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 2 

Abstract 17 

Word count: 223 18 

The human microbiome is affected by multiple factors, including the environment and 19 

host genetics. In this study, we analyzed the oral microbiome of an extended family of 20 

Ashkenazi Jewish individuals living in several cities and investigated associations 21 

with both shared household and host genetic similarities. We found that 22 

environmental effects dominated over genetic ones. While there was weak evidence 23 

of geographic structuring at the level of cities, we observed a large and significant 24 

effect of shared household on microbiome composition, supporting the role of 25 

immediate shared environment in dictating the presence or absence of taxa. This 26 

effect was also seen when including adults who had grown up in the same household 27 

but moved out prior to the time of sampling, suggesting that the establishment of the 28 

oral microbiome earlier in life may affect its long-term composition. We found weak 29 

associations between host genetic relatedness and microbiome dissimilarity when 30 

using family pedigrees as proxies for genetic similarity. However this association 31 

disappeared when using more accurate measures of kinship based on genome-wide 32 

genetic markers, indicating that environment rather than host genetics is the dominant 33 

factor affecting the composition of the oral microbiome in closely-related individuals. 34 

Our results support the concept that there is a consistent core microbiome conserved 35 

across global scales, but that small-scale effects due to shared living environment 36 

significantly affect microbial community composition.  37 

 38 

Word count: 145 39 

IMPORTANCE. Previous research shows that relatives have a more similar oral 40 

microbiome composition than non-relatives, but it remains difficult to distinguish the 41 

effects of relatedness and shared household environment. Furthermore, pedigree 42 

measures may not accurately measure host genetic similarity. In this study, we 43 

include genetic relatedness based on genome-wide SNPs (rather than pedigree 44 

measures) and shared environment in the same analysis. We quantify the relative 45 

importance of these factors by studying the oral microbiome in members of a large 46 

extended Ashkenazi Jewish family who share a similar diet and lifestyle despite living 47 

in different locations. We find that host genetics plays no significant role and that the 48 

dominant factor is shared environment at the household level. We also find that this 49 
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effect appears to persist in individuals who have moved out of the parental household, 50 

suggesting that the oral microbiome established earlier in life persists long-term.   51 
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Introduction 52 

The human microbiome is the name given to the collected communities of bacteria 53 

that live on and in the human body. The oral microbiome is one of the most diverse 54 

(1) of any human-associated microbial community (2). The oral microbiome is a 55 

causative factor in conditions such as dental caries (3), periodontal disease (4), and 56 

halitosis (5), and has also been implicated as a reservoir for infection at other body 57 

sites (2) and in the pathogenesis of non-oral diseases, such as inflammatory bowel 58 

disease (6). Strictly speaking there is no single ‘oral microbiome’ as its composition is 59 

highly heterogeneous across different sites in the mouth (7, 8), but the term is 60 

commonly used to encompass all of these. Site-specific microbiomes can be observed 61 

in the periodontal sulcus, dental plaque, tongue, buccal mucosa and saliva (9). The 62 

salivary microbiome exhibits long-term stability and can be considered as an 63 

important reservoir that contains microorganisms from all distinct ecological niches 64 

of the oral cavity. Characterizing and understanding the factors defining salivary 65 

microbial composition is thus crucial to understanding the oral microbiome (10, 11). 66 

 67 

Some factors that are thought to influence the human microbiome include 68 

environment, diet, disease status and host genetics (12). The relative importance of 69 

these factors for the oral microbiome is still under debate, with the majority of 70 

previous studies focusing on the gut microbiome (7-9), although it seems reasonable 71 

to assume some potential interaction between the oral microbiome and microbial 72 

communities in other parts of the human body including the intestinal tract (10). 73 

