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We present GTC, a new compressed data structure for represen-
tation of huge collections of genetic variation data. GTC signi-
ficantly outperforms existing solutions in terms of compression
ratio and time of answering various types of queries. We show
that the largest of publicly available database of about 60 thou-
sand haplotypes at about 40 million SNPs can be stored in less
than 4 Gbytes, while the queries related to variants are answe-
red in a fraction of a second. GTC can be downloaded from
http://sun.aei.polsl.pl/REFRESH/gtc.

In the last two decades the throughput of genome sequen-
cers increased by a few orders of magnitude. At the same time
the sequencing cost of a single human individual decreased
from over 1 billion to about 1 thousand dollars. Stephens et
al. predicts1 that in 2025 the genomic data will be acquired at
1 zetta-bases/year, while about 2–40 EB/year of them should
be deposited for a long term. From the other side, the prices
of storage and transfer decrease moderately2, which means that
keeping the data management costs under control becomes a
real challenge.

Recently Numanagic et al.3 benchmarked the tools for com-
pression of sequenced reads. The ability of the examined utili-
ties to shrink the data about 10 times is remarkable. Neverthe-
less, much more is necessary. The obvious option is to resign
from storage of raw data (in most experiments) and focus just
on the results of variant calling, deposited usually in the Va-
riant Call Format (VCF) files.4 The famous initiatives, like the
1000 Genomes Project5 or the 10K UK Project, deliver VCF files
for thousands of samples. Moreover, the scale of compilation
works, like of the Haplotype Reference Consortium (HRC)6 or
the Exome Aggregation Consortium (ExAC)7, is by an order of
magnitude larger. For example, the VCF files of the HRC con-
sist of 64,976 haplotypes at about 39.2 million SNPs and occupy
4.3 TB. It is also clear that much larger databases will be for-
med in the near future. VCF files contain a list of variants
in a collection of genomes as well as evidence of presence of a
reference/non-reference allele at each specific variant position

in each genome. As they are intensively searched, the applied
compression scheme should support fast queries of various ty-
pes. The indexed and gzipped VCF files can be effectively asked
using VCFtools4 or BCFtools when the query is about a single
variant or a range of them. Unfortunately, retrieving a sample
data means time-consuming decompression and processing of
a whole file.

Recently Layer et al.8 introduced Genotype Query Tools
(GQT) that made use of some specialized compression algo-
rithm for VCF files. GQT was designed to compare sample
genotypes among many variant loci, but did not allow to re-
trieve the specified variant as well as sample data. Shortly af-
ter that, Li proposed BGT9 based on the positional Burrows–
Wheeler transform10. It offered more than 10-fold better com-
pression than GQT and supported queries about genotypes as
well as variants. Moreover, it allowed to restrict the range of
samples according to some metadata conditions. The SeqArray
library11 for the R programming language is yet another solu-
tion to effectively compress and browse VCF files. The applied
compression is based on the LZMA algorithm.12

We introduce GTC (GenoType Compressor), a new tool for
compressed representation of genotypes supporting fast queries
of various types. It is designed to offer much better compression
and much faster queries than existing solutions.

At the beginning, GTC divides the variants into blocks of
3584 consecutive entries and processes each block separately
(Fig. 1). The bit vectors representing presence/absence of re-
ference alleles in all haplotypes are formed. In fact two bit vec-
tors are necessary to describe each variant, as four possibilities
must be covered: a reference allele, non-reference allele, the ot-
her non-reference allele, or unknown allele.

The haplotypes in each block are independently permuted
to minimize the number of differences (i.e., a Hamming dis-
tance) between successive entries. As determination of the best
permutation of haplotypes is equivalent to solving the Travel-
ling Salesperson Problem (TSP)13 it is practically impossible to
find the optimal solution in a reasonable time. Thus, the Ne-
arest Neighbor heuristic13 is picked to quickly calculate a rea-
sonably good solution. There are better algorithms for this task
(in terms of minimizing the total number of differences between
neighbor haplotypes). Unfortunately, they are too slow to be ap-
plied here. The description of the found permutation must be
stored for each block to allow retrieval of the original data.

