains 

two classes of exoPGs, the class of endo-xyloGs and the class of exo-rhamnoGs. C11, 

with C7-C2 and C7-C3 further divided into four and two subclusters respectively, does 

correspond with functional and hierarchical classification, albeit that exoPGs are 

represented by four polyphyletic clades. The C7 and C11 classifications are further 

discussed in detail (Fig 3).  

 

Fig 3: HMMERCTTER Analysis of the Polygalacturonase Superfamily 

(A) C7 Clustering (inset) and classification with seven clusters. (B) C11 Clustering (inset) 330 

and classification with eleven clusters. Colors according to HMMERCTTER output, leaves 

in black could not be clustered or classified. Scale bars indicate 0.1 and 1 amino acid 

substitution per site as indicated. Functional classification is indicated in (A) for Plant PGs 

and (B) for the other classes where PGX stands for exo-polygalacturonase with A, B and C 

classes defined by Swissprot and Z corresponding to Zygomycete sequences. * Indicates 

a group of three orphan sequences that were not classified and could not be included in 

any reference classification. ** indicates instances of paraphyletic groups. *** indicates a 

subclade of unclassified sequences that complicate the reference classification of group 

2b. Performance of the C11-2b cluster is therefore presented as an interval. The table 

shows the numerical results of HMMERCTTER classification. Tr = Train; Ta = Target; TP = 340 

True Positives; FN = False Negatives; % = Coverage. * Not included are 3, 7 and 11 partial 

sequences that appeared as false negatives in the C7 classification. ** The number of 

false negatives depends on the reference classification. Coverage is expressed as 
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interval. 2O concerns the unclassifiable clade with three orphan sequences. 

 
As expected, partitions with few clusters (e.g. C2, C3, C4 see S Fig 4A, B and C), show 

lower classification coverage (numbers not shown). For instance, the combined plant (C3) 

and bacterial (C5) PG clusters do not detect any novel sequence using the classifiers 

determined by partitions C2, C3 and C4. Interestingly, partitions with more clusters such as 

C11 (Fig 3B) and C13 (not shown), also show inferior performance.  350 

 The C7 classification performance was corrected for a small number of partial 

sequences from clades 1, 2 and 3 with scores slightly below the final thresholds. It also 

has an ambiguous reference classification. Eleven monophyletic and undetected 

sequences, properly detected in the C11 classification, are part of a larger monophyletic 

clade (S Fig 5A). Coverage interval is 22 to 100% but given the correct classification by 

C11, 22% should be considered as most meaningful. Strikingly, the C11-G7 score plot (S 

Fig 5B) shows a distinguished group with a very sharp HMMER score drop following the 

cut-off (from 509.3 to 269.3). The reason why other partitions yield poor classification must 

therefore lie in conflicting sequence identifications. Indeed, the EFRo007836 sequence, 

part of the clade corresponding with C11_G7 (S Fig 5A), is detected by both groups 2 and 360 

7, and is therefore reported as conflicting sequence, arresting further analysis of either 

group. 

The Phospholipase C superfamily: A small, biased training set to classify a large target set. 

Phospholipase C (PLC) forms a class of enzymes that hydrolyze phospholipids [25]�. 

They are involved in cell physiology and signal transduction and there are several reasons 

for functional diversification, as exemplified by the fact that PLCs can have a number of 

different regulatory domains. Six isotypes, B, D, E, G, H and Z, are discriminated in 

mammals that also contain PLC-like proteins (PLC-L), which lack the second catalytic His 

residue [25]�. Fungi and plants also have PLCs: In tomato six isoforms have been 
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reported [26]� whereas in Saccharomyces cerevisiae only one homolog has been 370 

identified [27]�. 

 A total of 70 complete sequences was identified in UniProtKB/Swiss-Prot forming 

the training set. The target dataset consisted of 1047 sequences from EBI's Complete 

Reference Proteomes dataset. The training was guided by the functional classification. 

Nine clusters (B, D, E, G, H, Z, L, Plant and Yeast) were assigned based on the 

phylogenetic clustering and UniProtKB/Swiss-Prot annotation codes that reflect the 

diversity. The sequence of the PLC from Dictyostelium (lacking any additional specification 

in the UniProtKB/Swiss-Prot code) was not classified and regarded as orphan sequence. 