 74 

There is evidence that genetically related individuals tend to share more gut microbes 75 

than unrelated individuals, whether or not they are living in the same house at the 76 

time of sampling (13, 14). However, the level of covariation is similar in monozygotic 77 

and dizygotic twins, suggesting that a shared early environment may be a more 78 

important factor than genetics (13, 15). The effect of co-habitation with direct and 79 

frequent contact is greatest when considering the skin microbiome, with a less-evident 80 

effect on the gut and oral microbiomes (11).  81 

 82 

There is also evidence that genetic variation is linked to microbiome composition 83 

across other body sites, including the mouth (12), with a recent genome-wide 84 
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association study (GWAS) identifying several human loci associated (p < 5 × 10–8) 85 

with microbial taxonomies in the gut microbiome (16). However, no study to date has 86 

incorporated both genetic relatedness as a continuous variable and shared 87 

environment into the same analysis of the oral microbiome.  88 

 89 

Despite high diversity between individuals, the oral microbiome appears to have little 90 

geographic structure at genus level at the global scale (17). Nevertheless, at smaller 91 

geographical scales it appears that the environment plays a role. Song et al. studied 60 92 

household units and found that the bacterial composition of dorsal tongue samples 93 

was more similar between cohabiting family members than for individuals from 94 

different households, with partners and mother-child pairs having significantly more 95 

similar communities (18). However, this did not include information on genetic 96 

relatedness in addition to family relationships. It appears that household-level 97 

differences in the oral microbiome may also apply to genetically unrelated individuals 98 

and non-partners, with a similar pattern observed in analysis of saliva samples from 99 

24 household pairs of genetically unrelated individuals, only half of whom were 100 

considered romantic couples at the time of sampling (19). 101 

 102 

The establishment of the oral microbiome appears to proceed rapidly in the first few 103 

years of life, with a notable increase in diversity from 0-3 years (18), especially after 104 

the eruption of teeth (20). The oral microbiome also appears stable within individuals 105 

over at least a period of 3 months, with a unique ‘fingerprint’ of oligotypes 106 

discernible even within a single bacterial genus (21). These two facts suggest that the 107 

establishment of a particular oral microbiome composition early in life could 108 

potentially persist into adulthood, particularly if external factors such as diet remain 109 

fixed. 110 

 111 

A recently described large Ashkenazi Jewish family (22) offers an opportunity to 112 

investigate the effect of both environment and genetics in closely-related individuals. 113 

The availability of host genetic data for this cohort means that we can calculate 114 

similarity between individuals based on SNPs, rather than using measures of 115 

relatedness from pedigrees that do not precisely correspond to shared genetic content 116 

(23). We hypothesized that using this more accurate measure of host genetic 117 

similarity could lead to different conclusions about the proportion of shared 118 
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microbiome composition attributable to genetics compared with previous studies. 119 

Furthermore, due to shared cultural practices we can be reasonably confident that 120 

environmental factors such as diet and lifestyle are largely controlled for, compared to 121 

other studies where they may be significant confounders (17). For this reason, this 122 

cohort represents a unique opportunity to compare the oral microbiome within a large 123 

number of individuals living in separate locations but nevertheless sharing a similar 124 

diet, lifestyle, and genetic background, and to investigate the long-term effect of 125 

shared upbringing on oral microbiome composition.  126 

Results 127 

Description of cohort 128 

We found 271 phylotypes in the total dataset, all of which were present when 129 

considering just Family A. 49 of these phylotypes were present in >95% of 130 

individuals within Family A, with the Firmicutes the most abundant phyla (Figure 1a) 131 

as observed in previous oral microbiome studies (15, 24). The most abundant genera 132 

were Streptococcus (30.4%), Rothia (18.5%), Neisseria (17.1%), and Prevotella 133 

(17.1%). Composition of samples was similar between the two families (A and B) and 134 

the unrelated controls (Figure 1b). These groupings had a small but significant effect 135 

in an analysis of variance (R2=0.015, p<0.01) but this is typical of comparisons 136 

between such large groups that may differ in an unknown number of confounded 137 

variables (e.g. diet, genetics, lifestyle). We concluded that Family A was at the very 138 

least a representative sample capturing the majority of the variation present in the 139 

wider Ashkenazi Jewish population, if not also non-Ashkenazi-Jewish individuals (for 140 

comparison with Human Microbiome Project data see Supplementary Figure 4).  141 

 142 

This cohort was originally collected for a study of the genetics of Crohn’s disease 143 

