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Abstract 
The mammalian circadian clock is a critical regulator of metabolism and cell division. Work in 
model systems indicates that disrupting the circadian clock systemically by environmental or 
genetic means promotes cancer, and that multiple oncogenes can in turn disrupt the circadian 
clock. However, whether the circadian clock is disrupted in primary human cancers is unknown. 
Here we used transcriptome data from mice to define a signature of the mammalian circadian 
clock based on the co-expression of 12 genes that form the core clock or are directly controlled 
by the clock. Our approach can be applied to samples that are not labeled with time of day and 
were not acquired over the entire circadian (24-h) cycle. We validated the clock signature in 
circadian transcriptome data from humans, then developed a metric we call the delta clock 
correlation distance (ΔCCD) to describe the extent to which the signature is perturbed in 
samples from one condition relative to another. We calculated the ΔCCD comparing human 
tumor and non-tumor samples from The Cancer Genome Atlas and six independent datasets, 
discovering widespread dysregulation of clock gene co-expression in tumor samples. 
Subsequent analysis of data from mouse clock knockouts suggested that clock dysregulation in 
human cancer is not caused solely by loss of activity of clock genes. Our findings suggest that 
dysregulation of the circadian clock is a common mechanism by which human cancers achieve 
unrestrained growth and division. In addition, our approach opens the door to using publicly 
available transcriptome data to quantify clock function in a multitude of human phenotypes. 

Background 
Daily rhythms in mammalian physiology are guided by a system of oscillators called the 
circadian clock ​[1]​. The core clock consists of feedback loops between several genes and 
proteins, and based on work in mice, is active in nearly every tissue in the body ​[2,3]​. The clock 
aligns itself to environmental cues, particularly cycles of light-dark and food intake ​[4–6]​. In turn, 
the clock regulates various aspects of metabolism ​[7–9]​ and is tightly linked to the cell cycle 
[10–15]​. 
 
Consistent with the tight connections between the circadian clock, metabolism, and the cell 
cycle, multiple studies have found that systemic disruption of the circadian system can promote 
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cancer. In humans, long-term rotating shift work and night shift work, which perturb sleep-wake 
and circadian rhythms, have been associated with breast, colon, and lung cancer ​[16–18]​, 
although a recent meta-analysis found no effect of long-term shift work on breast cancer 
incidence ​[19]​. In mice, environmental disruption of the circadian system (e.g., through severe 
and chronic jet lag) increases the risk of breast cancer and hepatocellular carcinoma ​[20,21]​. 
Furthermore, both environmental and genetic disruption of the circadian system promote tumor 
growth and decrease survival in a mouse model of human lung adenocarcinoma ​[22]​. Finally, 
pharmacological stimulation of circadian clock function slows tumor growth in a mouse model of 
melanoma ​[23]​. While these studies support the link from the clock to cancer, complementary 
work has established a link in the other direction, namely that multiple components of a tumor, 
including the RAS and MYC oncogenes, can induce dysregulation of the circadian clock 
[24–26]​. Despite this progress, however, whether the clock is disrupted in human tumors has 
remained unclear. 
 
When the mammalian circadian clock is functioning normally, clock genes and clock-controlled 
genes show characteristic rhythms in expression throughout the body and in vitro ​[2,3,27]​. 
Measurements of these rhythms through time-course experiments have revealed that the clock 
is altered or perturbed in some human breast cancer cell lines ​[28,29]​. Existing computational 
methods for this type of analysis require that samples be labeled with time of day (or time since 
start of experiment) and acquired throughout the 24-h cycle ​[30–32]​. Unfortunately, existing data 
from resected human tumors meet neither of these criteria. 
 
A common approach to analyze cancer transcriptome data is to look for associations between 
levels of gene expression and other biological and clinical variables. For example, in human 
breast cancer, the expression levels of several clock genes have been associated with 
metastasis-free survival (with the direction of association depending on the gene) ​[33]​. 
However, because a functional circadian clock is marked not by the actual levels of gene 
expression, but by periodic variation in gene expression, this type of analysis cannot necessarily 
be used to determine whether the clock is functional. 
 
