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ABSTRACT 24 

While for the most part genome-wide metrics are currently employed in managing 25 

livestock inbreeding, genomic data offer, in principle, the ability to identify functional 26 

inbreeding. Here we present a heuristic method to identify haplotypes contained within a 27 

run of homozygosity (ROH) associated with reduced performance. Results are presented 28 

for simulated and swine data. The algorithm comprises 3 steps. Step 1 scans the genome 29 

based on marker windows of decreasing size and identifies ROH genotypes associated 30 

with an unfavorable phenotype. Within this stage, multiple aggregation steps reduce the 31 

haplotype to the smallest possible length. In step 2, the resulting regions are formally 32 

tested for significance with the use of a linear mixed model. Lastly, step 3 removes 33 

nested windows. The effect of the unfavorable haplotypes identified and their associated 34 

haplotype probabilities for a progeny of a given mating pair or an individual can be used 35 

to generate an inbreeding load matrix (ILM). Diagonals of ILM characterize the 36 

functional inbreeding load of individual (IIL). We estimated the accuracy of predicting 37 

the phenotype based on ILL. We further compared the significance of the regression 38 

coefficient for IIL on phenotypes to genome-wide inbreeding metrics. We tested the 39 

algorithm using simulated scenarios (n =12) combining different levels of linkage 40 

disequilibrium (LD) and number of loci impacting a quantitative trait. Additionally, we 41 

investigated 9 traits from two maternal purebred swine lines. In simulated data, as the LD 42 

in the population increased the algorithm identified a greater proportion of the true 43 

unfavorable ROH effects. For example, the proportion of highly unfavorable true ROH 44 

effects identified raised from 32 to 41 % for the low to the high LD scenario. In both 45 

simulated and real data the haplotypes identified were contained within a much larger 46 
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ROH (9.12-12.1 Mb). The IIL prediction accuracy was greater than zero across all 47 

scenarios for simulated data (high LD scenario mean (95% confidence interval): 0.49 48 

(0.47-0.52)) and for nearly all swine traits (mean ± SD: 0.17±0.10). On average across 49 

simulated and swine datasets the IIL regression coefficient was more closely related to 50 

progeny performance than any genome-wide inbreeding metric. A heuristic method was 51 

developed that identified ROH genotypes with reduced performance and characterized 52 

the combined effects of ROH genotypes within and across individuals. 53 

Key Words: inbreeding, runs-of-homozygosity, swine. 54 

INTRODUCTION 55 

The implementation of routine genotyping within livestock breeding populations 56 

has become a common practice and is used as a tool to make more effective selection 57 

decisions in swine breeding companies (Knol et al., 2016). Previous research has 58 

highlighted the advantages of genomic relationships compared to pedigree-based 59 

information to obtain more precise estimates of the genetic merit and homozygosity of an 60 

individual ( Knol et al., 2016; Lopes et al., 2013). Also, genomic information allows 61 

genome-wide inbreeding estimates to be supplemented by characterizing the impact of 62 

homozygosity for specific genomic regions. Elevated levels of homozygosity result in a 63 

reduction in phenotypic performance, referred to as inbreeding depression (Falconer and 64 

Mackay, 1996). The identification of region-specific stretches allows breeders to manage 65 

inbreeding more effectively since the impact of homozygosity for a trait can vary across 66 

the genome. The estimation of dominance effects to identify unfavorable regions of the 67 

genome have been utilized in the past (Lopes et al., 2016; Xiang et al., 2016), but lacks 68 

power for low frequency mutations and doesn’t consider that whole segments of the 69 
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genome are passed from parent to offspring. To overcome these limitations, regions of 70 

the genome in a continuous run of homozygosity (ROH) have been proposed to 71 

investigate homozygous segments that arose due to past inbreeding (Howard et al., 2015; 72 

Saura et al., 2015). Previous research has investigated the phenotypic effect of a region 73 

being in an ROH (Pryce et al., 2014; Howard et al., 2015). The previous methods did not 74 

directly identify the unique ROH genotype that gave rise to the reduced phenotypic 75 

performance. Within this paper, we have attempted to close this gap by developing a 76 

heuristic algorithm to identify unfavorable haplotypes contained within ROH across the 77 

genome. The method was tested on simulated as well as real data. 78 

MATERIALS AND METHODS 79 

 No animal care approval was required for this work since all genotypes and 80 

records came from data that were available from previous studies. The manuscript will be 81 

split in two sections. In the first section, we will provide an overview of the algorithm 82 

along with methods to summarize the number of unfavorable haplotypes shared within 83 

and across individuals. In the second part of the paper we will employ simulated and 84 

swine data sets to summarize three major results: (1) how effective the algorithm is at 85 

identifying unfavorable haplotypes, (2) the length of ROH the unfavorable haplotype 86 

tags, (3) the relationship of the aggregate effect of unfavorable haplotypes carried by an 87 

individual with its phenotype and genetic value. 88 

Description of the algorithm 89 

A pictorial overview of the algorithm is displayed in Figure 1. The method 90 

follows three steps. The first step scans the genome to identify ROH genotypes that result 91 

in an unfavorable change in the phenotype of interest. The genotypes utilized in the 92 
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algorithm are coded as 0 for the homozygote, 2 for the alternative homozygote and 1 for 93 

the heterozygote. Step 1 begins at the first SNP of a chromosome by constructing a 94 

window of a predetermined number of SNP (default = 60). Within a window, the mean 95 

phenotype is tabulated for each unique ROH genotype and any genotype that is not in a 96 

ROH is aggregated into a category referred to as nonROH. Furthermore, any ROH 97 

genotype below a user defined frequency (default = 0.0075) is removed from the ROH 98 

genotype list and placed in the nonROH category. If the phenotypic mean for a ROH 99 

genotype is below/above a user defined value (discussed below), the window is stored. 100 

Next, the window is shifted forward by one SNP and the previous process is repeated. 101 

Once the entire chromosome has been scanned, windows containing the same set of 102 

animals and representing the same ROH genotype except for the first and last SNP are 103 

aggregated (i.e. Figure 1: Step 1b). Since recombination does not occur within a given 104 

region for the individuals of the same ROH genotype, ROH genotypes that are combined 105 

in this step contain the same amount of information. Following the aggregation of nested 106 

windows, the window length is reduced by “n” SNP (default = 5) and the previous steps 107 

are repeated for the new window size. The window size is reduced by “n” until a 108 

minimum window size is reached (default = 20). Once the minimum window size is 109 

reached, the process of scanning for unfavorable ROH genotypes is complete for a 110 

chromosome. For windows that contain the same set of animals and are nested within 111 

each other (i.e. Figure 1: Step 1d), the shortest window is kept for further analysis. The 112 

aggregation steps (i.e. Step 1b and 1d) trap the ROH genotypes across individuals that 113 

have the same core ROH genotype of the smallest possible length. No information is lost 114 

within the aggregation steps as each ROH genotype belongs to the same set of 115 
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individuals, yet the step significantly reduces the number of windows tested in following 116 

steps. The core ROH genotype is now expected to serve as a tag for the full ROH 117 

segment observed in an individual, which may differ across subjects due to 118 

recombination occurring at different locations across subjects. 119 

 Any window remaining after Step 1 is subsequenly tested for significance using a 120 

standard mixed model that accounts for the environment, additive genetic and permanent 121 

environment effect of an individual, plus any number of fixed effects. A description of 122 

the full model for each window is outlined below: 123 

� � �� � �� � �	
 � 
, 

where y is the trait of interest, b is a vector of fixed effects, a is a vector of random 124 

additive genetic effects, pe is a vector of random permanent environmental effects, e is a 125 

vector of random residuals and X, Z, and W are incidence matrices relating b, a and pe 126 

with y, respectively. The fixed effects can include any environmental classification or 127 

covariate effect along with the effect of ROH genotype (i.e. unique ROH genotype and 128 

nonROH) for a given window. The random additive genetic effect is assumed ~N(0, 129 

