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Abstract  
 
Epilepsy is one of the major neurological 

disorders affecting nearly 1 percentage of the 

global population. The major blunt is born by 

under developed and developing countries due 

to expensive treatment of epileptic conditions. 

Further, the lack of proper forecasting methods 

for an occurrence of epileptic seizures in 

epileptic-drug resistant patients or patients not 

amenable for surgery affects their psychological 

behaviour and restricts their daily activities. 

The forecasting is usually performed by human 

experts that leave a wide gap for human-bias 

and human error. Therefore, in the current 

work, we have evaluated the efficiency of several 

machine learning algorithms to automatically 

identify the preictal patterns corresponding to 

epileptic seizures from intracranial EEG signals. 

The robustness of the machine learning 

algorithms were tested after the data set was 

pre-processed using carefully chosen feature 

engineering strategies viz. denoised Fourier 

transforms as well as cross-correlation across 

electrodes in time and frequency domain. 

Extensive experimentations were carried out to 

determine the best combination of feature 

engineering techniques and machine learning 

algorithms. The best combination of feature 

engineering techniques and machine learning 

algorithm resulted in 0.7685 AUC (Area under 

the Receiver Operating Characteristic curve) on 

the random test samples. The suggested 

approach was fairly good at prediction of 

epilepsy in random samples and therefore, it can 

be used in epileptic seizure forecasting in 

patients where medication/surgery is ineffective. 

Eventually, our strategy reveals a robust 

method for brain disorders forecasting from 

EEGs.  
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1. Introduction 
 

One of the most common neurological 

disorders, epilepsy, afflicts nearly 50 

million people worldwide. It is a disorder 

which is marked by a sudden abnormal 

activity of a brain, characterised by 

seizures. Although, even after several type 

of drug-based medication and resective 

epileptic surgery, about 20-30% of people 

still suffers from epilepsy. A major reason 

behind reoccurrence of epilepsy is the 

development of drug-resistant epilepsy. 

Further, resective surgery in which a 

portion of brain is surgically removed in 

drug-resistant patients cannot be 

performed in every patient. The constant 

fear of reoccurrence of epilepsy in patients 

limits their participation in daily activities 

and has significant psychological impact 

on these patients[1]. So, there is a need to 

develop better seizure treatment 

management strategies where patients can 

be cautioned before-hand about the 

upcoming attack by seizures. This will 

enable them to get prepared for such risky 

situation and take effective 

medication/treatment for their well-being. 

 
The most common diagnostic tool 

for an identification of an epileptic seizure 

is electroencephalography (EEG). The 

EEG signal signature is captured by tiny 

electrodes placed at several locations on 

the scalp of the patient’s brain. These 

electrodes record the voltage fluctuation 

due to the ionic current traversing along 

the length of neurons in the brain. Thus, 

any abnormal voltage recording during 

EEG measurement can be a potential 

signature of seizures in comparison to the 

normal signatures of the brain 
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activity.  EEG can be utilized to 

differentiate between epileptic and non-

epileptic seizures through and locate the 

pattern corresponding to ‘interictal 

epileptiform discharges’ prevalent in 

epileptic patients with the help of experts. 

EEG can also be used to differentiate 

between different types of epileptic 

syndrome. However, developing a tool 

based on EEG analysis for early warning 

of seizures requires identification of 

pattern in EEG signals that precedes the 

actual seizure signals from epileptic 

patients. The reports on the existence of 

consistent signature of local field potential 

(LFP) before any seizure attack in patients 

can be used as potential tool for 

identifying the brain state and predict 

upcoming seizures [2]. Numerous clinical 

studies on epileptic patients have 

statistically confirmed the presence of 

seizure prone states, hours or days before 

the actual seizure attack. Moreover, the 

changes in cortical excitability, cerebral 

blood flow and its oxygenation are also 

prominent markers that have been 

measured preceding seizures. 
 

The algorithm developed for an 

identification of the seizure signatures 

from EEGs have been developed in the 

past; however, they suffer from majorly 

from statistical rigor required for an 

effective prediction[5][7] Nevertheless, 

some attempts have recently been able to 

present the desirable statistical rigor for 

effective prediction of epilepsy[6] The 

major difficulty in the development of 

effective seizure predicting algorithm has 

been the scarcity of long recordings of 

EEG having ample signals of seizures, 

better featuring engineering for the 

extraction of patterns amidst noisy signal 

and implementation of better prediction 

algorithm. Machine learning has come 

along a long way for the pattern 

identification purpose and several 

algorithms have been implemented for 

seizure prediction in EEG patterns to 

identify brain disorders.  

 

In the current work, we have 

studied best feature extraction strategies 

from the intracranial EEG dataset so that 

only relevant information is supplied to 

prediction computational algorithms. 

Feature engineering consisted of denoised 

fourier transform as well as multiple cross 

correlation between data from different 

devices. We passed the filtered feature set 

to several standard machine learning 

techniques. We experimented with 

different parameters of the computational 

classifiers and their combination with 

feature set to determine the best 

combination to yield efficient forecasting 

results. 
 

