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Abstract

Visual acuity is greatest in the centre of the visual field, peaking in the fovea and 1

degrading significantly towards the periphery. The rate of decay of visual performance 2

with eccentricity depends strongly on the stimuli and task used in measurement. While 3

detailed measures of this decay have been made across a broad range of tasks, a 4

comprehensive theoretical account of this phenomenon is lacking. We demonstrate that 5

the decay in visual performance can be attributed to the efficient encoding of binocular 6

information in natural scenes. The efficient coding hypothesis holds that the early 7

stages of visual processing attempt to form an efficient coding of ecologically valid 8

stimuli. Using Independent Component Analysis to learn an efficient coding of 9

stereoscopic images, we show that the ratio of binocular to monocular components 10

varied with eccentricity at the same rate as human stereo acuity and Vernier acuity. 11

Our results demonstrate that the organisation of the visual cortex is dependent on the 12

underlying statistics of binocular scenes and, strikingly, that monocular acuity depends 13

on the mechanisms by which the visual cortex processes binocular information. This 14

result has important theoretical implications for understanding the encoding of visual 15

information in the brain. 16

Introduction 17

It has long been known that visual acuity is greatest in the centre of the visual field, 18

peaking in the fovea and degrading significantly towards the periphery [1], [14]. For very 19

simple tasks, such as detection of low contrast targets, the rate of change of the cortical 20

magnification factor is correlated with the rate of change of task performance [26]. 21

Indeed, substantial evidence has been provided to link performance with the physiology 22

of the human visual system; our fundamental visual acuity [31] and sensitivity to 23

differences in orientation [4], and spatial frequency [25,26], are all linked to the density 24

of retinal ganglion cells. 25

Detailed psychophysical measurements of these performance differences are of great 26

theoretical importance as they identify informational bottlenecks in visual 27

processing [15]. If Vernier acuity for example is limited, then any task dependent on the 28

same information will be limited to the same degree [15]. This theoretical insight is 29

particularly revealing given that the effects of eccentricity can be directly related to 30

physiological properties such as the density of retinal ganglion cells (for simple 31

tasks) [25,26] or the organisation of ocular dominance columns (in the case of Vernier 32

acuity and crowding) [15]. 33
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In binocular vision, human depth acuity is substantially poorer in eccentric regions 34

than predicted by cortical magnification [9], however the rate of decay is similar to that 35

for Vernier Acuity [27, 29]. The decay rate is also dependent on the spatial frequency of 36

the stimulus, with feature detection substantially less accurate at eccentric locations for 37

fine scale features than for coarse-scale features [27]. 38

These physiological and psychophysical measures provide insight into the 39

mechanisms of early vision, however understanding why the visual system works the 40

way it does requires a different approach. The visual scene contains many redundancies 41

that can be exploited in order to process stimuli. Barlow proposed that early stages of 42

the visual system (retina-LGN-V1) form an efficient coding of ecologically valid 43

stimuli [3]. This idea was further developed by Marr who proposed a visual hierarchy of 44

neurons specialised to detect particular specific visual patterns depending on the 45

relative frequency of their occurrence [19]. 46

Olshausen and Field showed that Independent Component Analysis applied to 47

inputs from photographs produced filters with a similar structure to the receptive fields 48

of simple cells in V1 [22]. Similar results were found for binocular images by Hoyer and 49

Hyvärinen [11]. As with simple-cell receptive fields, ICA components can be 50

characterised in terms of their position, frequency, phase, orientation and binocular 51

properties. The distributions of ICA component characteristics share substantial 52

similarities with the distributions of V1 receptive fields, in particular the distributions 53

of horizontal and vertical disparities closely resemble the distributions of horizontal and 54

vertical disparities in V1 [12]. 55

We propose that the requirement for binocular vision imposes a constraint on the 56

finest spatial scale at which visual processing can reliably occur. This threshold of 57

binocularity constraint can then account for both the reduction of binocular acuity with 58

eccentricity and stimulus wavelength, and also the reduction in acuity for purely 59

monocular tasks. As such, the need for binocular vision can be seen as imposing a 60

fundamental bottleneck on visual encoding which extends beyond the requirements of 61

binocular depth perception, and provides a direct explanation for the overall fall-off in 62

visual acuity with eccentricity. 63

Threshold of Binocularity 64

Central to our theory is the idea that some visual features are optimally encoded 65

binocularly, resulting in binocularly tuned cells. Conversely, other features are optimally 66

encoded monocularly leading to cells the respond maximally to features in one eye only. 67