A��
�
, with A representing the additive relationship matrix derived from a pedigree 130 

(Henderson, 1976). The random permanent environmental and residual effects are 131 

assumed ~N(0, I���
� 
 and ~N(0, I��

�
, respectively, with I being an identity matrix. 132 

Variance components of the current implementation are assumed fixed across windows 133 

based on the null model of no ROH effect (i.e. no ROH genotype in the model). For each 134 

window, solutions are obtained via the Cholesky decomposition of the left-hand side 135 

(LHS).  Given the solutions for each window, a contrast between each unique ROH 136 

genotype versus nonROH and the associated t-statistic are obtained. The contrasts (L��) 137 
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are obtained following Welham et al. (2004) and Gilmour et al. (2004). The t-statistic is 138 

generated based on the following formula: 139 

�����	 �  

����


���
, 140 

where L��  refers to the estimated contrast and �
��  refers to the standard error of the 141 

contrast, calculated as L(LHS-1)L’. The hypothesis test is one-sided and the direction of 142 

the test is dependent on the direction of the unfavorable phenotype. Under this 143 

parameterization, the genotypes not in an ROH are assumed normal compared to 144 

individuals that have the ROH genotype. This aligns with the partial dominance 145 

hypothesis, which is thought to account for the majority of inbreeding depression 146 

observed in populations (Simmons and Crow, 1977; Charlesworth and Charlesworth, 147 

1987). Any contrast that passes the user-defined significance threshold is kept and moved 148 

onto the final window reduction step which resolves nested windows (i.e. Figure 1: Step 149 

3). 150 

 The algorithm presented was developed in C++11. The source code and compiled 151 

executable files for Linux operating systems are available at 152 

“https://github.com/jeremyhoward”. The primary option the user controls is the cutoff 153 

value for the mean phenotype for a given ROH genotype that is considered unfavorable 154 

in Step1a. The user can specify a cutoff value based on prior knowledge of what is 155 

considered an unfavorable phenotype or generate an empirical t-statistic distribution from 156 

the data to declare a cutoff value. The latter option is conducted by randomly specifying a 157 

chromosome, window length and start position and estimating the significance value for 158 

ROH genotypes within the window. All one-sided t-statistics are stored. Across samples, 159 
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the mean phenotype for t-statistics with a significance ranging from 0.10 and 0.05 is 160 

chosen as the cutoff value. 161 

 The haplotypes identified can be utilized in a variety of ways, but two are 162 

investigated in the current study. The first application is to apply the algorithm across 163 

economically important phenotypes and identify haplotypes having an unfavorable effect 164 

across multiple traits. Regions with consistent unfavorable effect across multiple traits 165 

should have a high probability of being sensitive to inbreeding and thus result in a 166 

reduction in the overall fitness and vigor of an individual. The second application is to 167 

generate a matrix aiming at characterizing the decrease in the trait of interest across all 168 

unfavorable haplotypes, herein referred to as the inbreeding load matrix (ILM). Its 169 

calculation follows the method outlined by Cole (2015). In order to implement an ILM, 170 

the genotype phase needs to be known. This matrix then can be utilized in mating designs 171 

to minimize the probability of progeny containing the unfavorable haplotype(s) for a 172 

single trait or across multiple traits. The diagonals of the matrix, referred to as individual 173 

inbreeding load (IIL), represent an individual’s decrease in the phenotypic 174 

performance(s) due to inbreeding, while off-diagonals represent the decrease in the 175 

trait(s) of the progeny given the mating of the two (potential) parents. It should be noted 176 

that in this implementation the algorithm does not run all haplotypes across the genome 177 

simultaneously. As a result, any observed ROH genotype for an individual might contain 178 

multiple significant unfavorable haplotypes. Therefore multiple tag haplotypes identified 179 

by the algorithm could be counted as different in an individual, when in fact they are 180 

tagging the same observed haplotype. Within the current study, when multiple haplotypes 181 

tagged the same observed ROH genotype, only the haplotype with the highest 182 
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significance value and resulting in the largest number of haplotypes observed across 183 

individuals was retained. For the ith row and jth column of ILM, the following formula 184 

was utilized to calculate the value: 185 

����� �  ∑ ����
� � ���
���
��� , 186 

where n is the number of unfavorable haplotypes that remained after eliminating 187 

haplotypes that were not observed or removed to avoid double counting. The ���� 188 

refers to the probability of generating a ROH for haplotypeh and �� is the effect of the 189 

ROH genotype estimated from Step 2 of the algorithm. The probability values for the 190 

diagonals elements of the ILM include 0.25 (haplotype carrier) or 1.0 (haplotype in 191 

ROH). The probability values for the off-diagonal elements include 0.25 (mating of 192 

haplotype carriers), 0.5 (mating of haplotype carrier and ROH genotype) or 1.0 (both 193 

parents have ROH genotype). The ILM values range from 0 (i.e. no unfavorable 194 

haplotypes) to any value in the unfavorable direction. 195 

Summary of metrics utilized to test the algorithm using simulated and swine data 196 

Simulated datasets, where the true genetic signal is known, were employed to 197 

determine how effective the algorithm was at identifying true negative ROH regions as 198 

well as to characterize the relationship between IIL and the true aggregate genotypic 199 

value of individuals. The length of ROH the unfavorable haplotype tagged was 200 

determined across both simulated and swine datasets in order to ensure that long stretches 201 

of ROH were represented. Long ROH stretches have a higher probability of being true 202 

IBD segments as a result of recent inbreeding, compared to shorter ones.  The 203 

relationship between IIL and the phenotype was summarized based either on a) IIL 204 

accuracy of predicting the phenotype or b) the significance of the regression coefficient 205 
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when IIL was included as a fixed covariate in a mixed linear model. The latter 206 

relationship was generated under the premise that the management of inbreeding is 207 

traditionally done by minimizing parental coancestries using genome-wide inbreeding 208 

metrics. Therefore, the significance (i.e. –log p-value) of the regression coefficient from 209 

traditionally utilized genome-wide inbreeding metrics was compared with the IIL value. 210 

Lastly, IIL was benchmarked across simulated and swine datasets with estimates of the 211 

genetic value based on a whole genome regression model. This was conducted to 212 

generate a reference comparison on the prediction accuracy for a given trait based on 213 

traditionally utilized genome-wide modeling techniques. It is important to note that the 214 

genetic signal from IIL encompasses only unfavorable effects resulting from long IBD 215 

segments. As a result, a comparison of the prediction accuracies between the two metrics 216 

needs not to be interpreted as an exercise of ranking the predictive ability of the two 217 

metrics, (ILL value would by construction only capture a subset of the overall genetic 218 

signal) but rather to determine the relationship between complementary metrics, in order 219 

to allow their integration. 220 

Simulated Data 221 

 Multiple scenarios were simulated to determine the frequency of unfavorable 222 

haplotypes being identified by the algorithm. Simulation was carried out using Geno-223 