The permuted haplotypes are compressed (still within
blocks) using a hybrid of specialized techniques inspired by
Ziv-Lempel compression algorithm, run length encoding, and
Huffman coding.12 The bit vectors are processed one by one. In
the current bit vector we look for the longest runs of 0s or 1s, as
well as longest matches (same sequences of bits) in the already
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#CHROM POS ID  REF  ALT   QUAL FILTER INFO FORMAT  s1   s2   s3   s4   s5   s6
11     3   v1   A   C      .   PASS    .    GT    0|0  1|1  0|0  1|0  0|0  0|0
11     4   v2   G   A      .   PASS    .    GT    0|1  0|0  0|1  0|0  0|1  0|0
11     7   v3   CT  C      .   PASS    .    GT    0|1  0|0  0|0  0|0  0|1  0|0
11     9   v4   G   T      .   PASS    .    GT    0|0  0|0  0|1  0|0  0|0  0|0
11     12  v5   A   AGA    .   PASS    .    GT    0|1  1|0  0|1  1|0  1|1  0|0
11     17  v6   A   C      .   PASS    .    GT    1|1  1|1  0|0  0|0  .|.  0|1
11     18  v7   A   T      .   PASS    .    GT    1|1  0|1  0|1  0|0  0|1  0|1
11     21  v8   G   A      .   PASS    .    GT    0|1  1|1  0|1  0|0  0|1  0|0
11     33  v9   C   A,<M>  .   PASS    .    GT    0|2  2|0  0|1  2|0  1|1  0|0
11     33  v10  C   T,<M>  .   PASS    .    GT    0|1  1|0  0|2  1|0  2|2  0|0
11     50  v11  T   A      .   PASS    .    GT    0|0  1|1  0|0  1|0  0|1  0|0
11     77  v12  GC  G      .   PASS    .    GT    0|0  1|1  1|0  1|0  0|0  0|0
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16 0 1 1 1 0 1 0 0 0 1 0 0
17 0 1 1 0 0 0 1 0 0 0 0 0
18 0 1 1 0 0 1 1 0 1 1 0 0
19 0 0 0 0 0 1 0 0 1 1 0 0
20 0 1 1 0 0 1 1 0 1 1 0 0
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Figure 1: Construction of GTC archive. (a) The input VCF file with genotypes of 6 diploid samples at 12 variant sites. It is de-
composed into metadata and blocks of genotypes. Each block (here: max. 5 variant sites) is processed separately. (b) Metadata:
variant sites description (stored as a site-only BCF) and list of samples. (c) Bit vector representation of genotypes in Block 2. (d)
Permutation of haplotypes in Block 2. Resulting order of haplotypes is stored. (e) Factorization of permuted Block 2. Empty
and copied vectors are marked. All unique bit vectors are described as a sequence of longest possible 0-runs, 1-runs, matches to
previous bit vectors in the block and literals.

processed bit vectors. As the result we obtain a description of
the current variant using the previous variants, which is much
shorter than the original bit vector. The description is finally
Huffman encoded to save even more space. More details of the
algorithm are given in Online Methods.

To evaluate GTC and the competitors we picked two large
collections of H. sapiens genomes: the 1000 GP Phase 3 (2,504
genotypes), and the HRC (27,165 genotypes). HRC collection
used in our experiments was picked from the European Genom-
phenom Archive and is slightly smaller than the full data set
(containing 32,488 samples; unfortunately unavailable for pu-
blic use). The characteristics of the data sets and the compres-
sion capabilities of gzip, BGT, GQT, SeqArray, and GTC are gi-
ven in Fig. 2a. GTC archive appeared to be about two times
more compact than BGT archive and tens times than gzipped
VCF. The SeqArray archive size is between GTC and BGT for
the smaller collection, but is much larger than BGT for the large
one.