(22), and 28 individuals within our sample had a diagnosis of the disease at the time 144 

of saliva sample acquisition. We found no significant effect of Crohn’s disease on 145 

oral microbiome composition with an exploratory analysis of variance (R2=0.009, 146 

p=0.101, n=148) accounting for other variables. It was therefore not included as a 147 

covariate in further analysis. 148 

 149 

Host genetic similarity is weakly correlated with oral microbiome similarity 150 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2017. ; https://doi.org/10.1101/131086doi: bioRxiv preprint 

https://doi.org/10.1101/131086
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 7 

We performed an exploratory analysis on individuals in Family A with both genetic 151 

and microbiome data available (n=111, Supplementary Figure 5), and found that 152 

genetic kinship was weakly but significantly associated with oral microbiome 153 

dissimilarity computed using Bray-Curtis distances (Supplementary Figure 6; Mantel 154 

test r=0.065, p=0.001). This analysis does not take into account confounding by 155 

shared environment, and therefore sets a probable upper bound on the variation that 156 

can be attributed to host genetics. Household appeared to be related to oral 157 

microbiome composition (Figure 2), but is obviously correlated with variation in host 158 

genetics (Supplementary Figure 7) because parents tend to live with their children. 159 

This emphasizes the need for a quantitative approach looking at the effect of both 160 

household and genetics simultaneously.    161 

  162 

Shared household is the dominant factor affecting oral microbiome composition 163 

We next performed a permutational analysis of variance on the oral microbiome 164 

dissimilarities for 28 individuals within Family A, each of whom lived in a household 165 

with at least one other individual in the cohort. At the time of sampling, these co-166 

habiting individuals lived across a total of 16 households in four cities (I, II, III, IV). 167 

To account for host genetics, we included axes from a metric multidimensional 168 

scaling (MDS) of pairwise genetic distances between individuals as explanatory 169 

variables (see Methods and Supplementary Figure 8).  170 

 171 

There was no significant effect of any of the MDS axes, suggesting that host genetics 172 

in closely-related individuals does not significantly affect microbiome composition. 173 

We investigated the effect of environment using two levels of geography: city and 174 

household (Table 1a). A city-only model showed no significant effect of environment 175 

(R2=0.08, p=0.4), whereas a household-only model showed a significant effect 176 

(R2=0.30, p=0.001). This was reproduced in a model containing both geographic 177 

variables, with permutations stratified by city, where household was still a significant 178 

effect (R2=0.22, p=0.001), suggesting that differences at the level of household are 179 

more important than at larger geographical scales. We confirmed that city-level 180 

effects were small by extending our sample to 82 individuals across the four cities 181 

who were not necessarily cohabiting with others (I: 48, II: 13, III: 12, IV: 9), and 182 

found that city still had a small effect, although it was significant (R2=0.053, p<0.01). 183 
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In this analysis we also found no significant effect of genetics, but age was significant 184 

(R2=0.028, p=0.0101) (Supplementary Table 1).  185 

 186 

Spouses share taxa at the species level 187 

Restricting the analysis to only married couples within Family A (n=16, eight 188 

couples), shared household explained even more of the variance (R2=0.591, p=0.001). 189 

Subtle variations in the relative abundance of phylotypes within the same genus 190 

between households were observable, even within the same city location. For 191 

example, Leptotrichia phylotypes varied consistently between spouse pairs and these 192 

patterns were also seen in children living at home (Figure 3). MED phylotype X2772 193 

was present in both spouses in household A1.7, and was also present in the two 194 

youngest children within that household (aged 10 or under). Similarly, within 195 

household A2.4 the two children aged 10 or under were more similar in Leptotrichia 196 

phylotypes than an older child. Similar patterns with spouses were also visible in 197 

other abundant genera (Supplementary Figure 9). 198 

 199 

Household effects persist in individuals who are no longer co-habiting 200 

There were an additional 35 individuals who had grown up in a household with at 201 

least one other individual present, but who no longer lived together at time of 202 

sampling. To see if the effects of household persisted, we repeated analysis of 203 

variance with these individuals included along with the cohabiting-individuals (n=61, 204 