Diver (Howard et al. In Press), a combined coalescence and forward in time simulation 224 

software. We hypothesized that the amount of short-range LD existing in the genome 225 

impacts how well the algorithm can identify unfavorable haplotypes. Four scenarios of 226 

increasing levels of short-range LD in the historical population were generated as 227 

outlined in Figure S1 and will be referred to as the low, low-medium, medium-high and 228 
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high, respectively. For each LD scenario, different genetic architectures were simulated 229 

with 250, 500 or 1000 QTL spread equally across 5 chromosomes. The combination of 230 

variable LD and QTL parameters produced 12 different scenarios. Each scenario was 231 

replicated 25 times. 232 

Within each LD setting, SNP sequence data for 4000 base haplotypes across 5 233 

chromosomes, each with a length of 150 Megabases, were simulated by internally calling 234 

MaCS (Chen et al., 2009) within the Geno-Diver software. Scenarios with the same LD 235 

parameter were initialized using the same set of sequence data to limit the computational 236 

time and variability across replicates due to historical sequence information. Following 237 

the generation of sequence data, QTL were randomly placed along the genome and a 238 

SNP panel with neutral markers was created. A total of 4,000 markers (20,000 genome-239 

wide) were utilized within each chromosome. This marker density was chosen to 240 

generate a density within each chromosome that is similar to a medium density marker 241 

array such as the Illumina PorcineSNP60K (Illumina Inc., San Diego, CA). Across all 242 

scenarios, the minimum minor allele frequency was set at 0.10 and 0.015 for markers and 243 

QTL, respectively. 244 

For each QTL the additive effect (a) of a QTL, defined as half the difference in 245 

genotypic value between the homozygote genotypes (Falconer and Mackay, 1996), was 246 

sampled from a gamma distribution (shape = 0.4;  scale = 1.66) with an equal chance of 247 

being positive or negative. The dominance effect (d) of a QTL, defined as the deviation 248 

of the genotypic value of the heterozygote from the mean of the genotypic values of the 249 

two homozygotes (Falconer and Mackay, 1996), was generated similarly to Wellmann & 250 

Bennewitz (2012). First, the degree of dominance (h) at QTLi was sampled from a 251 
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normal distribution (mean = 0.1; variance = 0.04) and then the dominance effect at QTLi 252 

was calculated as di = hi|ai|, where |ai| is the absolute value of the additive effect. Across 253 

all scenarios, the additive and dominance effects were scaled to generate a narrow and 254 

broad sense heritability (H2) of 0.35 and 0.40, respectively. The normal distribution 255 

parameters used to generate the degree of dominance were utilized to create a trait that 256 

displayed directional dominance along with a majority of the loci displaying partial 257 

dominance.  Phenotypes were simulated by adding a residual value, generated from a 258 

normal distribution (mean = 0, variance = (1- H2)), to the genotypic value for each 259 

animal. Summary statistics on the QTL architecture and genetic diversity of the 12 260 

scenarios is outlined in Table S1.  261 

After the founder population and genetic architecture of the trait was generated a 262 

selection scenario mimicking a livestock population was undertaken for ten generations. 263 

A population consisting of 50 males and 600 females was utilized, with a replacement 264 

rate of 20% for both males and females. Progeny with a high estimated breeding value 265 

(EBV) were selected to serve as parents for the next generation and EBV were generated 266 

from an animal model based on pedigree information. A low phenotypic value 267 

represented the unfavorable direction for the simulated trait in this case. Animals were 268 

mated at random and one progeny was produced for each mating pair. Progeny born from 269 

generation 7 to 9 served as the training population to identify unfavorable haplotypes and 270 

progeny from generation 10 served as the validation population. The model utilized to 271 

identify unfavorable haplotypes in the simulation data set did not have a permanent 272 

environmental effect since individuals only had 1 observation and the only fixed effect 273 

was the overall mean. The starting window size was set at 60 and was reduced by 5 until 274 
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a window size of 20 SNP was reached.  Different SNP window sizes were investigated 275 

based on the density simulated. Similar results were found in terms of the regions 276 

identified, associated effects and its relationship with the phenotype (data not shown). 277 

The suggestive phenotypic cutoff in step 1 was declared by randomly sampling 1000 278 

windows to generate the empirical t-statistic distribution.  279 

To investigate the proportion of true negative ROH effects the algorithm captured 280 

within each replicate, the true effect for any ROH with a length greater than 1 Mb was 281 

calculated. A length of 1 Mb was chosen to provide a range of possible ROH lengths 282 

captured by the algorithm. The true negative and positive ROH effects were split into 283 

quantiles of decreasing and increasing effects, respectively. The algorithm only tests for 284 

the unfavorable direction and therefore the percentage of true ROH effects the algorithm 285 

identified is expected to be higher in the negative compared to the positive direction. 286 

Lastly, using the same 1 Mb ROH cutoff, statistics on the length of ROH the algorithm 287 

identified (or missed) were calculated.  288 

Within each replicate, the ILL was estimated based on haplotypes identified in the 289 

training population for individuals in the validation population. The correlation between 290 

IIL and the true genotypic value (TGV), true breeding value (TBV) and true dominance 291 

deviation (TDD) was also estimated. Additionally, the significance (i.e. –log p-value) of 292 

IIL or a genome-wide metric when included as a fixed covariate effect was estimated for 293 

the validation population. The ILL or genome-wide metric was included as a fixed 294 

covariate in the similar model (i.e. no ROH effect included in model) that was used to 295 

identify haplotypes in the training population. Three genome-wide inbreeding metrics 296 

were used as comparison including pedigree inbreeding (Henderson, 1976), diagonals of 297 
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the SNP-by-SNP relationship matrix (SNPRM; VanRaden, 2008) or proportion of the 298 

markers that were homozygous. 299 

To explore the predictive ability of IIL compared to estimates of the genetic value 300 

utilizing whole genome regression models, a Bayesian Ridge Regression (BRR) analysis 301 

was conducted that included the additive and dominance effect for each SNP. The same 302 

training and validation generations that were utilized previously were also used in the 303 

BRR analysis. Marker effects were estimated using the ‘BGLR’ package in R (Perez and 304 

de los Campos, 2014). A total of 55,000 iterations were run with the first 5,000 discarded 305 

as burn-in and a thinning rate of 5. Across individuals, the estimated breeding value 306 

(EBV), dominance deviation (EDD) and genotypic value (EGV) were generated by 307 

multiplying the estimated effect by the associated genotype and summing across all 308 

markers. The prediction accuracy for either IIL or EGV was determined in the validation 309 

population based on the correlation between phenotype and EGV or IIL, respectively. It 310 

was standardized by dividing by the square root of the heritability estimated in the 311 

training generation for each replicate (Legarra et al., 2008; Wolc et al., 2011). 312 