Typically, ICA will learn both monocular and binocular components [11,12]. In both 68

cases, this reflects the redundancy present in natural binocular images. As eccentricity 69

increases, the distribution of binocular disparities increases [10,18,23,28] thus reducing 70

the similarity expected in a corresponding region of an image pair across the two eyes. 71

For a given image eccentricity, the degree to which binocular processing is possible 72

will depend on the availability of a sufficient number of binocular components. Since 73

this will depend on the spatial scale of analysis, we can define a Threshold of 74

Binocularity: the smallest spatial scale at which sufficient binocular components exist to 75

support binocular processing. Given the dependence of binocular components on both 76

eccentricity and scale, the Threshold of Binocularity will increase with eccentricity. It 77

follows from this that binocular processing will then only be possible at increasingly 78

coarse spatial scales as eccentricity increases. Fine scale features in eccentric regions 79

that cannot be binocularly matched would need to be processed monocularly and would 80

not (at least directly) form part of a cyclopean percept. The Threshold Angle of 81

Binocularity thus poses a constraint on the highest spatial scale of processing, at each 82

image eccentricity, that is consistent with binocular integration. Critically, if we wish to 83

ensure binocular vision across the visual field, then it follows that both monocular and 84
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binocular processing will be constrained to only occur at progressively coarser scales 85

with increasing eccentricity. 86

Results 87

We generated an efficient coding of stereoscopic images using Independent Component 88

Analysis. The proportion of binocular components varied substantially depending on 89

both the angle of eccentricity and the wavelength of the feature, as shown in Figure 1. 90

The proportion of binocular components is close to zero at short wavelengths and large 91

eccentricities, and close to 1 at long wavelengths and small eccentricities. This arises 92

because long wavelength features are more likely to overlap in each view and thus merge 93

into a single binocular feature. Similarly, since the range of disparities is greater at 94

larger eccentricities than in the fovea [10,28], we would expect a lower proportion of 95

binocular components in these areas. Between these two points a clear and rapid

Figure 1. 2D histogram
of the proportion of binocu-
lar components across wave-
length and eccentricity. Fig-
ure 1. Red shows 100% binocu-
lar, while blue shows 0% binoc-
ular components in each wave-
length/eccentricity bin. The black
line shows the Threshold of Binoc-
ularity (50% binocular compo-
nents by linear interpolation).

96

transition occurs 97

from predominantly monocular 98

components to predominantly 99

binocular components. We 100

defined the threshold of binocularity 101

as the iso-contour where 50% 102

of components were binocular and 103

50% monocular. This threshold was 104

estimated be linear interpolation 105

and is shown as a black line 106

in figure 1. We used the iso-contour 107

of this transition to calculate 108

the rate of decay with eccentricity, 109

E2 which we found to be 0.7421. 110

This is high similar to the human 111

stereo-acuity results presented 112

by Fendick and Westheimer of 113

E2= 0.81 ( [9] as reported by [29]). 114

115

A wavelength-eccentricity surface on binocular thresholds. 116

E2 captures a linear effect of eccentricity in one dimension only. In the previous 117

analysis, E2 was used to describe the effect of eccentricity on the wavelength threshold: 118

the spatial scale up to which binocular processing can occur, given the components 119

learned through ICA. An alternative approach is to analyse the impact of both 120

eccentricity and scale on the ratio of binocular to monocular components. In this 121

approach E2 is calculated for each wavelength by measuring the slope of the 122

binocular/monocular ratio, i.e. the rate of performance decline for each wavelength. A 123