Fig 4 shows the results of the classification.  

 380 

Fig 4: HMMERCTTER Analysis of the Phospholipase C Superfamily 

(A) Initial C9 classification of nine described PLC subfamilies. (B) C12 Classification upon 

inclusion of additional sequences to the training set. Colors according to HMMERCTTER 

output of C9 clustering, leaves in black or gray could not be classified. Black leaves were 

included in determination of coverage or coverage interval, ** in B indicates classes where 

the reference classification is ambiguous. The 30 unclassifiable sequences are 

represented in gray. The * in A and B point to differences in the classification of Plant 

PLCs. The table shows the numerical results of the C9 and C12 classifications. Tr = Train; 

Ta = Target; TP = True Positives; FN = False Negatives; % = Coverage. * Includes the 

training orphan. Coverage intervals are presented when the reference classification is 390 

ambiguous and are accompanied by intervals in the number of target sequences and false 

negatives. The 30 unclassifiable sequences indicated in gray in B were regarded as 

additional false negatives resulting in the lowest coverage of the total coverage interval. 
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The classification of 939 sequences is nearly perfect. Strictly, only five single false 

negatives were identified when analyzing the classification on the reference tree (Fig 4). 

The performance of clusters 4 (PLCZ), 7 (Yeast) and 8 (PLCE) is ambiguous since larger 

clades can be considered, resulting in 49 false negatives and a coverage of 95%. 

However, since the dataset consisted of 1047 PLC sequences, 60 additional sequences 

were not classified. This is explained by the fact that the training dataset was biased: A 400 

number of clades with no training representatives is found in the final tree (See Fig 4A). 

We added a total of nine target sequences to the training set in order to represent three of 

the major unrepresented clades and repeated the analysis (Fig 4B). Surprisingly, total 

coverage was slightly lower at 94%. The major reason for this is the very poor 

performance of the yeast cluster (10%) and novel cluster 12 (0%), which contains 

sequences from filamentous fungi. Together they form a monophyletic clade that 

represents fungal PLCs, of which particularly the PLCs from filamentous fungi show high 

sequential divergence. Also the clade of group 10 is highly divergent and shows poor 

coverage (29%). The plant PLCs showed a slightly lower amount of sequences correctly 

identified. 410 
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Discussion 

We present and test the new protein superfamily sequence classification tool 

HMMERCTTER. HMMERCTTER consists of two phases: a training phase depending on a 

hierarchic phylogenetic clustering and a target phase in which sequences and their 

information are added iteratively to their classifiers, providing high sensitivity while 

specificity is safeguarded by imposing 100% P&R to clusters and groups as well as 

iteration arrest when conflicting sequence identification occurs. Here we discuss method 

and pipeline based on issues identified in three case studies. 

The high observed coverage is an overestimate due to an inherent lack of reference 

In all three cases we found over 95% coverage of the complete datasets with groups that 420 

show 100% P&R according to the reference tree. It should be clear that the reference tree 

is not an ultimate benchmark dataset since a priori it is unknown which sequences should 

be considered as group member. HMMERCTTER classification performs iterative HMMER 

searches and includes sequences to groups while maintaining the groups at 100% P&R. 

Sequence classification is arrested by conflicting sequence identification or can be 

stopped by the user when detecting strong declines of the score drop, which follows the 

lowest scoring group sequence. Clearly, sequence classification terminates in the twilight 

zone of detection, which is inherently subject to the lack of reference. Hence, although 

95% might be an overestimate, the fact that conflicting sequence classification arrests the 

process, at least suggests coverage is high and that HMMERCTTER is specific while it 430 

remains a high sensitivity. 

A high fidelity training set with no bias is fundamental for proper classification 

The sequence incorrectly placed in the training tree of the ACD case (VV00193000, see 

Fig 2 and S Fig 2) had a severe impact on clustering and exemplifies the general rule that 
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training data should be of high quality. Tree reliability is difficult to measure but in general 

trees with poor statistical support should be handled with care. The PLC case showed an 

additional training set issue. Although difficult or even impossible, bias should be avoided. 