Correlations between IIL and the EBV, EDD or EGV were also estimated. 313 

Swine Data 314 

 Phenotypic and genotypic data from two maternal purebred nucleus selection lines 315 

were obtained from Smithfield Premium Genetics (Rose Hill, NC). In order to determine 316 

the algorithm’s behavior across different genetic architectures, multiple traits were 317 

investigated including litter size, litter viability and growth rate. Individuals with 318 

genotype information from Large White (LW, n = 6,750) and Landrace (LR, n = 5,010) 319 

were utilized. Animals born before 2012 were used as a training population and animals 320 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/131706doi: bioRxiv preprint 

https://doi.org/10.1101/131706


 15

born on 2013 were used as a validation population and the number of animals across 321 

traits is outlined in Table 1. A complete description of the genotype quality control is 322 

outlined in Howard et al. (2016). Briefly, genotype data was derived from the Illumina 323 

PorcineSNP60K BeadChip (Illumina Inc., San Diego, CA) and the GGP-Porcine 324 

(GeneSeek Inc., a Neogen Co., Lincoln, NE). Multiple quality control measures were 325 

conducted before imputing and phasing missing and low-density to medium-density 326 

genotypes using Beagle (Version 3; Browning & Browning 2007). After quality control 327 

and discarding SNP that were poorly imputed, a total of 39,671 and 41,489 autosomal 328 

SNP for LW and LR remained, respectively. 329 

 Seven litter size and mortality traits including number born alive (NBA), total 330 

number born (TNB), proportion born dead (PD), average litter birth weight (LBW), 331 

preweaning mortality (PWM), number weaned (NW) and average litter wean weight 332 

(NWBW) were employed in the analysis. The TNB phenotype included NBA, stillborn 333 

and mummified piglets. The PD dead was calculated as 1 - (NBA/TNB). The LBW was 334 

calculated as the mean weight of the number of live piglets at processing, which occurred 335 

within 48 h from birth. Traits that were recorded after birth, including PWM, NW and 336 

NWBW, are impacted by the degree of cross-fostering. Cross-fostering in the current data 337 

was similar to previous estimates by Putz et al. (2015) in a related population. To 338 

minimize the effect of cross-fostering only litters having more than 75 % of the birth sow 339 

piglets were utilized in the analysis. After the data edit, 98.0 and 97.7 % of the piglets 340 

were nursed by their original birth sow for LW and LR, respectively. The PWM mortality 341 

phenotype was calculated as the number of piglets that died after 24 hours including pigs 342 

euthanized at weaning divided by the total number of pigs in the litter after the 24-hour 343 
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cutoff. The NWBW was calculated as the average weight of the number of piglets 344 

weaned. All reproductive traits were evaluated as a trait of the biological dam. The fixed 345 

effects utilized for each trait are outlined in Table 1. A random additive genetic and 346 

permanent environmental effect of the dam were included in the analysis (i.e. similar to 347 

Model 1 described in the section outlining the algorithm). 348 

 Two production traits were investigated: body weight at off-test and average body 349 

weight gain from birth to off-test (i.e. body weight at off-test / age at off-test). Production 350 

traits were evaluated as a trait of the animal. Since animals only have one observation the 351 

permanent environmental effect was in this case excluded. The fixed effects utilized for 352 

each trait are described in Table 1. Across both reproductive and production traits, the 353 

contemporary group (CG) was comprised of farm, year and season and any animal that 354 

was within a CG smaller than 5 was removed from the analysis. 355 

Summary statistics on the length of ROH and the unfavorable haplotypes captured 356 

were generated. Prediction accuracy for IIL was compared with a whole genome 357 

regression BRR model. For all 9 traits, yield deviations were constructed for each trait 358 

based on the fixed effects outlined in Table 1. For the reproductive traits, an animal may 359 

have multiple observations and therefore average yield deviations were used and the 360 

residuals for a given observation in the BRR analysis was weighted according to Garrick 361 

et al. (2009). The formula used to calculate the weight was:  362 

������

������
��	
��

	
���

 , 363 

where h2 refers to the heritability, r2 refers to the repeatability and l refers to the number 364 

of records. The values used for h2 and r2 are outlined in Table 1 across all nine traits. 365 

Utilizing ‘BGLR’ (Perez and de los Campos, 2014), a total of 155,000 iterations were run 366 
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with the first 5,000 discarded as burn-in and a thinning rate of 5. Again, for each trait the 367 

EGV values were predicted. The accuracy of predicting the phenotype utilizing IIL 368 

compared to a whole-genome regression model and the relationship between the two 369 

were investigated. The prediction accuracy for either IIL or EGV across the nine traits 370 

was determined in the validation population. The prediction accuracy was calculated as 371 

the correlation between the EGV or IIL and average yield deviation.  It was standardized 372 

by dividing the square root of the heritability for each trait. The significance of the ILL or 373 

genome-wide regression coefficient was estimated as outlined previously. 374 

 Lastly, the correlation between the diagonal and the off-diagonal elements of 375 

ILM across traits and with pedigree- and genomic-based relationship matrices were 376 

estimated. Understanding the correlation between ILM across traits is important when 377 

ILM is used to minimize inbreeding depression across all traits in a breeding objective. 378 

Any change in the off-diagonal ILM value for one trait should ideally result in a 379 

favorable or negligible change in the off-diagonal ILM value for other traits. ILM was 380 

compared to three relationship matrices including pedigree-based (A; Henderson, 1976), 381 

SNPRM and a ROH-based relationship matrix with a 5 Mb cutoff (ROH5RM; Howard 382 

et al. 2016). To determine the sensitivity of fixing the variance components based on the 383 

null model of no ROH effect, the ASReml program (Gilmour et al., 2009), which re-384 

estimates variance components for each window was utilized across breed and traits for 385 

the windows that were deemed significant by the algorithm. 386 

RESULTS 387 

Simulated Data 388 
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 A summary of how effectively the algorithm identified true negative and positive 389 

ROH effects across different percentiles is outlined in Panel 1 of Figure 2. Since the 390 

algorithm only tests for the unfavorable direction, the percentage of true ROH effects the 391 

method identifies is expected to be greater than zero in the negative direction and zero in 392 

the positive direction. As illustrated in Panel 1 of Figure 2, as the true negative 393 

unfavorable ROH effect got larger, a greater proportion of unfavorable ROH genotypes 394 

was identified by the algorithm. It should be noted that, averaged across all scenarios, the 395 

frequency of highly unfavorable ROH effects was small (1.8 %) compared to the total 396 

number of true negative ROH effects. The frequency of incorrectly identified positive 397 

ROH effects (i.e. false-positives) by the algorithm remained relatively flat across all 398 

percentiles and was on average (95% confidence interval (CI)) 9.4 (8.7-10.1) percent 399 

across all scenarios. As the LD in the population increased and became similar to that of 400 

most livestock populations, the algorithm was more effective at identifying unfavorable 401 

haplotypes and had a lower false-positive rate. For example, for true ROH effects with 402 

the largest negative effect (i.e. less than the 0.05 percentile), the algorithm identified on 403 

average (95% CI) 32.1 (28.5-35.7) and 41.2 (36.7-45.9) percent of the total true negative 404 

ROH effects across the three QTL scenarios for the low and high LD scenarios, 405 

respectively. Conversely, for incorrectly identified true ROH effects (i.e. estimated to be 406 

negative, but had a true positive effect) with the largest positive effect (i.e. greater than 407 

the .95 percentile), the algorithm identified on average (95% CI) 15.3 (13.9-16.7) and 9.6 408 