2D sigmoid function was fitted to the data as a smoothing function and E2 was 124

calculated as the eccentricity at which the ratio of binocular/monocular components 125

was half of that of the fovea. The fitted sigmoid function is plotted in Figure 1. The 126

iso-contour showing the binocular threshold hold (at 50% binocular) is shown in black, 127

this is the omnibus E2 from the previous experiment. E2 for each wavelength is 128

calculated on vertical slices of the 2D sigmoid take at each wavelength. 129

Values of E2 for each wavelength are shown in Table 1. Results reported for human 130

stereo-acuity by Siderov and Harwerth 9 are shown where there is appropriate data. It 131

is worth noting that our estimate of E2 matches that of Siderov and Harwerth at 7.5 132
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Figure 2. Proportion of binocular components across wavelength and eccen-
tricity.. The heatmap shows the iso-contours of a sigmoid fitted to the datapoints (blue
marks). The iso-contour showing 50% binocular is highlighted in black.

c/arcmin however only one wavelength from their data lies within the reliable range of 133

our data. The second comparison at 30 arcmin is within the standard error of the result 134

quoted by Siderov and Harwerth however our value is outside the range of our results 135

and has been imputed.

Table 1. E2 and Binocular/monocular threshold values from fitted sigmoid in figure 2 for selected wavelengths.
See main text for details of calculation. *- Values outside of the range of the data are not reliable.

E2 Siderov and Harwerth 1994
Wavelength (arcmin) Threshold (arcmin) E2 (standard deviation in brackets)

4 1.77622 1.73133
5 2.007294 2.449983
6 2.836966 3.238440

7.5 4.081473 4.081473 3.8 (0.6)
9 5.325981 5.706599
13 8.644669 9.024467
27 20.260074 20.639863
30 22.749090 23.128878 13.4 (9.5)

136

Comparing our predictions with human obervers 137

Our ICA results allow us to predict E2, the rate of decay in stereoscopic visual acuity 138

with eccentricity. In order to validate our prediction, we compared our results with 139

measurements of E2 in humans obtained psychophysically. Figure 3 shows a log-log plot 140

of E2 as estimated from the fitted 2D psychometric function together with data from 141

Siderov and Harwerth [27] table 3. Siderov and Harwerth gathered data from two 142

observers; both are plotted in figure 3 together with the mean across the two. E2 was 143

estimated from the 2D psychometric function (Table 1) and plotted as a black line. As 144

the frequencies of the two plots do not overlap the psychometric measurements of 145

Siderov and Harwerth were interpolated over the range of ICA frequencies using linear 146

regression. ICA data was interpolated over the range of Siderov and Harwerth by 147
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sampling from the fitted psychometric function as wavelengths greater than those 148

measured using ICA. Both ICA predictions and psychometric measurements match 149

closely, with all ICA predictions lying within one standard deviation of the average 150

psychophysical measurements. ICA predictions also closely match the linearly 151

interpolated average from Siderov and Harwerth. The log-log gradient of Siderov and 152

Harwerth was close to unity (-0.95), showing a linear relationship between frequency 153

and E2, the gradient of our ICA data was -1.265, this is slightly surprising given the 154

linear relationship between wavelength and eccentricity in our psychometric function, 155

this effect is due to the proportion of binocular components being less than 100% at 156

zero eccentricity. We do not measure the binocular/monocular ratio at zero eccentricity 157

but rather from the area between zero and 150 arcmin. 158

Figure 3. Combined log-log
plot of psychophysical mea-
sures of E2 from 9 and ICA
predications of E2. ICA pre-
dictions sampled from the
fitted psychometric function
are shown as a solid black
line, diamonds mark samples
taken from frequencies where
the threshold is contained
within the range of eccentric-
ities in the original images
(≈4 to 12 arcmin see figure
2), circles mark E2 values in-
terpolated from the fitted 2D
psychometric function. Data
from [27] is shown as vari-
ous shades of blue lines. In-
dividual participant E2 are
shown as cyan lines, the thick
lines showing the measured
E2, thin lines showing the
first standard deviation, ac-
tual sample points are shown
as a filled circle. The av-
erage across participants is
shown as a dark blue line, the
thick line showing the mean
E2, thin dark blue lines show-
ing the first standard devia-
tion. The psychophysically
measured functions were in-
terpolated across the range
of the ICA predictions by fit-
ting a standard linear equa-
tion. Linearly interpolated
lines are shown as dashed
lines in the colour of the in-
terpolated function.
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Discussion 159