Table 1b). The effect of household remained significant (R2=0.183, p=0.044), and no 205 

axes of human genetic variation were significant (p>0.05). Age had a significant 206 

effect (R2=0.038, p<0.01).  207 

 208 

Other variables such as age and sequencing plate had smaller effects than household 209 

in all our analyses of variance. However, the order of variables can have an effect 210 

when performing adonis with an unbalanced design. To check this was not biasing 211 

our results, we randomly permuted the order of variables in our model and confirmed 212 

that household was always significant (q<0.05, Benjamini-Hochberg multiple testing 213 

correction) as was age (see Supplementary Material).  214 

 215 

Relying on pedigree kinships produces a genetic signal 216 
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To test whether our conclusions required using kinships estimated from genome-wide 217 

SNP data for individuals, or whether pedigree information was sufficient, we also 218 

repeated our analyses using pedigree kinships (see Methods). Using pedigree kinships 219 

resulted in a small but significant amount of variation in microbiome composition 220 

being attributable to host genetics via MDS axis 4 (R2=0.016, p<0.01, Table 2). 221 

Discussion 222 

We have conducted, to our knowledge, the first simultaneous investigation of the role 223 

of environment and host genetics in shaping the human saliva microbiome in a cohort 224 

of closely-related individuals within a large Ashkenazi Jewish family. We found a 225 

weak correlation between host kinship and oral microbiome dissimilarity before 226 

taking shared household into account, and an apparent small but significant effect of 227 

genetics when using kinships based on the family pedigree as proxies for genetic 228 

similarity. However, when using kinship estimates based on genome-wide SNPs 229 

between individuals and simultaneously controlling for shared household with a 230 

permutational analysis of variance, we find no support for any clear effect of human 231 

genetics, suggesting that shared environment has a much larger effect than genetics 232 

and is the dominant factor affecting the oral microbiome (R2>0.18). We also observe 233 

that shared household explains more variation for spousal pairs than for children, and 234 

that younger children living in the same household share subtle variations in 235 

phylotype abundance within genera with their parents (Figure 3). Taken together, 236 

these observations support the view that human genetics does not play a major role in 237 

shaping the oral microbiome, at least not in individuals of the same ethnicity, 238 

compared to the environment.  239 

 240 

Our results confirm the seemingly paradoxical situation that the oral microbiome is 241 

largely consistent across global geographical scales, but can show large variation 242 

between households in the same city. Previous studies have also found evidence of 243 

small variations in oral microbiome composition comparing samples across a global 244 

scale (17). As noted previously, this variation could be influenced by differences in 245 

environmental or cultural factors, in which case controlling for these differences 246 

would decrease the amount of geographical variation. All individuals in our study 247 

follow a traditional Ashkenazi Jewish lifestyle and subsequently are thought to share 248 
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a similar diet and lifestyle regardless of geographic location (25), which may reduce 249 

the variation attributable to city-level differences.   250 

 251 

The establishment of the oral microbiome early in life may lead to the persistence of a 252 

similar composition over several years. The oral microbiome has been previously 253 

observed to be remarkably persistent within individuals over periods of months (21) 254 

to a year (26), and we see similar strain-level variation between spouses and their 255 

young children (Figure 3). Our results suggest that the oral microbiome composition 256 

established early in life via shared upbringing is able to persist for at least several 257 

years, because of the persistence of household effects in individuals no longer co-258 

habiting. It has been observed that monozygotic twins do not have significantly more 259 

similar gut microbiomes than dizygotic twins (13). Stahringer et al. observed the same 260 

effect in the oral microbiome, and also found that twins’ oral microbiomes became 261 

less similar as they grew older and ceased cohabiting, concluding that ‘nurture trumps 262 

nature’ in the oral microbiome (15). Our findings from a large number of related 263 

individuals rather than twins support this view, including the persistence of shared 264 

upbringing effects. Shared upbringing appears to be the dominant factor affecting 265 

microbiome composition in both the gut and the mouth, rather than genetic similarity. 266 