(8.2-10.9) percent of the total true ROH effects across the three QTL scenarios for the 409 

low and high LD scenario, respectively. 410 
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Summary statistics on the length of ROH of at least 1 Mb tagged by the 411 

unfavorable haplotype is outlined in Panel 2 of Figure 2. We report the median in this 412 

case, rather the mean, since the distribution of the length of ROH containing a tag 413 

haplotype has a heavy tail and thus the latter parameter is heavily influenced by extreme 414 

values. The length of ROH tagged by the identified haplotypes for the medium-high and 415 

high LD scenarios was similar across negative percentiles and QTL scenarios with a 416 

median (1st quartile – 3rd quartile) of 12.15 (10.07-13.41). The haplotypes identified for 417 

the low and low-med LD scenarios across negative percentiles and QTL tagged longer 418 

ROH stretches with a median length of 15.77 (12.23-18.64). The results show how the 419 

core unfavorable haplotype identified by the algorithm, which had a median length of 7.0 420 

kilobases (kb) across scenarios, in reality serves as a proxy for a much larger observed 421 

ROH segment. The length of unfavorable ROH that the algorithm missed was made of 422 

considerably smaller ROH (median (1st quartile – 3rd quartile): 5.26 (4.06-5.81) Mb) and 423 

was again similar across negative percentiles and scenarios. For the incorrectly identified 424 

true positive ROH effects, it should be noted that the length of ROH captured by the 425 

haplotype gets longer proportional to the true ROH effect. Thus, in general, falsely 426 

identified ROH regions were in our analysis characterized by being locally negative 427 

around the identified unfavorable haplotype. Yet as a result of being part of an extremely 428 

large ROH, positive QTL effects contained in the long ROH genotype made the overall 429 

effect positive.  430 

 The relationship of IIL with the true genetic signal, the predictive ability of ILL 431 

compared to whole genome regression values and the significance of IIL or genome-wide 432 

inbreeding regression coefficients are outlined in Figure 3. Panel 1 of Figure 3 describes 433 
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the correlation between IIL with TGV, TBV, and TDD. Across all QTL scenarios, the 434 

correlation increased as the LD increased for all parameters except for TDD. Averaged 435 

(95% CI) across QTL scenarios the correlation between IIL and the TGV for the low and 436 

high LD scenario was 0.31 (0.29-0.32) and 0.44 (0.42-0.45), respectively. The correlation 437 

between IIL and TBV were similar to the correlations between IIL and TGV. The 438 

average (95% CI) correlation between IIL and TDD was 0.002 (-0.01-0.01) for all 439 

scenarios, which was not unexpected, given the fact that the ROH effects are a function 440 

of the alternative homozygote genotypes and not heterozygous genotypes. 441 

 Panel 2 and 3 of Figure 3 summarize the effectiveness of using the IIL algorithm 442 

based on its predictive ability or as a tool to minimize the frequency of unfavorable 443 

haplotypes in the progeny. As outlined in Panel 2 of Figure 3, the correlation between 444 

IIL and the phenotype increased as the level of LD increased in the population. Averaged 445 

(95% CI) across QTL scenarios, the prediction accuracy of IIL was 0.34 (0.32-0.36) and 446 

0.49 (0.47-0.52) for the low and high LD scenarios, respectively. Similar trends of 447 

increasing prediction accuracy as the LD in a population increased were seen, as 448 

expected, for the whole genome prediction values and minor differences were found 449 

between the prediction accuracy for EGV and EBV. Averaged (95% CI) across QTL 450 

scenarios, the prediction accuracy of EGV was 0.66 (0.64-0.67) and 0.82 (0.79-0.84) for 451 

the low and high LD scenarios, respectively. These results are not unexpected since the 452 

algorithm only utilizes haplotypes that have an unfavorable effect contained within ROH 453 

stretches and favorable haplotypes are not included in IIL. The correlations between IIL 454 

and values from the whole-genome regression model are outlined in Figure S2 Panel 1. 455 
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Averaged (95% CI) across scenarios the correlation between IIL and EGV was 0.50 456 

(0.49-0.50) and in general as the LD increased so did the correlation. 457 

The last summary statistic is outlined in Panel 3 of Figure 3 and outlines the 458 

significance of the regression coefficient based on either genome wide inbreeding metrics 459 

or IIL. Across all genome-wide inbreeding metrics the –log p-value was similar across all 460 

LD scenarios, and the significance increased proportionally to the number of QTL. For 461 

example, averaged (95% CI) across scenarios and genome-wide inbreeding metrics, the 462 

average – log p-value were 1.12 (1.01-1.23) and 1.68 (1.49-1.87) for the scenarios with 463 

250 and 1000 QTL, respectively. The – log p-value for the IIL metric across all scenarios 464 

was in all cases greater and increased as the LD in the population increased. Under the 465 

high LD scenario the average (95% CI) –log p-value for the IIL metric across QTL 466 

scenarios was 21.24 (19.37-23.10), corresponding to a nominal p-value of 5.96e-10. 467 

 In summary, the simulation results highlight that the algorithm identified on 468 

average 41 % of the highly unfavorable (i.e. 0.05 percentile) ROH effects across the QTL 469 

scenarios and under the high LD scenario. Moreover, the unfavorable haplotypes were 470 

effective at tagging a significantly larger ROH region. Under the high LD scenario, 471 

which closely resembles most livestock situations, the ROH that the haplotype tagged 472 

had a median length of 12.1 Mb. When combining all unfavorable haplotypes based on 473 

their probability of occurring and the effect of the haplotype being in a ROH, a moderate 474 

prediction accuracy was achieved. Furthermore, the correlation between ILL and the 475 

EGV was moderate and more importantly less than unity in all cases. Therefore, a 476 

combination of ILL and a genome-wide genetic value would allow for two animals with 477 
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similar genetic values but differ in the number of unfavorable haplotypes contained 478 

within long ROH to be distinguished. 479 

Swine Data 480 

 To determine whether similar results were found with real data and to investigate 481 

its effectiveness across multiple traits, the algorithm was tested with two swine  482 

commercial maternal lines. The significance of the regression coefficient and the 483 

predictive ability of ILL compared to genome-wide inbreeding metrics is presented in 484 

Table 2. Across both breeds and for the majority of traits except for NBA and TNB in 485 

LR, ILL had a prediction accuracy greater than 0. Averaged (± SD) across traits within a 486 

breed, the average prediction accuracy was 0.15 (± 0.13) and 0.20 (± 0.04) for LR and 487 

LW, respectively. Similar to the simulation, the whole genome regression based EGV 488 

resulted in higher prediction accuracies compared to ILL across all traits and breed. The 489 

prediction accuracy averaged (± SD) across traits within a breed was 0.48 (±0.10) and 490 

0.49 (±0.17) for LR and LW, respectively. Both prediction accuracies were lower than 491 

what was achieved in the simulation, given the lower heritability for most of the traits and 492 

the simplified assumptions employed in the simulation. The correlations between IIL and 493 

values from the whole-genome regression model are outlined in the bottom of Figure S2 494 