HMMERCTTER is meant as a decision support system for the expert biologist, which 

presumably can provide a reliable training set. Still, although complete proteomes can be 

used as target, it is worthwhile to perform a preliminary sensitive data mining to obtain a 440 

set of target sequences restricted to possible homologs only, as we performed for the PG 

and PLC cases. Not only will HMMERCTTER run faster, it will also directly give an 

indication of performance, by which bias can be suspected, as was shown for the PLC 

case. Unfortunately, our attempt to correct for the bias in the PLC UniProtKB/Swiss-Prot 

dataset was not successful. This is at least in part due to biological complexity in the form 

of highly divergent subfamilies.  

 Orphan sequences in the training set should be avoided. They either represent 

incorrect sequences or result in bias since they are not included in the clustering. The ACD 

case had a single remaining orphan sequence. This sequence and a close homolog were 

classified into a group that forms a paraphyletic clade in the reference tree (Fig 2B). 450 

Paraphyletic groups were also identified in the PG classification (Fig 3B). Classification of 

paraphyletic sequences is possible since classification, rather than clustering, is based on 

HMMER profiling, basically an eloquent distance score. It should however be clear that an 

optimal clustering or classification corresponds with both tree topology and (known) 

functional classification, as was obtained for both the ACD and the PLC cases. 

Furthermore, the ACD case shows that sequences with repeats should be avoided. All 

similarity based search and classification tools inherently suffer from sequences with 

repeats.  

Sensitivity of individual HMMER profiles and the clustering determine P&R of the overall 
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classification 460 

HMMERCTTER classifies sequences using controlled iterative HMMER searches. The 

sensitivity of the profiles not only determines the sensitivity but also the specificity of the 

classification. When classification is arrested upon conflicting sequence identification, the 

various HMMER profiles actually compete for the unclassified sequences. In general, a 

HMMER profile made from a variable subfamily-MSA will be more sensitive and less 

specific than a HMMER profile made from a conserved subfamily-MSA. This is 

demonstrated by the PG case in which the partitions with few, hence, clusters with high 

sequence variation result in early classification conflicts of the plant and bacterial PG 

sequences.  

 On the other hand, further division of C7-C3 in C3a and C3b worsened 470 

classification, emphasizing that the final classification not only depends on the individual 

clusters but also on the exact clustering. This is also demonstrated by the poor 

classification of C7-G7, as compared to C11-G7 (See Fig 3). Here the original C7-C7 and 

C11-C7 clusters are identical but the additional clusters differ, resulting in different 

sequence identification conflict scenarios. The main difference is that in C11 the C2 cluster 

is subdivided into four more specific subclusters that apparently no longer detect 

sequences that correspond to G7. Another part of the explanation for this classification 

error is the fact that PGs appear to have a moderately high compositional bias, which is 

known to negatively affect the accuracy of HMMER scores [28]�. Similarly, convergent 

evolution that can be envisaged among the the four exoPG clades (2a, 2b, 6 and 7) might 480 

also negatively affect HMMER score accuracy �[28]� and therewith specificity. The fact 

that the C11 clustering is capable of correctly classifying the C7 sequences, suggests that 

the specificities and sensitivities of the profile combinations form an important factor in 

determining performance. 
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  All together this demonstrates there is a balance between group size and variability 

and that it is difficult to predict how well a certain clustering will perform in classification. 

Two aspects that will define classification performance are compactness and separateness 

of a cluster. Both compact (e.g. sHSP-C1 of the ACD case Fig 2) and well separated 

clusters (e.g. C4 from the PG case Fig 3) will show good classification. The poor 

classification of ACD protein clusters 11, 14, 19 and 24 (Fig 2) as well as the fungal PLCs 490 

(Fig 4) can be explained by high sequence diversity, which equals low compactness of the 

cluster. Sequences at larges distances will not only obtain lower hmmsearch scores, but 

will also introduce high variation into the profile made by hmmbuild. A divergent profile 

corresponds with a low specificity, which is apparently still a major limit. 

 On the one hand the poor classification of distant sequences shows the limit of the 

HMMERCTTER method, on the other hand it points to dataset issues in the form of 

pseudogenes or sequences derived from incorrect gene models. To the best of our 

knowledge no function has been assigned to any of the members of the problematic and 

divergent UAPVII clade. The fungal PLCs are in large part orthologs and as such not 

pseudogenes. Thus, biological expertise remains required. Fortunately, distant sequences 500 

will, in general, only become accepted to a group during the interactive, user-controlled 

part of the classification phase. In the absence of an objective method for the reliable 

identification of problematic sequences, the interface of HMMERCTTER's interactive 

classification allows the user to use its expertise in order to make an educated decision. As 

such, HMMERCTTER is a decision support system. 