To account for this periodic variation, one approach to detect a functional clock might be to 
examine the correlations in expression between clock genes. Indeed, a previous study found 
different levels of co-expression between a few clock genes in different subtypes and grades of 
human breast cancer ​[33]​. Although this finding was an important first step, its generalizability 
has been limited because the correlations in expression were not examined (1) for all clock 
genes, (2) in other human cancer types, or (3) in healthy tissues where the circadian clock is 
known to be functional. Thus, a definitive answer to whether the circadian clock is functional 
across the spectrum of human cancers is still lacking. 
 
The goal of this study was to determine whether the circadian clock is functional in human 
cancer. Using transcriptome data from mice, we defined a robust signature of the mammalian 
circadian clock based on the co-expression of clock genes. We validated the signature in 
circadian transcriptome data from humans, then examined the extent to which the signature was 
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perturbed in tumor compared to non-tumor samples from The Cancer Genome Atlas (TCGA) 
and from multiple independent datasets. Our findings suggest that the circadian clock is 
dysfunctional in a wide range of human cancers. 

Results 

Consistent correlations in expression of clock genes in mice 
The progression of the mammalian circadian clock is marked by characteristic rhythms in gene 
expression throughout the body ​[3]​. We hypothesized that the relative phasing of the rhythms of 
different genes would give rise to a characteristic pattern of correlations between genes. Such a 
pattern could be used to infer the activity of the clock, even in datasets in which samples are not 
labeled with time of day (Fig. 1A). To investigate this hypothesis, we first collected eight publicly 
available datasets of genome-wide, circadian gene expression from various mouse organs 
under both constant darkness and alternating light-dark cycles ​[3,12,34–38]​ (Table S1). We 
focused on 12 genes that are part of the core circadian clock or are directly controlled by the 
clock and that exhibit strong, consistently phased rhythms in expression across organs ​[32]​. For 
the rest of the manuscript, we will refer to these 12 genes as “clock genes.” 
 
For each dataset, we calculated the Spearman correlation between expression values (over all 
samples) of each pair of genes. The pattern of correlations was highly similar across datasets 
and revealed two groups of genes, where the genes within a group tended to be positively 
correlated with each other and negatively correlated with genes in the other group (Fig. 1B). 
Genes in the first group (Arntl, Npas2, and Clock), which are known to form the positive arm of 
the clock ​[39]​, peaked in expression shortly before zeitgeber time 0 (ZT0, which corresponds to 
time of lights on or sunrise; Fig. S1). Genes in the second group (Cry2, Nr1d1, Nr1d2, Per1, 
Per2, Per3, Dbp, and Tef), which are known to form the negative arms of the clock, peaked in 
expression near ZT10. Cry1, which appeared to be part of the first group in some datasets and 
the second group in others, tended to peak in expression around ZT18. These results indicate 
that the progression of the circadian clock in mice produces a consistent pattern of correlations 
in expression between clock genes. The pattern does not depend on the absolute phasing of 
clock gene expression relative to time of day. Consequently, the pattern is not affected by phase 
shifts, such as those caused by temporally restricted feeding ​[40]​ (Fig. S2). 
 
Most computational methods for quantifying circadian rhythmicity and inferring the status of the 
clock require that samples be acquired over the entire 24-h cycle. Because our approach does 
not attempt to infer oscillations, we wondered how robust it would be to partial coverage of the 
24-h cycle. We therefore examined clock gene expression in three of the previous datasets, in 
samples acquired during the first 8 h of the day (or subjective day) or the first 8 h of the night (or 
subjective night). In each dataset, the correlation pattern was preserved in both daytime and 
nighttime samples (Fig. S3). These results suggest that our approach can detect an active 
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circadian clock in groups of samples without using time of day information, even if the samples’ 
coverage of the 24-h cycle is incomplete. 

Validation of the correlation pattern in humans 
We next applied our approach to nine publicly available datasets of circadian transcriptome data 
from human tissues: one from skin ​[41]​, two from brain ​[42,43]​, three from blood ​[44–46]​, and 
three from cells cultured in vitro ​[36,47,48]​ (Table S1). The dataset from human skin consisted 
of samples taken at only three time-points for each of 19 subjects (9:30am, 2:30pm, and 
7:30pm). The datasets from human brain were based on postmortem tissue from multiple 
anatomical areas, and zeitgeber time for each sample was based on the respective donor's date 
and time of death and geographic location (subject and sample info). The datasets from human 
blood consisted of ~8 samples taken throughout the 24-h cycle for each subject (~20 subjects 
per study). The datasets from cells cultured in vitro were based on time-courses following 
synchronization by dexamethasone, serum, or alternating temperature cycles. 
 