For a detailed examination of the compression ratios we re-
duced the HRC collection to 1000, 2000, etc. samples containing
only Chromosome 11 variants. Fig. 2b shows that the relative
sizes of the BGT and GTC archives are similar in the examined
range. A more careful examination shows that the compressed
sizes of BGT, GTC grows slightly sub-linearly for growing num-
ber of genotypes. Moreover, the margin between BGT and GTC
is almost constant for more than 5000 samples, which suggest
that it would remain the same for even larger collections. Se-
qArray seems to scale poorer than BGT and GTC when the col-

lection size grows.
The great compression would be, however, of little value

without the ability of answering queries of various types. The
VCFtools and BCFtools offer relatively quick access to VCF,
gzipped VCF, or BCF files when we ask about a specified va-
riant or variant range but the situation changes when we focus
on samples.

Figures 2c–g show the times of answering various types of
queries for Chromosome 11 data containing various number of
samples. The GTC decompression of the whole collection of
variants is from 7 times (1000-sample subset) to 13 times (all
samples) faster than of BGT and about 3 times faster than of Se-
qArray (Fig. 2c). The GTC extraction of single variant or range
of genome of size 23,329 bases (median size of human gene) is
up to 6 times faster than of BGT (Fig. 2de). It is also worth to
note that BCFtools are almost as fast as GTC for a single variant
query. Fig. 2g shows the extraction time of a range of genome
(from 1 base to 1 million bases) for 27,165 samples. Once again
GTC is about ten times faster than BGT. Moreover, the advan-
tage of GTC grows slightly when the range extends. It can be
noted how the relative performance of BCTtools degrades when
the range width exceeds a few thousands bases. A bit different
situation can be observed in Fig. 2f, when the decompression
times of single sample are presented. For collections not larger
than 5,000 samples GTC is the fastest, but then, BGT takes the
lead becoming 1.5 times faster for the complete collection. Ne-
vertheless, both GTC and BGT answer the query in less than
1 second. As expected BCFtools are clearly the slowest.
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a
Dataset No. No. Size [GB]

genot. var. [M] VCF VCF-gzip GQT BGT SA GTC

1000GP–3 2,504 85.20 853 17.41 14.34 3.87 2.93 1.81
HRC 27,165 40.36 4,300 75.01 84.42 7.01 12.68 3.98
HRC Chr11 27,165 1.94 210 3.42 4.11 0.33 0.62 0.18
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Figure 2: Comparison of compressed data structures. (a) Sizes of compressed archives for the examined collections. (b) Sizes
of compressed sampled archives of HRC data for VCF (gzipped), GQT, BGT, SeqArray (SA), and GTC. (c) Decompression times
for HRC Chromosome 11 data. (d) Variant query times for HRC Chromosome 11 data. (e) Variant range query times for HRC
Chromosome 11 data. (f) Sample query times for HRC Chromosome 11 data. (g) Variant range query times (for various range
sizes) for HRC Chromosome 11 data. (h) Components of GTC archive for HRC data.

The compression times of BGT, SeqArray, and GTC are si-
milar (slightly more than a day for the complete HRC collection
at Intel Xeon-based workstation clocked at 2.3 GHz) as they are
dominated by reading and parsing of the huge input gzipped
VCF file.

It is also interesting to see the sizes of components of GTC
archive for the complete HRC data. As can be observed in
Fig. 2h the majority of the archive (62.5%) is for the description
of matches, 0-runs, etc. 30.8% is for the description of permu-
tations in blocks. Finally, 6.5% is for the description of variants
(position, reference and non-reference alleles, etc.) and 0.2% for
list of sample names. For smaller block sizes the haplotypes
can be better compressed, but the description of permutation
consumes more space (see Supplementary Fig. 7). In the Sup-
plementary Figures 1–6 we also show the influence of various
parameters of GTC (like block size, minimal match length, etc.)
on the compression ratio.