 The issue of dysfunctional sequences is problematic. Sensitive data mining, as for 

instance performed by the iterative JackHMMER [29]�, often results in heavily 

contaminated datasets, which results in severe problems while constructing an MSA. 

HMMERCTTER's 100% P&R control, iteration arrest upon conflicting sequence 
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identification and the fact that training sequences cannot be removed from the groups, 510 

prevents the inclusion of many problematic sequences and forms therefore an excellent 

method for sequence mining. 

Prospects 

We have developed HMMERCTTER that is capable of classification of protein 

superfamilies sequences with both high sensitivity and specificity. This is achieved by an 

objective and computational approach rather than defining manually curated inclusion 

thresholds. The performance is high and limited mostly by aspects determined by the 

dataset such as training bias, errors in the training phylogeny, sequence repeats but also 

high sequence diversity. The 100% P&R controlled iterative approach is arrested when 

conflicting sequence identifications are observed. Hence, performance in the twilight zone 520 

of sequence identification is determined by a balance between sensitivity and specificity. 

Current efforts toward future improvements include a profound mathematical modeling of 

the method dedicated at properties as correctness, convergence, coverage, and measures 

of quality. It includes the determination of clustering quality, prediction of classification error 

rates, and the relationship between these two quantities. 

 HMMERCTTTER is a phylogenomics tool since it uses phylogeny to classify 

sequences. However, since it is dedicated at sub-clustering single superfamilies, it is not 

comparable to databases such as FunFHMM, CDD or Panther. Applying maximum 

likelihood phylogeny rather than a heuristic sequence based clustering will, at least 

theoretically, improve sub-clustering but application to large, protein space spanning 530 

databases is not feasible. However, the 100% P&R approach using HMMER appears to be 

applicable. The apparent error in the training phylogeny of the ACD shows that HMMER 

searches in a 100% P&R setting typically correspond with phylogenetic clustering, which is 

in correspondence with our general experience with HMMER searches. Hence, the 
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clustering phase could be replaced by a profile database provided that the profiles and 

corresponding sequence database are 100% P&R. Current efforts are directed at 

constructing such a database that would be comparable to the aforementioned hierarchic 

HMMER profile databases. 

Materials and methods 

HMMERCTTER pipeline 540 

The HMMERCTTER pipeline is written in MATLAB (The MathWorks Inc., Natick, MA, 

USA) and calls a number of PERL scripts that depend on Bioperl [30]� and software 

packages. HMMER3 �[6]�: hmmbuild is used with default settings, hmmsearch with the 

option –noali. MSAs are constructed by MAFFTv7 [31]�: with the settings –anysymbol –

auto. Dendroscope 3 [32]�is used for midpoint rooting and images representing clustering 

on the presented phylogeny on various user interfaces. 

Datasets 

The ACD training and target datasets were obtained from Bondino et al., [22]� from which 

a single distant orphan sequence and the sequences from five distant subclusters were 

removed. PG training sequences were identified identified from UniProtKB/Swiss-Prot [2]� 550 

by BLAST using endoPG sequence AAC64374.1 [33]� as query. PLC training sequences 

were identified from Swissprot using human PLC-G sequence AAA60112.1 [34]� as query. 

Target datasets for the PG and the PLC case were obtained using HMMER profiling. The 

PLC sequences were identified from EBI's Reference Proteomes, which consists of 122 

eukaryotic and 25 prokaryotic complete proteomes (For details see 

http://www.ebi.ac.uk/reference_proteomes), whereas this was amended with a number of 

complete proteomes from phytophagous organisms for the PG case. Sequences identified 

by all the superfamilies training profiles were combined and filtered by CD hit �[35]� at 

100% and scrutinized using Pfam �[7]�. In the PG case all sequences with a hit against 
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the Glyco_hydro_28 domain were accepted, in the PLC case all sequences that hit both 560 

the PLC-X and PLC-Y domain and contain the first of two catalytic His residues were 

accepted. MSAs were constructed by MAFFTv7 [31]� using the slow iterative global 

refinement (FFT-NS-i) mode for PGs and the multiple domain iteration (E-INS-i) mode for 