The patterns of clock gene co-expression in human tissues and cells were similar to the 
patterns in mice (Fig. 2 and Fig. S4), which is consistent with our previous findings of similar 
relative phasing of clock gene expression in mice and humans ​[49]​. The pattern was less 
distinct in human blood (Fig. S5), likely because several clock genes show weak or no 
rhythmicity in expression in blood cells ​[49]​. The strong pattern in human skin was due to clock 
gene co-expression both between the three time-points and between individuals at a given 
time-point (Fig. S6). Compared to data from mouse organs and human skin, the correlations in 
human brain were noisier, which is consistent with the relatively weaker circadian rhythmicity for 
clock genes in those two, brain-specific datasets ​[49]​. Overall, these results suggest that our 
approach can detect the signature of a functional circadian clock in human tissues in vitro and in 
vivo. 

Aberrant patterns of clock gene expression in human cancer 
To examine patterns of clock gene expression in human cancer, we applied our approach to 
RNA-seq data collected by The Cancer Genome Atlas (TCGA) and reprocessed using the 
Rsubread package ​[50]​. TCGA samples are from surgical resections performed prior to 
neoadjuvant treatment. The times of day of surgery are not available and the surgeries were 
likely only performed during part of the day. We analyzed data from the 12 cancer types that 
included at least 30 samples from adjacent non-tumor tissue (Table S1). For each cancer type, 
we calculated the Spearman correlations in expression between clock genes across all tumor 
samples and all non-tumor samples. 
 
In non-tumor samples from most cancer types, we observed a similar pattern of clock gene 
co-expression as in the mouse and human circadian datasets (Fig. 3 and Fig. S7). In contrast, 
in tumor samples from each cancer type, the pattern was weaker or absent. We observed the 
same trend when we restricted our analysis to only matched samples, i.e., samples from 
patients from whom both non-tumor and tumor samples were collected (Fig. S8). To confirm 
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these findings, we analyzed six additional datasets of gene expression in human cancer, three 
from liver and three from lung, each of which included matched tumor and adjacent non-tumor 
samples ​[51–56]​ (Table S1). As in the TCGA data, clock gene co-expression in tumor samples 
was perturbed relative to non-tumor samples (Fig. S9). 
 
To quantify the dysregulation of clock gene co-expression in human cancer, we first combined 
the eight mouse datasets in a fixed-effects meta-analysis (Fig. 4A and Methods) in order to 
construct a single "reference" correlation pattern (Fig. S10 and Table S2). For each of the 12 
TCGA cancer types and each of the six additional datasets of human cancer, we then 
calculated the Euclidean distances between the reference pattern and the non-tumor pattern 
and between the reference pattern and the tumor pattern. We refer to each of these distances 
as a clock correlation distance (CCD), and we refer to the difference between the tumor and 
non-tumor CCDs as the delta clock correlation distance (ΔCCD). A positive ΔCCD indicates that 
the correlation pattern of the non-tumor samples is more similar to the reference than is the 
correlation pattern of the tumor samples. 
 
Consistent with the visualizations of clock gene co-expression, every TCGA cancer type and 
additional cancer dataset had a positive ΔCCD (Fig. 4B), as did the individual tumor grades in 
the TCGA data (Fig. S11). Among the three TCGA cancer types with the lowest ΔCCD, prostate 
adenocarcinoma had a relatively high non-tumor CCD (suggesting dysregulated clock gene 
co-expression even in non-tumor samples), whereas renal clear cell carcinoma and thyroid 
carcinoma had relatively low tumor CCDs (Fig. S12). To evaluate the statistical significance of 
the ΔCCD, we permuted the sample labels (non-tumor or tumor) in each dataset and 
re-calculated the ΔCCD 1000 times. Based on this permutation testing, the observed ΔCCD for 
11 of the 18 datasets had a one-sided P < 0.001 (Fig. 4B). Taken together, these results 
suggest that the circadian clock is dysregulated in a wide range of human cancers. 
 