Panel 2. Averaged (± SD) across traits within a breed the correlations between the IIL 495 

and EGV were 0.31 (± 0.13) and 0.32 (± 0.06) for LR and LW, respectively. A positive 496 

correlation (Averaged ± SD: LR = 0.07 ± 0.06; LW = 0.15 ± 0.07) was estimated 497 

between ILL and EDD. 498 

 Also, outlined in Table 2 is the –log p-value of the regression coefficient when 499 

genome-wide inbreeding or ILL values were included in the model. Averaged across 500 
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traits within a breed, the IIL regression coefficient resulted in a higher –log p-value (i.e. 501 

lower p-value) across both breeds compared to any genome-wide inbreeding metric, 502 

while the pedigree based inbreeding metric had the lowest –log p-value. Out of the 9 503 

traits, the regression coefficient was trending towards significance (P-value < 0.10) for 6 504 

and 7 out of the 9 traits for LR and LW, respectively. Alternatively, the regression 505 

coefficient for the genome-wide metrics for LR (LW), was trending toward significance 506 

for 3 (4), 2 (2) and 0 (0) of the 9 for the proportion of the genome homozygous, diagonals 507 

of SNPRM or pedigree-based inbreeding, respectively. Thus, in our results ILL was the 508 

parameter that more closely aligned with the identification of functional inbreeding. It 509 

should be noted that, no single parameter had a consistently higher –log p-value across 510 

traits so that a combination of genome-wide inbreeding metric based on genomic 511 

information and the IIL value would likely be optimal in breeding applications.  512 

 An ideogram of regions of the genome where an unfavorable haplotype was 513 

identified by the algorithm across the 9 traits for the two lines is depicted in Figure S3 514 

and S4, respectively. Regions of the genome where long unfavorable stretches of 515 

homozygosity were observed across multiple traits/line. Conversely, other regions did not 516 

appear to harbor unfavorable stretches of homozygosity. The number of regions that have 517 

an unfavorable effect across at least 4 of the 9 traits is outlined in Table 3 and placed into 518 

categories based on the relationship between the traits. A summary of the regions and the 519 

least square mean difference between an animal in an ROH versus nonROH across both 520 

breeds is outlined in Table S2. A total of 4 and 13 regions were found that had at least 521 

one production and reproduction trait affected by a tag haplotype in LR and LW, 522 

respectively. A total of 3 regions across both breeds were associated only with 523 
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reproductive traits. Summary statistics on the median ROH length that the unfavorable 524 

haplotype tagged and the average frequency of the ROH genotype across traits and 525 

breeds is outlined in Table S3. The average median length of the unfavorable haplotype 526 

across trait and breeds was 1.56 and 1.54 Mb for LR and LW, respectively. Similarly to 527 

what found in simulated data, the unfavorable haplotype tagged a larger ROH of 9.55 and 528 

9.12 Mb averaged across traits within LR and LW, respectively, corresponding to  529 

(averaged across traits) 172 and 156 SNP for LR and LW, respectively. 530 

 Lastly, the correlation between the diagonals and off-diagonals of ILM for each 531 

trait and genome-wide relationship matrices is presented in Figure S5 and S6 for LR and 532 

LW, respectively. As shown by the lower diagonal of each matrix, correlations between 533 

the off-diagonal elements of the ILM across all traits and genome-wide relationships are 534 

all favorably correlation. Any change in the off-diagonal ILM value for one trait would 535 

result in a similar (in the favorable direction) or negligible change in other traits. The 536 

average off-diagonal elements across traits for LR had an absolute correlation of 0.23, 537 

0.28 and 0.34 for A, SNPRM and ROH5RM, respectively. Slightly lower correlations 538 

were found for LW and averaged across traits the absolute correlation was 0.14, 0.20 and 539 

0.21 for A, SNPRM and ROH5RM, respectively. In general, the correlations between the 540 

IIL values across traits and genome-wide inbreeding metrics were similar to the off-541 

diagonals and the majority of them were in the same direction. In some instances, the 542 

correlations between the values were antagonistic, for example LR between the SNPRM 543 

and the IIL values across all traits, although the correlations between the genome-wide 544 

inbreeding metrics were much lower compared to the off-diagonal elements. 545 

DISCUSSION 546 
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 The objective of this study was to implement a strategy to identify haplotypes 547 

within long ROH that tag an IBD segment due to recent inbreeding. Haplotypes within 548 

ROH were targeted since previous results via simulation by Keller et al. (2011) have 549 

shown that ROH based genome-wide inbreeding metrics have a higher association with 550 

the recessive mutation load compared to pedigree or SNP-by-SNP based inbreeding 551 

metrics. The  rationale behind the algorithm proposed stems from previous research 552 

investigating the phenotypic effect of a region being in an ROH (Pryce et al., 2014; 553 

Howard et al., 2015; Saura et al., 2015). One of the major pitfalls of previously utilized 554 

methods is that they assume that any ROH genotype within a region of interest has an 555 

unfavorable effect, which is most likely not the case. Instead, the unfavorable effect is 556 

likely due to a single unique ROH genotype with the remaining ones resulting in no 557 

unfavorable effect. Thus, the necessity of identifying unique ROH genotypes associated 558 

with an unfavorable phenotype. The primary outcome of the proposed algorithm is a list 559 

of unfavorable haplotypes. Multiple algorithms already exist to manage unfavorable 560 

mutations or haplotypes within breeding programs so that the ones identified by the 561 

algorithm could be easily incorporated into previously developed pipelines (Kinghorn, 562 

2011; Cole, 2015). 563 

Within the algorithm, multiple aggregation steps are implemented to confine the 564 

unfavorable haplotype to the core of the observed ROH genotype in a way that is 565 

consistent across individuals. As result of the aggregation step, each haplotype serves as a 566 

tag for a much larger ROH segment. In this regard, the data presented confirm that the 567 

aggregation steps are successful in identifying tag haplotypes contained within a much 568 

larger ROH genotype. Across both swine breeds and in the simulated data set, the median 569 
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length of the ROH the haplotype tagged was greater than 9 Mb and the tag haplotype was 570 

around 1 Mb. Furthermore, simulation results highlighted that the true ROH effects that 571 

were not identified were shorter ROH (5.26 Mb) compared to the ones that were 572 

identified (13.96). The ability to capture short IBD regions depends on the marker density 573 

as described by Ferenčaković et al. (2013) and the marker density utilized in the current 574 

study might not be sufficient to capture these short IBD regions effectively. The impact 575 

of the density was not investigated here to limit the number of scenarios generated, yet its 576 

impact should be considered in the future. Lastly, the simulation highlighted how in some 577 

cases the algorithm incorrectly identified true positive ROH effects that were 578 

characterized as being much longer compared to correctly identified negative ROH 579 

effects. The distribution of the length of ROH has a heavy tail and therefore the 580 

frequency of long ROH is low, but they do exist within the genome across individuals. 581 