This may have implications for understanding the familial aggregation of diseases 267 

such as inflammatory bowel disease, which has been suggested to have an 268 

environmental component (27).  269 

 270 

The oral microbiome appears far more resilient to perturbation compared to the gut 271 

microbiome, with a rapid return to baseline composition after a short course of 272 

antibiotics (28). While this could be because of the pharmacokinetics of the 273 

antibiotics involved, Zaura et al. speculate that this difference may be due to the oral 274 

microbial ecosystem’s higher intrinsic resilience to stress, as the mouth is subject to 275 

more frequent perturbation (29). Our work supporting the dominant role of the 276 

environment in affecting oral microbiome composition suggests that another 277 

important factor in long-term persistence may be the regular reseeding of the 278 

ecosystem with bacteria from the external environment.  279 

 280 

The fact that we reached our conclusion about the lack of effect of genetics only after 281 

including kinship based on genome-wide SNP markers casts doubt on the reliability 282 
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of pedigrees for calculating relatedness. There are several possible reasons for a 283 

discrepancy between kinship estimates from pedigrees and allele sharing (23). One 284 

possibility is errors in the pedigree, most likely due to extra-pair paternities, although 285 

this explanation can be ruled out in this dataset. More importantly, inherent 286 

stochasticity in the Mendelian process of inheritance means that although parents 287 

always pass on 50% of their genes to their offspring, SNPs are inherited together in 288 

blocks (i.e. haplotypes), meaning that the relatedness between two offspring in a 289 

family can be substantially different from 50%. Finally, and most importantly for this 290 

closely-related population, shallow pedigrees cannot fully capture complex inbreeding 291 

patterns. Thus, while pedigrees are a good model for host relatedness in microbiome 292 

studies of large randomly mating populations, they should be used with caution in 293 

closely-related large families like this one.  294 

 295 

Limitations 296 

Because all individuals in our main cohort were members of the same extended 297 

Ashkenazi Jewish family, the genetic variation in our dataset is therefore much lower 298 

than between individuals from a wider population. It is conceivable that host genetics 299 

between more distantly-related individuals may play a significant role in affecting 300 

oral microbiome composition. Furthermore, our results only looked at overall genetic 301 

similarity, assessed using community comparison metrics based on taxa abundances. 302 

They therefore do not preclude the existence of fine-scale links between particular 303 

microbial taxa and individual genetic loci, particularly in immune-sensing genes such 304 

as those identified in the gut microbiome by Bonder et al. using a much larger cohort 305 

(30), although our study was not designed or powered to detect such associations.  306 

 307 

Additionally, we lack detailed information on diet and lifestyle factors of individuals 308 

in this study. However, the shared cultural practices within this Ashkenazi Jewish 309 

family mean that it is not unreasonable to assume they share similar lifestyles and diet 310 

despite living in different locations around the world (25).  311 

 312 

The apparent persistence of shared upbringing could be confounded by the fact that 313 

individuals may continue living near to the household where they grew up. If this 314 

were the case, then our observation could instead be due to the persistence of a shared 315 

environment beyond the household at a level intermediate between household and 316 
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city, rather than the persistence of a stable oral microbiome following environmental 317 

change. Finally, our samples represent only a single cross-sectional snapshot in time. 318 

More long-term longitudinal studies like the work of Stahringer et al. on twins (15) 319 

are necessary to investigate the persistence of the oral microbiome after its 320 

establishment early in life in a variety of relatedness settings.   321 

 322 

Conclusion 323 

In summary, our results incorporating a measure of genetic relatedness using SNPs 324 

demonstrate that the overall composition of the human oral microbiome in a large 325 

Ashkenazi Jewish family is largely influenced by shared environment rather than host 326 

genetics. An apparent significant effect of host genetics using pedigree-based 327 

estimates disappears when using genetic markers instead, which recommends caution 328 

in future microbiome research using pedigree relatedness as a proxy for host genetic 329 

similarity. Geographic structuring occurs to a greater extent at household level within 330 

cities than between cities on different continents. Living in the same household is 331 

associated with a more similar oral microbiome, and this effect persists after 332 

individuals have left the household. This is consistent with the long-term persistence 333 

of the oral microbiome composition established earlier in life due to shared 334 

upbringing.  335 

Materials and Methods 336 

Ethics. Ethical and research governance approval was provided by the National 337 