Tumors are a complex mixture of cancer cells and various non-cancerous cell types. The 
proportion of cancer cells in a tumor sample is called the tumor purity and is an important factor 
to consider in genomic analyses of bulk tumors ​[57]​. We therefore examined the relationship 
between ΔCCD and tumor purity in the TCGA data. With the exception of thyroid carcinoma and 
prostate adenocarcinoma, ΔCCD and median tumor purity in TCGA cancer types were 
positively correlated (Fig. S13; Spearman correlation = 0.67, P = 0.059 by exact test). These 
findings suggest that at least in some cancer types, dysregulation of the circadian clock is 
stronger in cancer cells than in non-cancer cells. 

Distinct patterns of clock gene expression in human cancer and mouse 
clock knockouts 
Finally, we investigated whether the clock dysregulation in human cancer resembled that 
caused by genetic mutations to core clock genes. We assembled seven datasets of circadian 
gene expression that included samples from wild-type mice and from mice in which at least one 
core clock gene was knocked out, either in the entire animal or in a specific cell type 
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[8,40,58–62]​ (Table S1). For each dataset, we calculated the correlations in expression between 
pairs of clock genes in wild-type and mutant samples and calculated the ΔCCD (Fig. S14 and 
Fig. 5A). 
 
The two datasets with the highest ΔCCD (>50% higher than any ΔCCD we observed in human 
cancer) were those in which the mutant mice lacked not one, but two components of the clock 
(Cry1 and Cry2 in GSE13093; Nr1d1 and Nr1d2 in GSE34018). The ΔCCDs for the other five 
mutants were similar to or somewhat lower than the ΔCCDs we observed in human cancer. 
Given the smaller sample sizes compared to the human cancer datasets, the ΔCCDs for those 
five mutants were not significant (one-sided P > 0.05 by permutation test). In addition, we 
observed no strong trends in the expression levels of individual clock genes in either human 
cancer or mouse clock gene knockouts (Fig. S15). 
 
In each of the clock gene knockouts, rhythmic expression of the clock genes was reduced or 
lost (Fig. S16). Although it was not possible to quantify the rhythmicity of clock gene expression 
in the human cancer datasets directly, we reasoned that a proxy for rhythmicity could be the 
magnitude of variation in expression. Therefore, for each TCGA cancer type and each additional 
human cancer dataset, we calculated the median absolute deviation (MAD) in expression of the 
clock genes in non-tumor and tumor samples. We then compared the log ​2​ ratios of MAD 
between tumor and non-tumor samples to the log ​2​ ratios of MAD between mutant and wild-type 
samples from the clock gene knockout data (Fig. 5B). As expected, samples from clock gene 
knockouts showed widespread reductions in MAD compared to samples from wild-type mice. In 
contrast, human tumor samples tended to show similar or even somewhat higher MAD 
compared to non-tumor samples. These results suggest that the dysregulation of the clock in 
human cancer is not due solely to loss of activity of one or more core clock genes. 

Discussion 
Increasing evidence has suggested that systemic disruption of the circadian clock can promote 
tumor development and that components of a tumor can disrupt the circadian clock. Until now, 
however, the question of whether the clock is functional in primary human cancers has lacked a 
clear answer. Here we developed a simple method to probe clock function based on the 
co-expression of a small set of clock genes. By applying the method to cancer transcriptome 
data, we uncovered widespread dysregulation of the clock in human cancer tissue. 
 
Our approach for detecting a functional circadian clock is based on three principles. First, we 
rely on prior knowledge of clock genes and clock-controlled genes. Second, we account for the 
fact that the clock is defined not by a static condition, but by a dynamic cycle. Our approach 
thus exploits the co-expression of clock genes that arises from (1) different genes having 
different circadian phases and (2) different samples being taken from different points in the 
cycle. Finally, our method does not attempt to infer an oscillatory pattern, but instead uses only 
the statistical correlations between pairs of genes. The assumption is that if the clock is 
perturbed, the correlations will be altered. Although the correlation matrix only partially captures 
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the complex relationship between genes (to fully capture the relationship would require 
modeling the joint probability density of gene expression), it is intuitive and straightforward to 
calculate. Altogether, these principles enable our method to detect the signature of the circadian 
clock in groups of samples whose times of day of acquisition are unknown and whose coverage 
of the 24-h cycle is incomplete. 
 