These incorrectly identified true positive ROH regions were locally negative around a tag 582 

unfavorable haplotype, but being in longer than average ROH their combined effect was 583 

ultimately positive. 584 

We investigated the ability of the algorithm to identify unfavorable haplotypes 585 

and their potential use. The frequency at which ROH occurs within the genome had a 586 

large impact on the ability of the algorithm to identify unfavorable haplotypes. Medium-587 

high and high LD scenarios have LD patterns similar to those observed in livestock 588 

species. Under these premises the algorithm was effective at capturing unfavorable 589 

genomic regions. The proportion of highly unfavorable ROH genotypes (i.e. < 0.05 590 

percentile) that the algorithm captured under the high LD scenario varied across QTL 591 

scenarios. As the number of QTL increased the proportion of ROH genotypes captured 592 
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decreased. The average (95% CI) proportion of highly unfavorable ROH genotypes the 593 

algorithm captured was 0.52 (0.42-0.62), 0.39 (0.32-0.46) and 0.33 (0.27-0.39) for the 594 

scenarios with 250, 500 and 1000 QTL, respectively. The prediction accuracy based on 595 

real data (average ± SD: 0.17±0.10) was roughly half of what was observed with the 596 

simulated data (high LD scenario mean (95% confidence interval (CI)): 0.49 (0.47-0.52)), 597 

although across the majority of traits, IIL had a prediction accuracy that was greater than 598 

zero. A prediction accuracy near zero was observed in LR for NBA and TNB, which may 599 

be due to multiple factors including purging of unfavorable ROH genotypes due to strong 600 

selection for initial litter size within the line as well as a smaller dataset than the one used 601 

in the LW population. In our study, whole genome regression based EGV resulted in a 602 

moderate predictive ability (average ± SD across trait and breed: 0.48±0.14). The use of a 603 

whole-genome regression method to benchmark the algorithm was used to illustrate the 604 

limitations of the algorithm. The algorithm only test for regions contained in longer ROH 605 

resulting in an unfavorable phenotype and should be used in conjunction with other 606 

methods to increase the overall genomic variability and limit the accumulation of 607 

inbreeding. Importantly, a moderate positive correlation between IIL and EGV was 608 

observed in the simulated (high LD scenario mean (95% confidence interval (CI)): 0.54 609 

(0.53-0.56)) and swine (average ± SD: 0.31±0.10) datasets. Thus, the combination of the 610 

two metrics could allow for a breeder to more effectively manage the risks associated 611 

with sire or mate selection, allowing to better evaluate the trade-off between the genetic 612 

value of the progeny and undesirable side effects associated with inbreeding. Lastly, the 613 

use of the algorithm along with methods to identify lethal mutations/haplotypes 614 
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(VanRaden et al., 2011) would allow breeders to comprehensively manage genomic 615 

diversity and recessive load in a population.  616 

The two maternal lines utilized in this study have been under intense selection for 617 

multiple generations, which has potentially resulted in high and heterogeneous levels of 618 

homozygosity across the genome. This has been investigated recently by Howard et al. 619 

(2016), which estimated the proportion of the genome in a ROH of at least 5 Mb to be 620 

0.17 and 0.19 for LR and LW, respectively. Furthermore, nearly all chromosomes across 621 

both breeds contained regions of the genome with high levels of ROH. Under this 622 

premise, it is likely that the impact of genome-level homozygosity would be regressed 623 

toward zero, since homozygosity in some regions of the genome would no longer be 624 

unfavorable. This result is partially verified by the ideogram outlined in Figure S3 and 625 

S4, whereby some regions of the genome have unfavorable haplotypes spread across 626 

multiple traits and other do not have any unfavorable regions. The impact of haplotypes 627 

contained within an ROH for regions that were significant across multiple traits can be 628 

quite large. For example, an animal homozygous for a tag haplotype on SS9 (28.9-30.6) 629 

within the LR breed would be predicted to have 1.66 fewer pigs born alive, 1.32 fewer 630 

total pigs born, 4.0 % more pigs born dead and the litter would be on average 0.07 kg 631 

smaller than an animal not being homozygous for the tag haplotype. 632 

In general, the genetic diversity of a population is managed through the 633 

relationship of the parents based on the expectation that the inbreeding in the progeny is 634 

equal to half of the coancestry between the parents (Falconer and Mackay, 1996). As 635 

previously discussed, since inbreeding depression is heterogeneous across the genome, a 636 

measure that has a higher relationship with the genetic load of an individual may serve as 637 
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a better metric to manage the degree of inbreeding depression that exists within a 638 

population. Therefore, linear mixed models (i.e. Model 1 described in the section 639 

outlining the algorithm) that included either genome-wide inbreeding metrics or the IIL 640 

value in predicting a phenotype were evaluated and the corresponding –log p-value was 641 

estimated for each specific inbreeding regression coefficient. Across all simulated 642 

scenarios and on average across both swine breeds, the significance of the regression 643 

coefficient for the IIL value was higher compared to any other genome-wide metric. Yet 644 

for some traits genome-wide metrics were more significant. When both the most 645 

significant genome-wide inbreeding metric and ILL were included in the model, similar 646 

significance values remained. This highlight how genome-wide inbreeding and ILL 647 

metrics are capturing different signals. Based on our results, a combination of a genome-648 

wide relationship matrix and ILM could be useful in effectively manage the risks 649 

associated with choosing an individual/mating combination. Future research should look 650 

at the long-term benefits of including the ILM in mating designs in terms of diversity and 651 

genetic load. Also, methods to incorporate multiple metrics including the genetic value, 652 

genetic diversity, lethal mutations and the unfavorable haplotypes from the algorithm into 653 

an index value should be developed. 654 

Breeding objective are in the near totality of cases comprised of several 655 

economically important traits and thus the relationship between the ILM across traits is 656 

of importance. For the two breeds investigated the off-diagonal values across all traits 657 

resulted in a favorable or negligible change across all traits. Thus, the use of the ILM 658 

matrix for a given trait would result in a favorable increase or negligible change in the 659 

phenotype of the remaining traits. Furthermore, based on genome-wide relationship 660 
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metrics (i.e. pedigree or genomic), the off-diagonals elements are favorably correlated 661 

with off-diagonal elements of the ILM matrix across traits and breeds. Therefore, as one 662 

changes the ILM values in the favorable direction, the relationship across mating pairs is 663 

reduced, which is desirable and expected. Future research should investigate methods to 664 

combine ILM across traits in the breeding objective. In general, the diagonal values had 665 

similar trends as the off-diagonals across traits and relationship matrices. One of the 666 

major differences between the two values related to an antagonistic relationship for LR 667 

between the SNPRM and the IIL values across all traits. The inbreeding correlations had 668 

a much lower correlation than off-diagonals elements and even more so within the LR 669 

breed.  670 

In the present study variance components were not re-estimated for each window 671 

in Stage 2, which may have impacted the t-statistic. We utilized ASreml, which does re-672 

estimate the variance components for each window, to determine the sensitivity of fixing 673 

variance components. The difference between the T-statistic from the algorithm and the 674 

one from ASReml is outlined in Table S4. Across all breeds and traits, the differences 675 

between the two were negligible. In addition, across all breeds and traits the T-statistic 676 

from the algorithm gave a conservative estimate compared to the ones derived from 677 

ASreml. The algorithm proposed may tag short haplotypes instead of long ones that 678 

aren’t most likely IBD segments as a result of recent inbreeding. Averaged across traits 679 

the proportion of ROH genotypes that were below 1, 2 and 3 Mb with LR (LW) was 2.0 680 

(1.7), 8.3 (8.4) and 16.0 (16.2) percent, respectively. The algorithm trapped short ROH 681 

genotypes (albeit at a low frequency). Further improvements of the algorithm in the 682 

future should focus on reducing the frequency of trapping short ROH.  683 
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Previous studies have investigated ROH effects by accounting for the additive 684 

genotypic value of the region in the model by either including SNP contained within the 685 

region investigated (Pryce et al., 2014) or using phenotypes that have been corrected for 686 

the additive effect (Howard et al., 2015). When utilizing a separate model for each 687 

window, the simulation and swine data sets have illustrated that the ROH tagging 688 

haplotype can span many Mb and is variable across animals within and across windows. 689 