From the pure compression-ratio perspective it is worth to
note that the average size of genotype information in GTC ar-

chive for a single sample is just about 146 KB. Even better result
would be possible when we resign from fast queries support.
To date the best pure compressor of VCF files is TGC14. Re-
cently Tatwawadi et al. proposed GTRAC15, a modified version
of TGC, supporting some types of queries, e.g., for single (or
range of) variants or single samples. Unfortunately, the output
of GTRAC queries is just a binary file so no direct comparison
with VCF/BCF-producing compressors (BGT, GTC, SeqArray)
is possible. Moreover, we were unable to run GTRAC for the
examined data sets. Nevertheless, we modified our compressor
to produce similar output and support similar query types, and
run both GTC and GTRAC for the 1000GP Phase 1 data con-
taining 1092 genotypes and 39.7M variants. The compressed
archives were of size 622 MB (GTC) and 1002 MB (GTRAC). The
queries for single variants were solved in 7 ms (GTC) and 47 ms
(GTRAC). The queries for samples were answered in similar ti-
mes, about 2 s for Chromosome 11 data.

The most significant advantage of GTC over other approa-
ches is a new compression algorithm designed with a care of fast
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queries support. The data structure is so small that it is possible
to store it in the main memory of even commodity workstations
giving the impressive query times. The scalability experiments
suggest that much larger collections can be also maintained ef-
fectively.

Methods

Methods and any associated references are available in the on-
line version of the paper.
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Online methods

General idea

GTC compresses a collection of genotypes in a VCF/BCF format
and allows for queries about genotypes:

• at specified range of variant sites positions (e.g., a single
variant site), referenced to as variant query,

• of specified samples (e.g., a single sample), referenced to
as sample query,

• combination of the above.

The ploidy of individuals determines the number of hap-
lotypes that make up a single genotype. For diploid organisms,
a genotype of an individual is defined by two separate haploty-
pes.

Definitions

For precise description of the proposed algorithm let us denote
some terms. As an input we have a VCF/BCF file that descri-
bes H haplotypes at V single allele variants (sites). For any bit
vector X , X[i] it the i th bit of this vector, |X| denotes its length,
while rank(X[i]) is a number of set bits in vector X from posi-
tion 0 to position i − 1. For simplicity of notation, we assume
that rank(X) = rank(X[|X|]), so it is a number of set bits in the
whole bit vector.

Compression algorithm

There are three main phases of the compression algorithm des-
cribed in more details below: preprocessing the input VCF file
(Fig. 3), processing single blocks of genotype data (Fig. 4) and
merging blocks.

Preprocessing the input VCF file

Managing the input VCF file. Unphased genotypes in the in-
put BCF/VCF are arbitrary phased, while each of multi allele
variant sites (described in a single line of VCF) is break into
multiple single allele sites, each described in a separate line (as
in BGT9 VCF preprocessing). Thus, there are four possible allele
values for each haploid genotype: ‘0’ for the reference allele, ‘1’
for the non-reference allele, ‘2’ for the other non-reference allele
(stored in a different line of the VCF file), ‘.’ for unknown.

Extraction of metadata. The altered description of V variant
sites is stored in a site-only BCF file (the HTSlib16 library is used
for this task), with row variable indicating site id added in the
INFO field. List of names of samples is stored in a separate text
file.

Initial encoding of genotypes. Each haploid genotype at each
site is represented as a dibit (00 for the reference allele, 01 for the
non-reference allele, 11 for the other non-reference allele, 10 for
unknown). Each of V site annotations is represented by two bit
vectors of size H : one for lower and one for higher bits of the di-
bits representing subsequent haploid genotypes. Together there
are 2V bit vectors (at this point information about genotypes
takes 2HV bits in total). The vectors are identified by ids ran-
ging from 0 to 2V − 1. The vectors with even ids correspond to
the lower bits of the dibits representing haploid genotype sites,
while vectors with odd ids correspond to the higher bits. In the
next stages, described in details below, the bit vectors are com-
pressed and indexed, making it possible to randomly access an
arbitrary vector.