PLCs and subsequently corrected by Rascal [26]�. PHYML3 [36]� using the LG model 

was used for phylogenetic tree reconstruction following BMGE [37]� trimming with 

BLOSUM62 matrix and an entropy cut-off of 0.9. Complete trees were constructed with all 

identified sequences. The training tree of the second PLC analysis is an excerpt of the 

PLC reference tree. A package containing source code and full dataset will be deposited at 

Github and is available for reviewers at: 

 https://www.dropbox.com/s/aacao6ggcak30bg/Repo.tar.gz?dl=0 570 

 

 

Acknowledgments: 

Citations

1.  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search 
tool. J Mol Biol. 1990;215: 403–410. doi:10.1016/S0022-2836(05)80360-2 

2.  Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 
Oxford University Press; 2017;45: D158–D169. doi:10.1093/nar/gkw1099 

3.  Eirín-López JM, Rebordinos L, Rooney AP, Rozas J. The Birth-and-Death Evolution 
of Multigene Families Revisited. Genome dynamics. 2012. pp. 170–196. 580 
doi:10.1159/000337119 

4.  Sigrist CJA, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and 
continuing developments at PROSITE. Nucleic Acids Res. 2013;41: D344–D347. 
doi:10.1093/nar/gks1067 

5.  Zhang Z. Protein sequence similarity searches using patterns as seeds. Nucleic 
Acids Res. 1998;26: 3986–3990. doi:10.1093/nar/26.17.3986 

6.  EDDY SR. A new generation of homology search tools based on probabilistic 
inference. Genome informatics 2009. Published by Imperial College Press and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/130443doi: bioRxiv preprint 

https://doi.org/10.1101/130443
http://creativecommons.org/licenses/by-nc-nd/4.0/


HMMERCTTER Protein Superfamily Classification Page 25 of 29 

distributed by World Scientific Publishing co.; 2009. pp. 205–211. 
doi:10.1142/9781848165632_0019 590 

7.  Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: 
The protein families database [Internet]. Nucleic Acids Research. Oxford University 
Press; 2014. pp. D222-30. doi:10.1093/nar/gkt1223 

8.  Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome 
sequences using a library of hidden Markov models that represent all proteins of 
known structure. J Mol Biol. 2001;313: 903–919. doi:10.1006/jmbi.2001.5080 

9.  Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJP, Chothia C, et 
al. Data growth and its impact on the SCOP database: new developments. Nucleic 
Acids Res. 2007;36: D419–D425. doi:10.1093/nar/gkm993 

10.  Eisen JA. Phylogenomics: Improving Functional Predictions for Uncharacterized 600 
Genes by Evolutionary Analysis. Genome Res. 1998;8: 163–167. 
doi:10.1101/gr.8.3.163 

11.  Zmasek CM, Eddy SR. RIO: analyzing proteomes by automated phylogenomics 
using resampled inference of orthologs. BMC Bioinformatics. 2002;3: 14. 
doi:10.1186/1471-2105-3-14 

12.  Brown DP, Krishnamurthy N, Sjölander K. Automated Protein Subfamily Identification 
and Classification. PLoS Comput Biol. 2007;3: e160. 
doi:10.1371/journal.pcbi.0030160 

13.  Lee DA, Rentzsch R, Orengo C, A. S, A K, D L, et al. GeMMA: functional subfamily 
classification within superfamilies of predicted protein structural domains. Nucleic 610 
Acids Res. Oxford University Press; 2010;38: 720–737. doi:10.1093/nar/gkp1049 

14.  Abhiman S, Sonnhammer ELL. FunShift: a database of function shift analysis on 
protein subfamilies. Nucleic Acids Res. 2004;33: D197–D200. 
doi:10.1093/nar/gki067 

15.  Das S, Lee D, Sillitoe I, Dawson NL, Lees JG, Orengo CA. Functional classification 
of CATH superfamilies: a domain-based approach for protein function annotation. 
Bioinformatics. Oxford University Press; 2015;31: 3460–3467. 
doi:10.1093/bioinformatics/btv398 

16.  Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: 
functional classification of proteins via subfamily domain architectures. Nucleic Acids 620 
Res. 2017;45: D200–D203. doi:10.1093/nar/gkw1129 