Research Ethics Service London Surrey Borders Committee and the UCL Research 338 

Ethics Committee. Written informed consent was provided by all participants. 339 

 340 

Cohort. Our cohort contained data from 133 individuals within the same extended 341 

family (Family A) living in four disparate cities (I, II, III, IV) across three continents 342 

(see (22) for more information). We also had samples available from 18 individuals 343 

from a separate smaller family (Family B), and 27 unrelated Ashkenazi Jewish 344 

controls. All individuals studied were of genetically confirmed Ashkenazi Jewish 345 

ancestry (22, 25). When not directly available, shared household was inferred 346 

according to age; individuals within this community marry and subsequently leave the 347 

family home at a median age of 21 (95% CI: 19-26) (25). Therefore, we assumed that 348 
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individuals aged 18 or younger at the time of sampling were living with their parents 349 

and individuals aged 25 or older were not.  350 

 351 

For analysis of the effects of household, we included only households with two or 352 

more individuals so as to remove the possibility that we were only measuring inter-353 

individual differences, which can be large in the oral microbiome (17, 21). 26 354 

individuals were living with at least one other individual at the time of sampling in a 355 

total of nine households. An additional 35 individuals who had grown up in a shared 356 

household with at least one other individual in the cohort, but who were no longer 357 

living together were subsequently included in the analysis.  358 

 359 

Sampling. Saliva samples were collected in sterile tubes containing saliva 360 

preservative buffer as per the method of Quinque et al. (31). For full protocol see the 361 

Supplementary Material. 500ml of saliva/preservative buffer were used with 362 

PurElute™ Bacterial Genomic Kit (Edge Biosystems, Gaithersburg, MD) for DNA 363 

extraction. After bacterial DNA extraction, three spikes were added to all samples in a 364 

final concentration of 4pg/ml, 0.4pg/ml and 0.08pg/ml, respectively. 365 

 366 

PCR amplification, purification and sequencing. The Mastermix 16S Basic 367 

containing MolTaq 16S DNA polymerase (Molzym GmbH & Co.KG, Bremen, 368 

Germany) was used to generate PCR amplicons. PCR amplicons were purified in two 369 

rounds using the Agencourt® AMPure® system (Beckman Coulter, Beverly, 370 

Massachusetts) in an automated liquid handler Hamilton StarLet (Hamilton Company, 371 

Boston, Massachusetts). DNA quantitation and quality control was performed using 372 

the Agilent 2100 Bioanalyzer system (Agilent Technologies, Inc., Santa Clara, CA). 373 

We used 785F and 1175R 16S rRNA primers (Supplementary Data Table 1) that 374 

amplified the V5-V7 region of the 16S rRNA gene on the Illumina MiSeq System 375 

(Illumina, San Diego, CA). 376 

 377 

Quality control. To assess technical variation across runs, we spiked samples during 378 

library preparation with a fixed amount of synthetic DNA (see Supplementary 379 

Material). Three unique spike sequences (length 350) were designed which could be 380 

easily identifiable for quality control purposes. We found, as expected, that the 381 

number of spike sequences and the number of putative 16S sequences (length 382 
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between 350 and 380 bases) were negatively correlated with each other due to the 383 

limited total sequencing depth of the Illumina Miseq (Supplementary Figure 1). The 384 

variation in reads corresponding to this spike across samples was independent of run. 385 

We also resequenced a subset of samples without spikes to verify whether spikes 386 

affected our analyses and observed the same qualitative differences (Supplementary 387 

Figure 2), implying that the addition of spikes did not have a negative impact on 388 

downstream analysis. Paired-end reads were merged with fastq-mergepairs in 389 

VSEARCH v1.11.1 (32), discarding reads with an expected error >1. As the expected 390 

length of the V5-V7 region was 369 bases, we discarded sequences with <350 or 391 

>380 bases.  392 

 393 

Clustering and taxonomic classification. Sequences were clustered with Minimum 394 