Independent Component Analysis learns a sparse efficient linear coding of the binocular 160

image space within a small portion of the image. Each component consists of a set of 161

spatially close samples that vary linearly with respect to one another. A single 162

binocular component forms a more efficient coding than two monocular components, so 163

the appearance of monocular components indicate that in these regions of the binocular 164

image space few correlations between left and right views exist. 165

There is a clear effect of wavelength on the proportion of binocular components that 166

can be seen in figures 1& 2. The proportions of binocular components and by extension 167

the proportion of monocular components can be seen to approximate a sigmoid function 168

from which we were able to calculate an approximation to the threshold between 169

predominately binocular and predominately monocular components. A high prevalence 170

of monocular components at a particular wavelength or eccentricity indicates that most 171

low-level features vary independently from each other at that particular wavelength and 172

location. It is not unreasonable to believe that humans would perform poorly in 173

binocular tasks at eccentricities and wavelengths where monocular components 174

predominate. Psychophysical measurement of binocular acuity by Siderov and 175

Harwerth [27] show that this is indeed the case, with both lower binocular acuity and a 176

steeper reduction in visual acuity with eccentricity for high frequency stimuli compared 177

with low frequency stimuli Siderov and Harwerth [27]. 178

We found that the binocular threshold wavelength varies in an approximately linear 179

fashion with eccentricity, with an E2 of 0.74. In terms of frequency the binocular 180

threshold function varies in the inverse exponential decay expected of an eccentricity 181

function. This result places the rate of change of the binocular threshold squarely with 182

the range of results of both binocular depth acuity [9, 27]. We have also shown that 183

both the predicted values and general trend of our predications lie within one standard 184

deviation of psychophysical measurements of E2 in humans [27]. This indicates that 185

human binocular visual performance in eccentric regions is optimised to the statistics of 186

binocular natural images. 187

The substantial reduction in monocular visual acuity with visual eccentricity has not 188

yet been fully explained. Weymouth proposed retinal ganglion cells as the bottleneck on 189

eccentric visual performance [31]. However, the greater loss of visual acuity in positional 190

(e.g. Vernier) [16] and recognition [1] tasks verses simple motion detection [17] indicates 191

that loss of fidelity occurs after retinal-ganglion cell computation. 192

Levi linked Vernier acuity to the structure of ocular dominance columns by 193

measuring the range at which crowding affects Vernier acuity performance and 194

comparing this retinotopically to the size of ocular dominance columns in V1. This 195

indicates a physiological link between a purely monocular task and the binocular 196

processing structure of the visual cortex. Binocularly tuned regions in V1 are physically 197

located in close proximity to ocular dominance columns in layer 4 of V1 and are 198

stimulated by feed-forward connections from these columns [21]. 199

The value of E2 (0.74) measured here lies within the range of both binocular depth 200

acuity (0.81 [9, 27] and monocular Vernier acuity (0.62-0.77) [16]. When put together 201

with the physiological and psychophysical evidence that binocular depth acuity and 202

monocular Vernier acuity are linked this suggests a strong link between the underlying 203

statistical properties of binocular natural images and monocular visual acuity. This 204

reflects a strong correlation between acuity thresholds for Vernier and stereoscopic 205

tasks [20]. 206

Formation of ocular dominance columns is widely viewed as being, at least in part, a 207

response to the properties of visual stimuli [6]. Previously Chklovskii used wire-length 208

minimisation to suggest a link between binocular disparity and ocular dominance 209

columns [5]. The physiological evidence together with the psychophysical evidence 210
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indicate that both Vernier acuity and binocular acuity are limited by the same processes 211

in V1. 212

We have found that the proportion of monocular to binocular components increases 213

with eccentricity and this increase occurs at the same rate as both binocular depth 214

acuity and monocular position acuity as measured in humans psychophysically. This 215

indicates that binocular visual acuity is tuned to the statistics of natural images. 216