17.  Neuwald AF, Lanczycki CJ, Marchler-Bauer A. Automated hierarchical classification 
of protein domain subfamilies based on functionally-divergent residue signatures. 
BMC Bioinformatics. 2012;13: 144. doi:10.1186/1471-2105-13-144 

18.  Engelhardt BE, Jordan MI, Srouji JR, Brenner SE. Genome-scale phylogenetic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/130443doi: bioRxiv preprint 

https://doi.org/10.1101/130443
http://creativecommons.org/licenses/by-nc-nd/4.0/


HMMERCTTER Protein Superfamily Classification Page 26 of 29 

function annotation of large and diverse protein families. Genome Res. 2011;21: 
1969–1980. doi:10.1101/gr.104687.109 

19.  Engelhardt BE, Jordan MI, Muratore KE, Brenner SE, Chervitz S. Protein Molecular 
Function Prediction by Bayesian Phylogenomics. PLoS Comput Biol. Morgan 
Kaufman Publishers; 2005;1: e45. doi:10.1371/journal.pcbi.0010045 630 

20.  Barrell D, Dimmer E, Huntley RP, Binns D, O’Donovan C, Apweiler R. The GOA 
database in 2009--an integrated Gene Ontology Annotation resource. Nucleic Acids 
Res. Oxford University Press; 2009;37: D396–D403. doi:10.1093/nar/gkn803 

21.  Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of 
gene function, and other gene attributes, in the context of phylogenetic trees. 
Nucleic Acids Res. 2013;41: D377–D386. doi:10.1093/nar/gks1118 

22.  Bondino HG, Valle EM, ten Have A. Evolution and functional diversification of the 
small heat shock protein/α-crystallin family in higher plants. Planta. 2012;235: 1299–
1313. doi:10.1007/s00425-011-1575-9 

23.  Willats WGT, Mccartney L, Mackie W, Knox JP. Pectin: Cell biology and prospects 640 
for functional analysis [Internet]. Plant Molecular Biology. Dordrecht: Springer 
Netherlands; 2001. pp. 9–27. doi:10.1023/A:1010662911148 

24.  ten Have A, Tenberge KB, Benen JAE, Tudzynski P, Visser J, van Kan JAL. The 
contribution of cell wall degrading enzymes to pathogenesis of fungal plant 
pathogens BT - The Mycota XI, Agricultural Applications. Agricultural Applications. 
Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. pp. 341–358. doi:10.1007/978-
3-662-03059-2_17 

25.  Kadamur G, Ross EM. Mammalian phospholipase C. Annu Rev Physiol. 2013;75: 
127–154. doi:10.1146/annurev-physiol-030212-183750 

26.  Vossen JH, Abd-El-Haliem A, Fradin EF, Van Den Berg GCM, Ekengren SK, Meijer 650 
HJG, et al. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-
PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. 
Plant J. Blackwell Publishing Ltd; 2010;62: 224–239. doi:10.1111/j.1365-
313X.2010.04136.x 

27.  Andoh T, Yoko-O T, Matsui Y, Toh-E A. Molecular cloning of theplc1+ gene 
ofSchizosaccharomyces pombe, which encodes a putative phosphoinositide-specific 
phospholipase C. Yeast. 1995;11: 179–185. doi:10.1002/yea.320110209 

28.  Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: 
HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. Oxford 
University Press; 2013;41: e121. doi:10.1093/nar/gkt263 660 

29.  Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and 
iterative HMM search procedure. BMC Bioinformatics. BioMed Central; 2010;11: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/130443doi: bioRxiv preprint 

https://doi.org/10.1101/130443
http://creativecommons.org/licenses/by-nc-nd/4.0/


HMMERCTTER Protein Superfamily Classification Page 27 of 29 

431. doi:10.1186/1471-2105-11-431 

30.  Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, et al. The 
Bioperl toolkit: Perl modules for the life sciences. Genome Res. Cold Spring Harbor 
Laboratory Press; 2002;12: 1611–1618. doi:10.1101/gr.361602 

31.  Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: 
Improvements in performance and usability. Mol Biol Evol. Oxford University Press; 
2013;30: 772–780. doi:10.1093/molbev/mst010 

32.  Huson DH, Scornavacca C. Dendroscope 3: An interactive tool for rooted 670 
phylogenetic trees and networks. Syst Biol. 2012;61: 1061–1067. 
doi:10.1093/sysbio/sys062 