Forming blocks of genotype data. The bit vectors represen-
ting genotype data are divided into blocks. A single block con-
tains genotype data of 3584 consecutive variant sites (value cho-
sen experimentally) that is 7168 consecutive bit vectors. Thus,
there are dV/3584e blocks (last may contain data about less than
3584 variants). The blocks are processed independently to each
other, in parallel (if possible).

Processing a single block of genotype data

Permutation of haplotypes. The haplotypes in a block are per-
muted to minimize the number of differences (i.e., a Hamming
distance) between neighboring haplotypes. The Nearest Neig-
hbor heuristic13 is used to calculate a reasonably good solution
in an acceptable time. The permutation of the haplotypes (their
order after permutation) in the i-th block is stored in P i array.

Categorizing variant bit vectors. The variant bit vectors (re-
presenting genotype annotations) are processed one by one, in
a sequential manner. In the initial phase, a byte vector is catego-
rized either as an empty vector (all bytes unset), a copy of a pre-
viously processed vector, or a unique vector, not equal to any of
the previously processed vectors. The classification is done with
help of a dictionary structure HT vec (namely, hash table with li-
near probing17). The hash value is computed for each processed
vector and HT vec stores ids of all previously processed unique
vectors in the block (notice: first non empty bit vector is a uni-
que vector). Four bit vectors of size 3584 (number of variants in
the block) are formed for the i-th block: Ei

even and Ei
odd used to

distinguish, if the kth even or odd (respectively) vector is empty,
and Ci

even and Ci
odd used to distinguish if the kth even or odd

(respectively) vector is a copy of one of previous vectors. The
Ci

origin array maps subsequent copied vectors with their equi-
valents in the set of unique vectors (vid ).

Processing unique variant bit vectors. Every unique variant
bit vector, represented by byte vector (of size dH/8e bytes, pad-
ded with zeros), is transformed into a sequence of tuples, which
represents literals, runs of zeros or ones, or matches to a previ-
ously encoded vector. The encoding is done byte by byte, from
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#CHROM POS ID  REF  ALT   QUAL FILTER INFO FORMAT  s1   s2   s3   s4   s5   s6
11     3   v1  A   C,<M>  .   PASS    .    GT    0|1  2|2  1|1  2|2  0|0  2|2
11     3   v1  A   G,<M>  .   PASS    .    GT    0|2  1|2  2|2  1|1  0|0  2|2
11     3   v1  A   T,<M>  .   PASS    .    GT    0|2  2|1  2|2  2|2  0|0  1|1
11     9   v2  G   T      .   PASS    .    GT    0|1  0|0  0|1  0|0  1|1  0|0
11     12  v3  A   AGA    .   PASS    .    GT    0|1  1|0  0|1  1|0  1|1  0|0
11     17  v4  A   C      .   PASS    .    GT    1|1  1|1  0|0  0|0  .|.  0|1
11     18  v5  A   T      .   PASS    .    GT    1|1  0|1  0|1  0|0  0|1  0|1
11     21  v6  G   A      .   PASS    .    GT    0|1  1|1  0|1  0|0  0|1  0|0
11     33  v7  C   A,<M>  .   PASS    .    GT    0|2  2|0  0|1  2|0  1|1  0|0
11     33  v7  C   T,<M>  .   PASS    .    GT    0|1  1|0  0|2  1|0  2|2  0|0
11     50  v8  T   A      .   PASS    .    GT    0|0  1|1  0|0  1|0  0|1  0|0
11     77  v9  GC  G      .   PASS    .    GT    0|0  1|1  1|0  1|0  0|0  0|0

List of samples
#CHROM POS ID REF ALT  QUAL FILTER INFO
11     3   .  A   C,<M> 0    .  _row=0
11     3   .  A   A,<M> 0    .  _row=1
11     3   .  A   C,<M> 0    .  _row=2
11     9   .  G   T     0    .  _row=3
11     12  .  A   AGA   0    .  _row=4
11     17  .  A   C     0    .  _row=5
11     18  .  A   T     0    .  _row=6
11     21  .  G   A     0    .  _row=7
11     33  .  C   A,<M> 0    .  _row=8
11     33  .  C   T,<M> 0    .  _row=9
11     50  .  T   A     0    .  _row=10
11     77  .  GC  G     0    .  _row=11

s1
s2
s3
s4
s5
s6

Variant sites description

0
0

0
1

1
0

1
1

0

1

2

.