Moreover, monocular visual acuity is linked to binocular acuity and therefore to the 217

statistics of binocular images. 218

Further thoughts 219

Binocular vision produces substantial advantages through enhanced signal to noise ratio, 220

greater visual acuity and a direct perception of stereoscopic depth. Most of these 221

benefits are found in the area of the fovea and toward the peripheries these benefits are 222

greatly reduced. Adopting a binocular configuration is a trade-off between the added 223

benefits in the fovea against reduced binocular fidelity in the peripheries. 224

Materials and Methods 225

The dataset 226

We used the binocular photographic image set of [10] as a source of natural images. The 227

image-set consists of scenes covering a wide range of depths and disparities, from 228

interior still life scenes on a light-table to outdoor scenes of woodland and beaches, 229

taken around the town of St Andrews in Scotland, UK. The images were taken using a 230

DSLR camera seated on a horizontal slide mount. Two images were taken of each scene, 231

separated using the slide mount by 65mm, close to the average inter-pupillary 232

separation for human adults [8]. In all scenes the cameras were independently verged 233

and focused on an object in the centre of the image. This arrangement is intended to 234

approximate human binocular vision. 235

Preprocessing 236

Pairs of 25 by 25 pixel square patches were cut from the binocular images. Each pair of 237

patches were cut from identical pixel locations within both left and right photographic 238

images. Disparities in the scene are captured as small differences between the left and 239

right rectangular image patches in each pair. 240

The raw patch images undergo a pre-processing stage in order to perform gain 241

control and in order to meet the assumptions of the FastICA algorithm. 242

Given two raw vectorised images patches ẋi,l and ẋi,r representing image patches 243

cut from the left and right binocular images respectively, the vectors are centred by 244

independently subtracting the mean from each vector. The vectors are independently 245

normalised to remove the effects of local illumination. 246

x̂i =

[
ẋi,l
||ẋi,l||

,
ẋi,r
||ẋi,r||

]
(1)

This function approximates gain control systems in early binocular features [7], reducing 247

luminance differences between the two eyes and enhancing the phase differences that we 248

are interested in. The FastICA algorithm requires normalised vectors, 249

xi =
x̂i
||x̂i||

(2)
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Independent Component Analysis 250

We used Independent Component Analysis [13] on pairs of 25 by 25 pixel patches cut 251

from identical locations relative to the top left of the image in both left and right views, 252

this results in on square patch for each eye. As the sample location is fixed within the 253

photographic frame binocular disparity within the scene is manifested as shift in 254

location of the feature in one eye relative to another. The FastICA algorithm [13] 255

attempts to learn a sparse linear decomposition of the dataset by maximising the 256

Gaussianity of the loading (weights) matrix. If the underlying structure of the input 257

dataset is linear-sparse, ICA will learn a sparse linear decomposition. The set of 258

normalised image patches xi form the matrix X. ICA decomposes X into two matrices, 259

a factor matrix W and score matrix A as, 260

X = WA (3)

The columns of W are the independent components used in this analysis. The FastICA 261

algorithm attempts to find A such that its elements are maximally non-Gaussian. 262

FastICA is a two stage process; a whitening pre-processing step using Principal 263

Component Analysis and the ICA algorithm itself. Whitening using PCA is a necessary 264

step to the FastICA algorithm [13] that acts as a low filter on the patch samples 265

removing high frequency information. As high frequency information has a lower signal 266

to noise ratio than low frequency information a low pass filter acts to reduce noise an 267

increase the signal to noise ratio [2]. Together with the limits set by the patch size this 268

stage produces a bandpass filtered representation of the binocular image data. 269

0.1 Eccentricity Regions 270

In order to examine the effects of eccentricity we restricted the sample area of the 271

binocular image to a ring defined by angular eccentricity. Three regions were chosen; a 272

5◦central region from a radius of 0 to 150 arcmin, a central region also covering 5◦of 273

visual arc from 150 arcmin to 300 arcmin radius and a 10◦region from 300 to 600 274

arcmin. The total area of the visual field covered by the analysis was 20◦in diameter. 275

The sample regions are shown in Figure 4. Separate sets of patches were cut from the 276

binocular image set from each of the three regions and separate sets of ICA component 277

produced for each region. 278

Figure 4. Eccentricity re-
gions used in this analysis.
Each region is defined by it’s
angle of eccentricity in ar-
cmins from the centre of the
binocular image.