2. Materials and Methods 
 

2.1. Materials 
 

The data set of the electroencephalogram 

(EEG) of 5 dogs were obtained from 

International Epilepsy Electrophysiology 

portal (www.ieee.org) funded by National 

Institute of Health (NIH). The algorithms 

for processing of data were written and 

tested through signal processing and 

Machine learning toolbox of MATLAB 

7.4 on Dell Inspiron Laptop having Intel i5 

four core processor with 4GB RAM. The 

all the codes were run on single core with 

no multithreading. 

 

2.2. Methods 

 

2.2.1. Collection and sorting of EEG 

data 

 

Sufficiently large EEG data sets were 

pulled out of International Epilepsy 

Electrophysiology portal to train our 

computational algorithm to detect and 

learn the changes in EEG signals during 

epileptic seizures. Care was taken to 

ensure that the EEG data has the preictal 

stage as well as interictal stage for the 
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machine learning algorithms to learn the 

difference between either of the two.  
Intracranial EEG data procured from 

International Epilepsy Electrophysiology 

online portal was obtained by taking 

recordings for 5 dogs, which were afflicted 

by epilepsy using an ambulatory 

monitoring system [2, 4]. The EEG was 

collected from 16 electrodes from different 

parts of brain and each of them was 

sampled at 400 Hz. The subsequent 

voltage values were referenced using a 

group average method. These recordings 

over a good time span were able to contain 

close to 100 seizures as well. Apart from 

the canine patients’ EEG, EEG from 2 

human epileptic patients was also 

obtained. However, for the latter case, the 

number of electrodes varied (up to 24) and 

the sampling were performed at 5000 Hz. 

Voltage referencing was done using an 

electrode outside the brain. The whole 

recordings amounted to 2500 hours in the 

final dataset obtained. The whole process 

is illustrated in Figure 1[4] which was 

obtained from kaggle.com. 
 

 
 
Figure 1: A) shows the way the intracranial 

EEG was recorded from canine subjects B) 

shows the EEG waves containing preictal 

phase and octal phase C) shows the sample 

working of any algorithm to work for 

correct prediction of seizures [4]. 

Based on the above EEG recordings, 

strategies were developed to differentiate 

whether a ten minute long EEG recording 

clip belongs to preictal phase or interictal 

phase. The following restrictions were 

placed to the definitions of preictal phase 

and to the interictal training data clip to 

avoid seizure clustering detection [8] 
 

 A data clip labelled as preictal 

phase will always be in the time 

range from one hour prior to the 

seizure to the onset of seizure. 

 A data clip labelled as interictal 

phase will always be separated by 

one week with any seizure in case 

of canine dataset and four hours in 

case of human dataset. 

 

The final dataset that was obtained from 

above procedure is described as follow. 

With respect to training data, for every 

subject from the available five canine and 

two human subjects, x instances of 1 hour 

inter-ictal recordings and y instances of 1 

hour pre-ictal recordings were obtained 

where x > y. Every such instances were 

divided into six ten minute data clips 

which were labelled by the ordered 

sequence number. The unlabelled testing 

data consisted of 900 ten-minute data clip 

to be classified by the computational 

algorithms. 
 
A sample ten minute data clip consisted of 

two dimensional matrix of EEG sample 

values arranged row x column as electrode 

x time. With the modality of the data being 

time-series, there were close to 239766 

voltage values per electrode in every ten 

minute data clip making the 

dimensionality of the data very high. The 

whole data set was 120 GB in size. 
 

2.2.2. Feature engineering strategies 
 

As the dimensionality of data was huge 

(~240,000), there was a need to extract 

relevant information or features on which we 

could run the machine learning techniques. 

This required the domain knowledge of large 

scale signal analysis and processing. 
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Method A:  

 

First, the recorded voltages were 

referenced to the group voltage to remove 

device errors. Second, Fourier transform of 

the data was computed to determine the 

major frequencies contributing to the 

relevant information. Fig 2(a) shows the 

time domain plot of interictal wave and (b) 

shows the frequency domain plot of 

interictal wave. Fig 3(a) shows the time 

domain plot of preictal wave and (b) 

shows the frequency domain plot of 

preictal wave. Third, we applied a low 

pass filter to remove the higher frequency 

component which added no significant 

information to the wave. The cut-off 

chosen was using hit and trial method 

which yielded the best results. Fourth, 

Power spectral density was calculated for 

this Fourier transform.[3] Fifth, to reduce 

the dimensionality, mean was computed 

over sequential rectangular windows. To 

arrive at the optimum length of rectangular 

window, we calculated standard deviation 

over different lengths of window and 

arrived at a value which yielded minimum 

standard deviation. On this feature data we 

applied different machine learning 

classifiers to classify.