GT code

#CHROM POS ID REF  ALT   QUAL FILTER INFO FORMAT  s1   s2   s3   s4   s5   s6
11     3   v1  A   C,G,T  .   PASS    .    GT    0|1  2|3  1|1  2|2  0/0  3|3
11     9   v2  G   T      .   PASS    .    GT    0|1  0|0  0|1  0|0  1/1  0|0
11     12  v3  A   AGA    .   PASS    .    GT    0|1  1|0  0|1  1|0  1/1  0|0
11     17  v4  A   C      .   PASS    .    GT    1|1  1|1  0|0  0|0  ./.  0|1
11     18  v5  A   T      .   PASS    .    GT    1|1  0|1  0|1  0|0  0/1  0|1
11     21  v6  G   A      .   PASS    .    GT    0|1  1|1  0|1  0|0  0/1  0|0
11     33  v7  C   A,T    .   PASS    .    GT    0|2  2|0  0|1  2|0  1/1  0|0
11     50  v8  T   A      .   PASS    .    GT    0|0  1|1  0|0  1|0  0/1  0|0
11     77  v9  GC  G      .   PASS    .    GT    0|0  1|1  1|0  1|0  0/0  0|0

Input VCF

List of samplesVariant sites descriptionAltered VCF

Initially encoded genotypes divided 
into blocks of variants

Genotypes data
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Figure 3: Compression algorithm: preprocessing of the input VCF file. Non-phased genotypes are arbitrary phased. Multiple al-
lele sites are broken into multiple single allele sites. The altered VCF is split into BCF with variant sites description, list of samples
and blocks of genotype data. The block size is 5 variants in the example (3584 variants in the real implementation).
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Figure 4: Compression algorithm: processing a single block of genotype data. First, the haplotypes are permuted. Next, each
variant bit vectors is categorized as either an empty, a copy or a unique vector. Finally, all unique variant bit vectors are encoded
as tuples representing literals, zero runs, one runs, and matches to previous vecotrs. The outputs are: permutation of haplotypes
P i, bit vectors Ei

even, Ei
odd, Ci
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even categorizing variant bit vectors, a Ci
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for all repeated ones, and a sequence of tuples U i. Note that here all transformations are performed on bit vectors, while in the
real implementation byte vectors are considered.
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left to right, starting at position j = 0. At each analyzed posi-
tion we first look for the length of the longest substring of ze-
ros (bytes equal to zero) or ones (bytes equal to 255). If it is of
length rmin or more (rmin = 2 by default), we encode the se-
quence as a run of zeros (or ones). Otherwise, we look for the
longest possible match to one of the previously encoded uni-
que vector (identical byte substring). To increase the chance of
a long match, we search for common haplotypes, that is for the
longest match starting at jth position in any previously proces-
sed byte vector. The matches to arbitrary parts of other vectors
are accidental and thus unlikely to be long. Moreover, with the
position restriction, the matches need fewer bits to encode (no
need to store their positions). To make the search faster, the al-
ready processed data from the vectors are indexed using a hash
tables HT . Each HT’s key consists of a sequence extracted from
a vector and its position. The value is the vector id (vid ). HT

stores keys with sequences of length h = 5. The minimum ma-
tch length is equal to h (and it is not possible to find shorter ma-
tches using HT ). The matching byte substring (or its parts) in a
previously encoded vector can be already encoded as a match.
However, we restrict a match depth that is a number of allowed
vectors describing each byte in a match. By default, the maxi-
mum allowed match depth (dmax) is 100. A subsequent match
to the same vector is encoded with fewer bits, as there is no need
to store the id of the previous vector. If, with the match depth
restriction, no sufficiently long match can be found, the current
byte is encoded as a literal. The runs of literals (between 20 and
252 literals by default) are merged and encoded as a separate
tuple.