In total 279

3 groups of 100,000 25 by 25 by 280

2 pixel image patches were cut from 281

each region in the binocular images. 282

Each 25 by 25 pixel patch was cut 283

from identical locations in both left 284

and right images, as measured from 285

the top-left edge of the image, and 286

combined into a single binocular 287

patch. Provided the disparities 288

are smaller than the patch sizes, 289

disparities between left and right 290

images are retained within the cut 291

patches. In order to capture a wider 292

range of disparities and component 293

frequencies than can be achieved 294

within a 25 by 25 by 2 image patch 295

we down-sampled the images at 296

multiple scales and resampled the 297
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image regions. For each scale and image region we learned a set of sparse linear basis 298

functions using Independent Components Analysis [13], resulting in 200 components 299

(see figure 5 for examples). 300

Figure 5. Examples of
binocular linear components
learned using Independent
Component Analysis.

The entire process of image rescaling, patch sampling and ICA was repeated 10 times 301

to produce 2000 components per region and scale combination. The linear components 302

learned in this fashion resemble the receptive fields of simple-cells in V1 [11,12,22,24]), 303

allowing for comparison between the distribution ICA components learned from natural 304

images and the distribution of known simple-cells in V1 [12,24,30]. The distribution of 305

frequencies across all learned components is shown in figure 6. Components varied in 306

the energy ratio between left and right eye parts, components with at least two thirds of 307

energy in one eye were classified as monocular, components will a more equal energy 308

distribution, at least one third of energy in each eye, were classified as binocular.

Figure 6. Histogram of the
wavelengths of ICA compo-
nents from all sample resolu-
tions and eccentricities. The
distribution of wavelengths
for each individual sample
resolution is not uniform re-
sulting in a non-smooth dis-
tribution of wavelength. The
local peaks show the separate
maxima for each of the sam-
ple resolution sets.

309

Cortical Magnification Factor 310

To explain this loss of acuity, the concept of the cortical magnification (M) was 311

introduced by Rovamo et al. to measure the ratio between surface area of the visual 312

cortex and the angle of visual field to which it is retinotopically mapped [26]. This 313

factor varies across the visual field such that the inverse of M is roughly proportional to 314

the angle of eccentricity. In a psychophysical context, the inverse M−1 represents a 315

measure of sensitivity, such as the just noticeable difference between stimuli, or the 316

minimum angle of resolution (MAR), depending on the experimental method and 317

stimuli. It is assumed that visual sensitivity reflects the cortical resources that are 318
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devoted to representing visual information at each position in the image. E2 has the 319

same interpretation in both contexts, allowing direct comparisons to be drawn between 320

psychophysical and physiological measures. The Cortical Magnification Factor (M) is 321

the ratio between the surface area of the visual cortex and the angle of visual field to 322

which it is retinatopically mapped [26]. This factor varies across the visual field such 323

that the inverse of M is roughly proportional to the angle of eccentricity. M−1 can 324

therefore be described as: 325

M−1 = M−1
0 · (1 + E/E2) (4)

Where E is the eccentricity in degrees of visual arc, M−1
0 is the inverse cortical 326

magnification factor (◦/mm) at the fovea (E = 0◦). E2 is the eccentricity at which the 327

inverse cortical magnification factor is doubled relative to the fovea (or equivalently the 328

cortical magnification factor is halved relative to the fovea). In a psychophysical 329

context, M−1 represents a measure of sensitivity, such as the just noticeable difference 330

between stimuli, or the minimum angle of resolution (MAR), depending on the 331

experimental method and stimuli. It is assumed that visual sensitivity reflects the 332

cortical resources that are devoted to representing visual information at each position in 333

the image. E2 has the same interpretation in both contexts, allowing direct comparisons 334

to be drawn between psychophysical and physiological measures. 335

Threshold of Binocularity 336

We define the Threshold of Binocularity as the iso-contour where the ratio of binocular 337

to monocular components generated by our learned model is 0.5 (see figure 1). 338