One limitation of our method is that it is insensitive to the alignment of the circadian clock to the 
time of day, and so cannot detect phase differences between conditions. This limitation, 
however, allowed us to readily construct a reference pattern using data from mice and compare 
it to data from humans, despite the circadian phase difference between the two species ​[49]​. A 
second limitation is that because our method relies on co-expression across samples, it does 
not immediately lend itself to quantifying clock function in single samples. In the future, it may be 
possible to complement the ΔCCD and assess clock function in some datasets by directly 
comparing matched samples from the same patient. 
 
In healthy tissues in vivo, the circadian clocks of individual cells are entrained and oscillating 
together, which is what allows bulk measurements to contain robust circadian signals. 
Consequently, the loss of a circadian signature in human tumor samples could result from 
dysfunction in either entrainment, the oscillator, or both. Dysfunction in entrainment would imply 
that the clocks in at least some of the cancer cells are out of sync with each other and therefore 
free running, i.e. ignoring zeitgeber signals. Dysfunction in the oscillator would imply that the 
clocks in at least some of the cancer cells are no longer "ticking" (albeit in such a way that 
variation in clock gene expression, at least across patients, is not diminished). Given the current 
data, which are based on averaged clock gene expression from many cells, these scenarios 
cannot be distinguished. Furthermore, the moderate correlation between ΔCCD and tumor 
purity across cancer types leads us to speculate that the circadian clocks in stromal and/or 
infiltrating immune cells may be operating normally. In the future, these issues may be resolved 
through a combination of mathematical modeling ​[63,64]​ and single-cell measurements. A 
separate matter not addressed here is how the cancer influences circadian rhythms in the rest 
of the body ​[65]​, which may be relevant for optimizing the daily timing of anticancer treatments 
[66]​. 
 
Based on the current data alone, which are observational, it is not possible to determine 
whether dysregulation of the circadian clock is a driver of the cancer or merely a passenger. 
However, when taken together with the clock's established role in regulating metabolism and a 
recent finding that stimulation of the clock inhibits tumor growth in melanoma ​[23]​, our findings 
suggest that clock dysregulation may be a cancer driver in multiple solid tissues. On the other 
hand, a functional circadian clock seems to be required for growth of acute myeloid leukemia 
cells ​[67]​, so further work is necessary to clarify this issue. 
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Conclusions 
Our findings suggest that dysregulation of the circadian clock is a common mechanism by which 
human cancers achieve unrestrained growth and division. Thus, restoring clock function could 
be a viable therapeutic strategy in a wide range of cancer types. In addition, given the practical 
challenges of studying circadian rhythms at the cellular level in humans, our method offers the 
possibility to quantify clock function in a wide range of human phenotypes using publicly 
available transcriptome data. 

Methods 

Selecting the datasets 
We selected the datasets of circadian gene expression in mice (both for defining the reference 
pattern and for comparing clock gene knockouts to wild-type) to represent multiple organs, 
light-dark regimens, and microarray platforms. For circadian gene expression in humans, we 
included three datasets from blood, two from brain, and one from skin. The samples from blood 
and skin were obtained from living volunteers, whereas the samples from brain were obtained 
from postmortem donors who had died rapidly. For GSE45642 (human brain), we only included 
samples from control subjects (i.e., we excluded subjects with major depressive disorder). 
Zeitgeber times for samples from GSE56931 (human blood) were calculated as described 
previously ​[68]​. For the TCGA data, we analyzed all cancer types that had at least 30 non-tumor 
samples (all of which also had at least 291 tumor samples). When analyzing clock gene 
expression in human cancer, unless otherwise noted, we included all tumor and non-tumor 
samples, not just those from patients from whom both non-tumor and tumor samples were 
collected. For details of the datasets, all of which are publicly available, see Table S1. 

Processing the gene expression data 
For TCGA samples, we obtained the processed RNA-seq data (in units of transcripts per million, 
TPM, on a gene-level basis) and the corresponding metadata (cancer type, patient ID, etc.) from 
GSE62944 ​[50]​. For E-MTAB-3428, we downloaded the RNA-seq read files from the European 
Nucleotide Archive, used kallisto to quantify transcript-level abundances in units of TPM ​[69]​, 
then used the mapping between Ensembl Transcript IDs and Entrez Gene IDs to calculate 
gene-level abundances. 
 