33.  ten Have A, Mulder W, Visser J, Van Kan JAL, Have A ten, Mulder W, et al. The 
Endopolygalacturonase Gene Bcpg1 Is Required for Full Virulence of Botrytis 
cinerea. Mol Plant-Microbe Interact. 1998;11: 1009–1016. 
doi:10.1094/MPMI.1998.11.10.1009 

34.  Ohta S, Matsui A, Nazawa Y, Kagawa Y. Complete cDNA encoding a putative 
phospholipase C from transformed human lymphocytes. FEBS Lett. 1988;242: 31–5.  

35.  Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: A web server for clustering and 
comparing biological sequences. Bioinformatics. Oxford University Press; 2010;26: 680 
680–682. doi:10.1093/bioinformatics/btq003 

36.  Thompson JD, Thierry JC, Poch O. RASCAL: Rapid scanning and correction of 
multiple sequence alignments. Bioinformatics. Oxford University Press; 2003;19: 
1155–1161. doi:10.1093/bioinformatics/btg133 

37.  Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new 
software for selection of phylogenetic informative regions from multiple sequence 
alignments. BMC Evol Biol. 2010;10: 210. doi:10.1186/1471-2148-10-210 

 

 690 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/130443doi: bioRxiv preprint 

https://doi.org/10.1101/130443
http://creativecommons.org/licenses/by-nc-nd/4.0/


HMMERCTTER Protein Superfamily Classification Page 28 of 29 

Legends Supplemental Files 

S Fig 1: HMMERCTTER User Interfaces 

Shown are single examples obtained from the training (A) and the target phase (B). Blue 

asterisks are scores of sequences of the complete dataset (either training or combined), 

green circles are scores of sequences of the cluster or group in question. The red line 

shows the drop in scores among successive sequences, also indicated as score drop. The 

magenta line shows the current threshold and can be moved in order to determine the 

threshold in the interactive part of the classification. In the training the user must accept or 

reject the 100% P&R cluster. During classification the user can accept the cluster, return to 

the former or initial state or add seemingly negatives as indicated for posterior 100% P&R 700 

testing. 

 

S Fig 2: Incongruent Clustering of ACD Train Tree severely affects Classification 

(A) Detail of poor classification of first run using clustering based on train-tree with 

sequence VV00193000 clustered differently than in the shown final tree. Sequences of 

GR1-11 including VV00193000 in red; GR1-15 in gray nested inside the clade containing 

GR1-22 light green lines. Target sequence ME22590va contains three ACDs also 

generating classification conflicts. (B) Detail of improved classification of second run 

obtained upon removal of VV00193000 and ME22590va from training and target set, 

respectively. GR2-14 shows 80% coverage, formerly 0% with G1-11. GR2-9 shows 100% 710 

coverage, which is an improvement of the 67 and 50 of constituents GR1-15 and GR1-22. 

Numbers also in Fig 1. 

 

S Fig 3: Sequences at large Distances impede Classification Coverage. 

Detail of cluster 7/M+ demonstrating that particularly sequences at large distances (ML) 
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are often not detected. The indicated sequences without shading are training sequences 

whereas the sequences in red shade are false negatives. The arrow points to a 

monocotyledon sub clade.  

 

S Fig 4: C2, C3 and C4 Clustering and Classification of the Polygalacturonase 720 

Superfamily 

(A1) C2 Clustering; (A2) C2 Classification; (B1) C3 Clustering; (B2) C3 Classification; (C1) 

C4 Clustering; (C2) C4 Classification. Colors according to HMMERCTTER output, leaves 

in black could not be clustered or classified. Scale bars indicate 1 amino acid substitution 

per site. 

 

S Fig 5: Poor Classification of Group 7 by C7 Clustering 

(A) Classification of group 7 by C7 clustering. In purple sequences from C7-G7 group. 

Other leaves represent sequences identified by the C11 clustering. EFro007836 is 

identified by both C7-C2 and C7-C7, preventing classification. (B) Score plot of C11-G7. 730 

Blue asterisks are scores of sequences of the complete dataset , green circles are scores 

of sequences group C11-G7. The red line shows the drop in scores among successive 

sequences. The magenta line shows the current threshold. 
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