 

 

 
Figure 2 a) Time series plot of interictal wave and b) Fourier transform of interictal wave 

 

 
Figure 3 a) Time series plot of preictal wave and b) Fourier transform of preictal wave 

Method B:  

 

To get a factor of dependence between the 

electrodes signifying the ways in which 

different parts of the brain are 

interconnected, we followed a different 

approach. First, cross-correlation of the 

waves across different electrodes in time 

space was computed yielding n x n matrix 

where n is the number of electrodes. 

Second, cross-correlation of the waves 

across different electrodes in frequency 

space was computed yielding n x n matrix 

where n is the number of electrodes. Third, 

eigenvector of the correlation was 

computed. Fourth, the entire above 

separate feature sets were concatenated to 

yield the final feature set on which we 

applied different machine learning 

classifiers to classify. 

a) b) 

a) b) 
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2.2.3. Machine learning algorithms 

After the feature set extraction standard 

machine learning algorithms were applied 

with different set of parameters and their 

AUC scores were compared to choose the 

best technique. 

 

Extensive experimentation with different 

probabilistic classifiers was done. Chiefly 

those classifiers were: 

 

 SVM (kernels : linear, higher 

degree polynomial, radial) 

 Neural networks (different number 

of nodes and hidden layers) 

 Random Forests (number of trees : 

1000, 3000, 10000) 

 Linear regression 

 

After several experiments, we did a 

comparative study between different 

techniques with different feature sets 

which we will discuss in the results 

section. Linear regression performed the 

worst among all of them and we did not 

include in the comparative study. 

 

3. Results and discussion 

 

The diagnosis of epilepsy or the ability to 

forecast epileptic seizures is typically done 

by observing the different changes the 

brain undergoes during the onset of seizure 

or during the seizure itself. The 

electroencephalogram (EEG) of the brain 

is one of the ways to detect such changes. 

The EEG usually shows waves having a 

lot spikes with rapid changes during the 

onset of seizures which continues in the 

seizure as well. This change in pattern of 

the brain waves can be picked up by 

computational algorithms to efficiently 

forecast an impending seizure with some 

probability. 

 

The different probabilistic 

classifiers were run on the testing data 

clips and accordingly classified as pre-ictal 

and interictal stage. We tried different 

probabilistic classifiers with different 

feature set to determine the best classifier - 

feature set combination to forecast the 

seizure 

Table 1 shows the results with 8 different 

machine learning techniques. The metric 

we used to compare different techniques 

was AUC (Area under the ROC curve) 

score. 

 

Sl. 

No. 
Classifier Feature Set AUC 

Score 

1. NN : 1 

hidden layer 

(100) 

FFT + L.P.F + 

Mean(6%, 48) 
0.71084 

2. NN : 5 

hidden layer 

(10 each) 

FFT + L.P.F + 

Mean(6%, 48) 
0.70786 

3. NN : 1 

hidden layer 

(100) 

FFT + L.P.F + 

Mean(3%, 24) 
0.68232 

4. NN : 1 

hidden layer 

(100) 

Time Correlation 

+ FFT Correlation 

+ eigenvector 

0.62381 

5. SVM 

(Degree 2 

kernel) 

FFT + L.P.F + 

Mean(6%, 48) 
0.76585 

6. SVM (Radial 

Bias Kernel) 
FFT + L.P.F + 

Mean(3%, 24) 
0.54953 

7. SVM (Linear 

Kernel) 
FFT + L.P.F + 

Mean(6%, 48) 
0.69909 

8. Random 

Forests 

(10,000) 

Time Correlation 

+ FFT Correlation 

+ eigenvector 

0.60880 

 

 

The first 4 classifiers are neural 

networks with variable hidden layers. The 

number in brackets represents the number 

of nodes in the hidden layers. The next 

three classifiers are Support Vector 

machines with different kernels or 

transforming functions. The degree-2 

polynomial kernel is used in the first 

SVM. The last classifier is Random 
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Forests where the number in brackets is 

the number of trees. 

 

The feature set tried were FFT, 

denoising Low filter and Mean 

computation over a rectangular window. 

The numbers in the bracket are the low 

pass filter cutoff and the size of the 

rectangular window. Other feature set was 

time correlation and eigenvector. Based on 

the results, it was evident that SVM with a 

degree two polynomial kernel over a 

feature set of denoised fourier transformed 

EEG data yielded the best results. We 

achieved a AUC score of 0.76585 which 

roughly translates to strongly fair to 

weakly good prediction. Another 

interesting point of note was that the 

random forests consistently performed 

poor despite variable number of trees, the 

investigation of which is out of scope of 

this paper. 

 

4. Conclusion 

 

With this comparative study, we not only 

highlighted the success of machine 

learning techniques to forecast immediate 

epileptic seizures, but also with extensive 

experimentation found the best 

combination of learning techniques and 

feature set to yield the best prediction. Our 

method shows that machine learning is the 

way forward in epileptic seizure 

forecasting and should be further 

investigated into. Further research and 

development should be done in this 

direction so that we see a working 

prototype in future helping epileptic 

patients living a normal life. 
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