Entropy Decomposition (MED) (33). MED requires that the variation in read depth 395 

across samples does not differ by several orders of magnitude, so we discarded 396 

samples with fewer than 5,000 reads and subsampled to a maximum number of 397 

20,000 sequences, resulting in 6,353,210 sequences. We ran MED v2.1 with default 398 

parameters (see Supplementary Methods), identifying 271 phylotypes in the dataset 399 

(Supplementary Table 2). MED offers higher resolution compared to Operational 400 

Taxonomic Unit (OTU) picking methods, and has previously been shown to 401 

differentiate the composition of the oral microbiome of individuals over time even 402 

within the same genus (21). We verified that using MED phylotypes gave very similar 403 

compositional dissimilarities compared to using OTUs (Supplementary Figure 3) but 404 

allowed slightly increased statistical power in analysis of variance (see 405 

Supplementary Material), consistent with the literature (33). MED phylotypes had 406 

taxonomy assigned using RDP (34) against the Human Oral Microbiome Database 407 

(HOMD) (35). Comparison to Human Microbiome Project (HMP) oral samples also 408 

indicated that Ashkenazi Jewish individuals do not have a significantly different oral 409 

microbiome from other populations, with Ashkenazi Jewish saliva samples clustering 410 

with non-plaque samples from individuals in the HMP (Supplementary Figure 4). 411 

However, the use of different primers makes it difficult to reach a robust conclusion 412 

on this point. 413 

 414 

Inclusion of host genetics. We investigated the effect of relatedness between 415 

individuals on oral microbiome composition using both genetic kinships (based on 416 
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SNPs) and pedigree kinships (based on the pedigree). We calculated pedigree 417 

kinships with kinship2 (36) and genetic kinships with LDAK v5.94 (37) using 418 

genome-wide SNP data from either the Illumina HumanCytoSNPv12 (Illumina, USA) 419 

or the Illumina HumanCoreExome-24, as described previously (22). These genetic 420 

kinships 𝑘! are normalized to have a mean of zero, and correspond to genetic 421 

similarity between individuals. 𝑘!correlates with the pedigree kinship 𝑘! but there 422 

can be substantial spread around the expected values due to the random nature of 423 

genetic inheritance (Supplementary Figure 4a), making 𝑘! a more accurate measure 424 

of true genetic similarity between individuals (23).We converted these kinships to 425 

dissimilarities and then Euclidean distances (Supplementary Information) which were 426 

used in a multidimensional scaling (MDS) ordination (Supplementary Figure 8). 427 

Following Blekhman et al. (12) we used MDS with five axes as covariates in a 428 

permutational analysis of variance of oral microbiome dissimilarities. 429 

 430 

Statistical analysis. We calculated Bray-Curtis dissimilarities between samples based 431 

on relative abundances of phylotypes, excluding samples with fewer than 1000 reads. 432 

Variance explained in Bray-Curtis dissimilarities was calculated using the adonis 433 

function from the vegan v2.4.1 package in R, which performs a permutational 434 

analysis of variance of distance matrices (38). We used n=9999 permutations, with 435 

permutations stratified by geographical sample location where appropriate.  436 
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Figure legends 578 

Figure 1. This cohort contains a representative sample of variation in oral 579 

microbiome composition. (a) Relative abundance of the six bacterial phyla found in 580 

saliva samples from Family A, sorted by decreasing Firmicutes content. Color scheme 581 

adapted from Stahringer et al. (15). Taxonomy was assigned to 271 MED phylotypes 582 

using RDP based on the HOMD database. (b) Non-metric multidimensional scaling 583 

based on Bray-Curtis distances between samples shows high overlap between Family 584 

A (black circles), Family B (red triangles), and unrelated Ashkenazi Jewish controls 585 