For the remaining datasets, raw (in the case of Affymetrix) or processed microarray data were 
obtained from NCBI GEO and processed using MetaPredict, which maps probes to Entrez 
Gene IDs and performs intra-study normalization and log-transformation ​[70]​. MetaPredict 
processes raw Affymetrix data using RMA and customCDFs ​[71,72]​. As in our previous study, 
we used ComBat to reduce batch effects between anatomical areas in human brain and 
between subjects in human blood ​[49,73]​. 
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Analyzing the gene expression data 
We focused our analysis on the expression of 12 genes that are considered part of the core 
clock or are directly controlled by the clock and that show strong, consistently phased rhythms 
in a wide range of mouse organs ​[3,32]​. We calculated times of peak expression and strengths 
of circadian rhythmicity of expression in wild-type and mutant mice using ZeitZeiger ​[32]​, with 
three knots for the periodic smoothing splines ​[74]​. 
 
We quantified the relationship between expression values of pairs of genes using the Spearman 
correlation (Spearman’s rho), which is rank-based and therefore invariant to monotonic 
transformations such as the logarithm and less sensitive to outliers than the Pearson 
correlation. All heatmaps of gene-gene correlations in this paper have the same mapping of 
correlation value to color, so they are directly visually comparable. 
 
We calculated the reference Spearman correlation for each pair of genes (Table S2) using a 
fixed-effects meta-analysis of the eight mouse datasets shown in Fig. 1 ​[75]​. First, we applied 
the Fisher z-transformation ( ) to the correlations from each dataset. Then we calculatedrctanha  
a weighted average of the transformed correlations, where the weight for dataset  was i ni − 3  
(corresponding to the inverse variance of the transformed correlation), where  is the numberni  
of samples in dataset . Finally, we applied the inverse transformation ( ) to the weightedi anht  
average. 
 
To quantify the similarity in clock gene expression between two groups of samples (e.g., 
between the mouse reference and human tumor samples), we calculated the Euclidean 
distance between the respective Spearman correlation vectors, which contains all values in the 
strictly lower (or strictly upper) triangular part of the correlation matrix. Given a reference and a 
dataset with samples from two conditions, we calculated the Euclidean distances between the 
reference and each condition, which we call the clock correlation distances (CCDs). We then 
calculated the difference between these two distances, which indicates how much more similar 
to the reference one condition is than the other and which we refer to as the delta clock 
correlation distance (ΔCCD). Although here we used Euclidean distance, other distance metrics 
could be used as well. 
 
To evaluate the statistical significance of the ΔCCD for a given dataset, we conducted the 
permutation test as follows: First, we permuted the relationship between the sample labels (e.g., 
non-tumor or tumor) and the gene expression values and recalculated the ΔCCD 1000 times, 
always keeping the reference fixed. We then calculated the one-sided p-value as the fraction of 
permutations that gave a ΔCCD greater than or equal to the observed ΔCCD. Since we used 
the one-sided p-value, the alternative hypothesis was that non-tumor (or wild-type) is more 
similar to the reference than is tumor (or mutant). 
 

9/22 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/130765doi: bioRxiv preprint 

https://paperpile.com/c/2HKvQL/D38qF+JtUF7
https://paperpile.com/c/2HKvQL/0oQN9
https://paperpile.com/c/2HKvQL/JtUF7
https://paperpile.com/c/2HKvQL/WNCrP
https://doi.org/10.1101/130765
http://creativecommons.org/licenses/by/4.0/


To calculate the ΔCCD for individual tumor grades, we used the clinical metadata provided in 
GSE62944. We analyzed all combinations of TGCA cancer type and tumor grade that included 
at least 50 tumor samples. In each case, we calculated the ΔCCD using all non-tumor samples 
of the respective cancer type. 
 
To compare ΔCCD and tumor purity, we used published consensus purity estimates for TCGA 
tumor samples ​[57]​. The estimates are based on DNA methylation, somatic copy number 
variation, and the expression of immune genes and stromal genes (none of which are clock 
genes). 
 
We quantified the variation in expression of clock genes in each dataset and condition using the 
median absolute deviation (MAD), which is less sensitive to outliers than the standard deviation. 