The type of a tuple is indicated by its first field, a flag ftype.
Overall, there are six possible tuple types at the current posi-
tion j:

• 〈fzero run,num0〉—a run of num0 zero bytes, the position
j is updated to j + num0,

• 〈fone run,num1〉—a run of num1 one bytes (all bits set),
the position j is updated to j + num1,

• 〈fmatch, vid , len〉—a match of length len to a vector with
id vid , the position j is updated to j + len ,

• 〈fmatch same, len〉—a match of length len to a vector with
the same id as the previous match, the position j is upda-
ted to j + len ,

• 〈fliteral, bv〉—a literal, where bv is the value of the byte,
the position j is increased by 1.

• 〈fliteral run,n, bv1 , bv2 , ..., bvn〉—a run of n literals, where
bv1 , bv2 , ..., bvn are the values of the consecutive bytes,
the position j is increased by n.

Merging blocks

The dV/3584e blocks of genotype data are gathered and merged
in the order of their appearance in the input VCF file (each ith
block is added, for i = 1 to i = dV/3584e).

The bit vectors Ei
even, Ei

odd, Ci
even and Ci

odd are merged into
four global bit vectors of size H : Eeven, Eodd, Ceven and Codd.
The vectors are kept in a succinct form.

The Corigin array gathers all Ci
origin arrays adjusting stored

vids (adding to each vid from the current block number of uni-
que vectors in all previous blocks). For subsequent copied vec-
tors it refers to vids of the original unique vectors out of all uni-
que vectors. Every vid in Corigin is then delta coded (difference
between vid of the next unique vector and original vid is calcu-
lated) with the minimum necessary number of bits.

The encoded unique vectors are stored in a single byte ar-
ray U . The flags, literals (bv ), lengths of matches (len) and
lengths of runs of zeros (num0) and ones (num1) are compressed
(separately) with an entropy coder (we use Huffman coder) in
the context of total number of set bits in the current bit vector (8
separate groups by default). For each literal run, the number of
bits it occupies is kept. The ids of vectors (vid ) are stored using
minimum possible number of bits necessary to encode any vec-
tor (log2(number of unique vectors)).

The starting positions of all unique vectors are stored in a
byte array Upos, where every 1025th unique vector is stored
using 4 bytes, while for the 1024 subsequent vectors only the
difference (between the current vector position and the nearest
previous position encoded with 4 bytes) is stored, using d bits,
where d is the minimum number of bits necessary to store any
encoded position difference.

Finally, permutations of all blocks, P i, are merged into sin-
gle array of permutations, P . It is stored with minimum neces-
sary number of bits. The id of the variant bit vector to decom-
press is enough to find the right permutation in P .

Design

The main components of the GTC data structure are as follows:

• Eeven and Eodd: two bit vectors, each of size H , indicating
if subsequent variant vectors (out of all vectors for lower
or higher bits, respectively) are zero-only vectors,

• Ceven and Codd: two bit vectors, each of size H , indicating
if subsequent variant vectors (out of all vectors for lower
or higher bits, respectively) are copies of other vectors,

• Corigin: ids of the original vectors (out of all uni-
que vectors) for subsequent vectors being a copy; mi-
nimum necessary number of bits is used to store
each id (exactly: dlog2 (no unique vectors)e bits, where
no unique vectors = 2V − (rank(Eeven) + rank(Eodd) +

rank(Ceven) + rank(Codd)),

• U : byte array storing unique bit vectors, encoded into tu-
ples and compressed (as described above),

• Upos: byte array with positions of the subsequent unique
vectors in the U structure; full position is stored for every
1025th vector, the position of the remaining vectors are
delta coded.
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• P : byte array storing permutations of subsequent blocks;
a single permutation is a sequence of ids of haplotypes re-
flecting the order in which they appear in the block. Each
id is stored with minimum necessary number of bits (ex-
actly: dlog2 He bits).