(blue diamonds). 586 

 587 

Figure 2. Oral microbiome composition is associated with household. Oral 588 

microbiome samples cluster by household (colours), shown by (a) a non-metric 589 

multidimensional scaling based on Bray-Curtis distances between samples from 590 

individuals in a particular subfamily (n=44) within Family A. This figure includes 591 

individuals who are currently living together (filled circles), those who had moved out 592 

of their childhood home (empty circles), and those for whom data was missing (faint 593 

circles). This clustering could be due to shared environment or also due to shared 594 

genetics, as is obvious from (b) the pedigree. 595 

  596 

 Figure 3. Household-level variation within a genus, shown here with the relative 597 

abundance of phylotypes within Leptotrichia. The relative abundance of phylotypes 598 

within seven pairs of spouses shows clear associations with household. These patterns 599 

are to some extent recapitulated in their children. Looking at children still living at 600 

home, MED phylotype X2772 is not observed in any individual from household A2.4, 601 

but is found in both spouses and two children living in household A1.7. Red dots 602 

indicate children aged 10 or under at time of sampling, who appear more similar to 603 

each other than other pairs of children. For variation within the top twelve most 604 

abundant genera between spouses, see Supplementary Figure 9.   605 
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(a) 26 

individuals City only Household only City and household* 

 

R2 p R2 p R2 p 

Sequencing 

plate 0.048 0.190 0.048 0.075 0.048 0.458 

Gender 0.032 0.724 0.032 0.4 0.032 0.467 

Age 0.069 0.017 0.069 0.004 0.069 0.013 

MDS1 0.031 0.757 0.031 0.537 0.031 0.727 

MDS2 0.050 0.142 0.050 0.052 0.050 0.099 

MDS3 0.030 0.807 0.030 0.585 0.030 0.862 

MDS4 0.049 0.162 0.049 0.054 0.049 0.097 

MDS5 0.029 0.824 0.029 0.614 0.029 0.791 

City 0.080 0.400 - - 0.080 0.178 

Household - - 0.300 0.001 0.220 0.001 

Residuals 0.582 - 0.362 - 0.362 - 

Total 1.000 - 1.000 - 1.000 - 

(b) 61 

individuals City only Household only City and household* 

 

R2 p R2 p R2 p 

Sequencing 

plate 0.029 0.018 0.029 0.012 0.029 0.013 

Gender 0.018 0.258 0.018 0.219 0.018 0.257 

Age 0.038 0.002 0.038 0.001 0.038 0.002 

MDS1 0.014 0.668 0.014 0.607 0.014 0.740 

MDS2 0.017 0.362 0.017 0.305 0.017 0.440 

MDS3 0.020 0.173 0.020 0.141 0.020 0.263 

MDS4 0.020 0.150 0.020 0.118 0.020 0.147 

MDS5 0.012 0.783 0.012 0.744 0.012 0.943 

City 0.056 0.149 - - 0.056 0.934 

Household - - 0.239 0.021 0.183 0.044 

Residuals 0.777 - 0.594 

 

0.594 

 Total 1.000 - 1.000 

 

1.000 

 Table 1. Permutational analysis of variance (adonis) results based on (a) 26 co-606 

habiting individuals who lived in the same household as at least one other individual 607 

and (b) 61 individuals who had at least co-habited at some point. *Permutations 608 

stratified by city in this analysis.   609 
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Pedigree (kinship2) Genome-wide SNPs (LDAK) 

 

R2 p R2 p 

Sequencing plate 0.028 <0.001 0.028 <0.001 

Gender 0.011 0.094 0.011 0.096 

Age 0.023 <0.001 0.023 <0.001 

MDS1 0.010 0.174 0.011 0.119 

MDS2 0.007 0.706 0.010 0.231 

MDS3 0.012 0.063 0.011 0.131 

MDS4 0.016 0.009 0.011 0.111 

MDS5 0.009 0.325 0.007 0.617 

Parental household 0.215 <0.001 0.217 <0.001 

Residuals 0.670 - 0.671 - 

Total 1 - 1 - 

Table 2. Comparison of pedigree-based and genome-wide measures of kinship to take 610 

host genetics into account in a permutational analysis of variance (adonis) on oral 611 

microbiome dissimilarities of n=111 individuals. Using pedigree information to 612 

produce kinship results in a significant association with human genetics via the fourth 613 

MDS axis, which is not present using kinships calculated with LDAK based on 614 

genome-wide SNPs.  615 
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