The rate of change of the Threshold of Binocularity can be measured in a similar 339

manner to the Cortical Magnification Factor and the Minimum Angle of Resolution, 340

using a slightly modified version of equation 4. Here S0 is the wavelength of the 341

binocular/monocular threshold at an eccentricity of 0◦and we replace MAR with the 342

threshold of binocularity: 343

ToB = S0

(
1 +

E

E2

)
(5)

The values of S0 and E2 were determined from the data by using standard 344

regression techniques, assuming that measurement errors were distributed normally. We 345

found that S0 = −0.005◦ and E2 = −0.7421. As S0 indicates a negative wavelength at 346

the fovea which is physically impossible, this results from interpolation from data-points 347

in the middle of the heatmaps bins. As S0 is negative E2 is negative also, as this is a 348

linear we can simply take the absolute value of E2. For the Threshold of Binocularity, 349

E2 represents the rate of decrease, with eccentricity, of the maximum spatial wavelength 350

at which binocular processing can occur. 351

A wavelength-eccentricity surface on binocular thresholds. 352

The ToB as calculated from our ICA resembles a sigmoid function. In order to extend 353

our analysis to consider both eccentricity and wavelength we need to define a sigmoid 354

function over two-dimensions. We define a probability p(β|µ, λ) of a sample component 355

taken from eccentricity µ and wavelength λ that the component is binocular. The 356

probability that the component is monocular is then 1− P (β|µ, λ). The standard 357

sigmoid can be extended to a two-dimensional form as: 358

P (β|µ, λ) =
1

1 + e−f(µ,λ)
(6)
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Where f is a simple linear function 359

f(µ, λ) = a+ bλ+ cµ (7)

The free parameters a,b,& c were determined by fitting p(β|µ, λ) to our data using 360

least squares minimisation tools from Matlab’s curve fitting toolbox. 361

The ToB is the iso-contour of the 2D sigmoid function where the value 362

p(β|µ, λ) = 0.5. 363

The 2D sigmoid forms 1D sigmoids in both the wavelength and eccentricity 364

dimensions (to see this hold either λ or µ constant). The threshold function can be 365

directly calculated from the linear equation 5 (to see this set equation 6 equal to 0.5). 366

E2 as defined in equation 4 is a linear equation, in this form it cannot be calculated 367

from a sigmoid. However, an alternative definition of E2 defines E2 as the ‘eccentricity 368

at which [the stimulus size] is twice the foveal value’ [29]. In our case the sigmoid is at 369

its maximum at the fovea rather than its minimum, therefore we invert the concept and 370

find the eccentricity at which the threshold of binocularity is half that at the fovea. 371

This concept is shown in diagrammatic form in figure 7. 372

Figure 7. E2 on the sigmoid.

Here E2 is defined as 373

the value on the sigmoid that is half 374

the foveal value. E2 is now related 375

to the gradient of a linear function 376

between the value of the sigmoid at 377

the fovea (0) and the eccentricity at 378

which the sigmoid is half the value 379

of the fovea. Clearly if the value 380

of the sigmoid at the fovea is 1 then 381

E2 will be equal to the eccentric at 382

the binocular threshold where the 383

value of the sigmoid is 1
2 . In the example above the sigmoid value never reaches unit 384

(and common occurrence in our data), thus the Half Fovea value is not exactly equal to 385

the binocular threshold (0.5). 386

1

1 + e−f(0,λ)
=

2

1 + e−f(µ,λ)
(8)

We can calculate E2 by solving equation 8 for λ. Here the left hand side returns the 387

value of the sigmoid at 0 eccentricity (µ = 0), and the right hand side is twice the value 388

of the unmodified sigmoid. Equation 8 can be solved for µ as: 389

µ =
loge

1
(ea+bλ+2)

c
(9)

Clearly when the binocular/monocular ratio at the fovea is one, E2 is equal to the 390

threshold of binocularity and can be found trivially using equation 9. As the value at 391

the fovea tends to 1, the value of equation 9 will tend to equation 7. 392

Supporting Information 393

Binocular photographic image data and (Matlab) source code associated with this 394

publication is available from GitHub at https://github.com/DavidWilliamHunter/Bivis. 395
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