Abbreviations 
ΔCCD: delta clock correlation distance; MAD: median absolute deviation; TCGA: The Cancer 
Genome Atlas; ZT: zeitgeber time; BRCA: breast invasive cell carcinoma; COAD: colon 
adenocarcinoma; HNSC: head and neck squamous cell carcinoma; KIRC: kidney renal clear 
cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: liver hepatocellular 
carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; PRAD: 
prostate adenocarcinoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; UCEC: 
uterine corpus endometrial carcinoma 
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Figures 

Figure 1 

 
Consistent patterns of clock gene co-expression in various mouse organs. (A) Scatterplots of 
expression for three clock genes in lung (GSE59396). Each point is a sample, and the color 
indicates zeitgeber time, where ZT0 corresponds to “lights on.” Expression values of each gene 
were normalized to have mean zero and standard deviation one. (B) Heatmaps of Spearman 
correlation (“rho”) between each pair of clock genes in each dataset. Genes are ordered 
manually by a combination of name and known function in the clock. GSE54650 includes gene 
expression from 12 organs, however to maintain diversity in datasets, we used data from only 
two organs. 
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Figure 2 

 
Consistent patterns of clock gene co-expression in human skin and brain, based on 
transcriptome data designed to quantify circadian variation in gene expression. (A) Scatterplots 
of expression for three clock genes in GSE71620 (gene expression measured in postmortem 
tissue, with zeitgeber time based on time of death). Each point is a sample, and the color 
corresponds to zeitgeber time, where ZT0 corresponds to sunrise. Expression values of each 
gene were normalized to have mean zero and standard deviation one. (B) Heatmaps of 
Spearman correlation between each pair of clock genes in each dataset. Genes are in the same 
order as their mouse orthologs in Fig. 1. 
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Figure 3 

 
Loss of normal clock gene co-expression in tumor samples from various TCGA cancer types. 
(A) Pairwise scatterplots of expression for three clock genes in tumor and adjacent non-tumor 
samples from lung squamous cell carcinoma (LUSC). Each point is a sample. Expression 
values from RNA-seq data are shown in units of log ​2​(tpm + 1). For ease of visualization, two 
tumor samples with very high normalized expression of ARNTL are not shown. (B) Heatmaps of 
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Spearman correlation between each pair of clock genes in non-tumor and tumor samples in 
each cancer type. The eight cancer types with at least 44 non-tumor samples are shown here. 
Four other cancer types with at least 30 non-tumor samples are shown in Fig. S6. Cancer types 
shown are breast invasive cell carcinoma (BRCA), head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung 
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma 
(PRAD), and thyroid carcinoma (THCA). In each cancer type, all tumor samples are used, not 
only those with matched non-tumor samples. 
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Figure 4 

 
Quantifying dysregulation of clock gene co-expression in human cancer. (A) Schematic of 
procedure for comparing patterns of clock gene expression between two conditions in samples 
lacking time of day information. For details of procedure, see Methods. (B) Delta clock 
correlation distance (ΔCCD) between non-tumor and tumor samples in 12 TCGA cancer types 
and six additional datasets. Positive ΔCCD indicates that the correlation pattern of the 
non-tumor samples is more similar to the mouse reference than is the correlation pattern of the 
tumor samples. P-values are one-sided and are based on 1000 permutations between the 
sample labels (non-tumor or tumor) and the gene expression values, and have not been 
adjusted for multiple hypotheses. 
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Figure 5 

 
Dysregulation of the circadian clock in human cancer is distinct from that caused by knockout of 
the clock genes in mice. (A) ΔCCD between wild-type and mutant samples in seven datasets of 
mouse clock gene knockouts. Positive ΔCCD indicates that the correlation pattern of the 
wild-type samples is more similar to the mouse reference than is the correlation pattern of the 
mutant samples. P-values are one-sided and are based on 1000 permutations between the 
sample labels and the gene expression values, and have not been adjusted for multiple 
hypotheses. (B) Heatmaps of the log ​2​ ratio of the median absolute deviation (MAD) of 
expression in tumor compared to non-tumor samples and mutant compared to wild-type 
samples. In the legend, MAD​a​ refers to tumor or mutant samples, MAD​b​ refers to non-tumor or 
wild-type samples. A positive value indicates that the variation in expression of that gene is 
greater in tumor (or mutant) samples than in non-tumor (or wild-type) samples. For RNA-seq 
data (TCGA and E-MTAB-3428), expression values were based on log ​2​(tpm + 1). For 
microarray data, expression values were based on log-transformed, normalized intensity. 
Datasets are ordered by descending ΔCCD. 
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