The Eeven, Eodd, Ceven, and Codd bit vectors are represen-
ted by the compressed structure18, 19 implemented in the SDSL20

library.

Query

Query parameters

By default, the entire set is decompressed into VCF / BCF file. It
is possible to restrict the query by applying additional conditi-
ons. Only variants and samples meeting all specified conditions
are decompressed. The following restrictions are possible:

• range condition—it specifies the chromosome and a
range of positions within the chromosome,

• sample condition—it specifies sample or samples,

• alternate allele frequency / count condition—it specifies
minimum / maximum count / frequency of alternate al-
lele among selected samples for each variant site,

• variant count condition—it specifies the maximum num-
ber of variant sites to decompress.

Decompression algorithm

Two decompression algorithms are possible depending on the
chosen query parameters. For most queries a variant-oriented
approach is used. A sample-oriented approach is applied in
queries about small, i.e., up to 10, number of samples without
a range condition. In case of both queries the genotypes are
decoded based on the appropriate bytes of variant bit vectors
decompressed.

Variant-oriented In this algorithm two vectors representing a
variant site are fully decompressed. Their ids are known thanks
to row variable in the BCF with variant sites description. Ini-
tially, the Eeven, Eodd, Ceven, and Codd bit vectors are used to
define a category of the variant bit vector. Decompression of an
empty vector is straightforward. For a copied vector, the rank
operations on Eeven, Eodd, Ceven, and Codd bit vectors are used
to determine which copy is it, while the id of the original, uni-
que vector is found using the Corigin array. The Upos array is
used to find position of the unique variant bit vector in the U

array. The consecutive bytes of the variant bit vector are de-
compressed by decompressing and decoding all flags, literals,
lengths of 0s and 1s runs, and matches. If a match is encoun-
tered, the variant bit vector containing the match is not fully
decompressed. Instead, the complete decoding of all irrelevant
tuples from the beginning of the vector up to the match position
is skipped as far as possible. For example, stored bit length of
a run of literal allows to skip the run without time-consuming

literal decoding. The P array helps to find the original order of
haplotypes.

If a range of variant sites is queried, the decompression is
speed up by keeping the track of an adequate number of previ-
ous, already decompressed unique variant bit vectors. Moreo-
ver, the permutation of haplotypes only needs to be read from
the P array at the beginning of a block, not for each variant site
separately.

Sample-oriented In this approach all haplotypes representing
the queried sample are fully decompressed. For example, if
sample is diploid, two haplotypes are decompressed. In case
of more samples, more haplotypes are decompressed.

The decompression starts at the first variant site. The P ar-
ray is used at the beginning of each block to find the positions of
the haplotypes in the permuted bit variant vectors. Each variant
bit vector is partly decoded once. The bytes containing informa-
tion about the decompressed haplotypes are fully decoded and
stored, the complete decoding of other bytes is skipped, if pos-
sible. As the previous decoded bytes are kept, if a match cove-
ring the decompressed haplotype is encountered (only a match
within the same block is possible), the byte value can be read
immediately.

References
16. Li H. et al. Bioinformatics 25 2078–2079.

17. Knuth, D.E., The art of computer programming 426–458 (1999).

18. Raman, R., Raman, V., Rao, S. Proc. 13th SODA 233–242 (2002).

19. Navarro G, Providel E. Proc. SEA 295–306 (2012).

20. Gog, S., Beller, T., Moffat, A., Petri, M. Proc. SEA 326–337 (2014).

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/131649doi: bioRxiv preprint 

https://doi.org/10.1101/131649
http://creativecommons.org/licenses/by-nd/4.0/