Therefore, the number of SNP to include before and after the haplotype in the model to 690 

account for the additive effect for a given region is difficult to determine. More 691 

importantly, the independence between additive and dominance effects in the classical 692 

treatment (Falconer and Mackay, 1996) is to an extent a convenient artifact that allows 693 

orthogonally of the additive and dominance estimates. In reality, and as outlined in 694 

Huang & Mackay (2016), depending on the parameterization of the model the variance 695 

explained by either additive, dominance or epistasis can be rearranged and placed more 696 

heavily into any of the three categories. This is chiefly due to the fact that three effects 697 

are in real situation non-orthogonal to each other, so that the variance from a particular 698 

effect can be “consumed” by another effect. This is an important point as additive and 699 

dominance are two intrinsically inseparable terms, since if an allele is dominant over 700 

another (a ≠ 0, d ± a), there must necessarily be additive homozygous effects (a ≠ 0; 701 

Huang and Mackay, 2016). The non-orthogonal relationship between additive and 702 

dominance effects has been confirmed with real data (Wellmann and Bennewitz, 2011; 703 

Wellmann and Bennewitz, 2012). The non-orthogonal relationship was also observed in 704 

the current simulation study. The correlation between ILL and true dominance deviation 705 

was essentially 0 across all scenarios, although a positive correlation (0.14) was observed 706 
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between ILL and the estimated dominance deviation EDD was observed. Under this 707 

premise, the ability to efficiently estimate the additive and dominance effect and their 708 

potential interactions for QTL that are at a low frequency is severely reduced. Lastly, the 709 

application of the associated haplotypes identified in mating plans when correcting for 710 

the additive effect is even more complex due to a lack of clear interpretation between the 711 

combined additive and ROH effect for a window. Therefore, in our analysis priority was 712 

given to estimating the genotypic value of ROH segments that are susceptible to 713 

displaying reduced performance based on the combined genotypic value of the given 714 

segment. Based on this premise, we make no attempt at trying to understand the number 715 

of mutations present within the ROH, the degree of epistasis that occurs or the 716 

inheritance pattern of QTL within the segment. 717 

Conclusions 718 

We have outlined an algorithm that identifies unfavorable haplotypes contained 719 

within an ROH that give rise to a reduced phenotype. Across simulated and real datasets 720 

the unfavorable haplotype tags a much larger ROH region that has a high probability of 721 

being IBD due to its length. Furthermore, the accuracy of prediction for the majority of 722 

the traits was greater than zero. On the real swine datasets, multiple haplotypes were 723 

identified that had a consistent unfavorable effect across multiple traits. The use of this 724 

algorithm and the associated haplotypes allow for breeding programs to more effectively 725 

identify unfavorable regions and mating programs can be used to minimize the frequency 726 

of ROH occurring in the next generation.  727 
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Table 1. The model utilized, estimated genetic parameters and the number of animals 840 

across traits for the Landrace (LR) and Large White (LW) population. 841 

Breed Trait1 Fixed Effects1 
Genetic 

Parameters2 Animals (Records) 

h2 r2 Training Validation 

LR 

NBA Parity, CG 0.082 0.149 4,005 (9,416) 1,005 (1,639) 
TNB Parity, CG 0.082 0.149 4,003 (9,302) 998 (1,621) 
PD Parity, CG 0.085 0.156 4,003 (9,293) 998 (1,621) 

LBW 
Parity, CG, 

NBA 
0.231 0.284 3,985 (8,648) 988 (1,586) 

PWM 
Parity, CG, 
Pig24hrs 

0.115 0.131 3,504 (6,724) 870 (1,330) 

NW 
Parity, CG, 
Pig24hrs 

0.102 0.120 3,465 (6,600) 845 (1,280) 

NWBW 
Parity, CG, 

Pig24hrs, NW 
0.144 0.211 3,465 (6,600) 845 (1,280) 

Weight CG, Sex, Age 0.271 - 4,386 (4,386) 993 (993) 
ADG CG, Sex, Age 0.271 - 4,386 (4,386) 993 (993) 

LW 

NBA Parity, CG 0.115 0.150 5,518 (15,014) 1,232 (2,271) 
TNB Parity, CG 0.098 0.142 5,513 (14,673) 1,228 (2,262) 
PD Parity, CG 0.086 0.133 5,513 (14,664) 1,228 (2,262) 

LBW 
Parity, CG, 

NBA 
0.241 0.307 5,487 (13,581) 1,188 (2,155) 

PWM 
Parity, CG, 
Pig24hrs 

0.074 0.168 4,966 (10,464) 1,102 (1,824) 

NW 
Parity, CG, 
Pig24hrs 

0.053 0.115 4,901 (10,259) 1,054 (1,716) 

NWBW 
Parity, CG, 

Pig24hrs, NW 
0.144 0.203 4,901 (10,259) 1,054 (1,716) 

Weight CG, Sex, Age 0.292 - 5,576 (5,576) 1,197 (1,197) 
ADG CG, Sex, Age 0.291 - 5,576 (5,576) 1,197 (1,197) 

1 NBA = number born alive; TNB = total number born; PD = proportion born dead; LBW 842 

= average litter birth weight; PWM = pre-weaning mortality; NW = number weaned; 843 

NWBW = average litter wean weight; Weight = weight at off-test; ADG = average daily 844 

body weight gain from birth to off-test;  CG = contemporary group based on farm, year 845 

and season; Pig24hrs = pigs in the litter after the 24 hour cutoff; Age refers to off-test 846 

age. 847 

2 h2 refers to the narrow sense heritability; r2 refers to the repeatability. 848 
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Table 2. The significance of inbreeding regression coefficient across multiple inbreeding 849 

metrics and the prediction accuracy of the individual inbreeding load (IIL) and estimated 850 

genetic value (EGV) from whole genome Bayesian Ridge Regression across traits for 851 

Landrace (LR) and Large White (LW) populations. 852 

Breed Trait1 

Regression on Adjusted Phenotype –log(P-value)2 Prediction 
Accuracy 

Pedigree 
Inbreeding 

Genomic 
Inbreeding 

Proportion 
Homozygous 

IIL EGV IIL 

LR 

NBA 0.66 0.49 0.69 0.00 0.44 -0.05 
TNB 0.87 0.68 0.23 0.53 0.42 -0.09 
PD 0.15 0.00 1.42 1.94 0.53 0.15 

LBW 0.45 2.24 1.34 15.24 0.65 0.33 
PWM 0.29 1.54 0.8 2.94 0.40 0.17 
WN 0.21 1.01 0.49 4.00 0.42 0.22 

WNBW 2.14 0.66 4.36 2.51 0.64 0.22 
Weight 0.53 4.52 2.93 3.24 0.40 0.17 
ADG 0.58 4.54 2.84 4.00 0.39 0.18 

Average 0.65 1.74 1.68 3.82 0.48 0.15 

LW 

NBA 0.62 0.15 0.12 4.14 0.45 0.24 
TNB 0.98 0.40 0.21 2.56 0.42 0.19 
PD 0.54 1.35 1.97 1.94 0.38 0.13 

LBW 2.18 1.11 4.07 10.25 0.77 0.24 
PWM 2.11 0.33 1.37 2.09 0.36 0.18 
WN 1.71 0.12 0.00 2.91 0.29 0.25 

WNBW 0.00 0.78 2.56 3.46 0.79 0.17 
Weight 0.69 5.70 6.14 5.99 0.48 0.18 
ADG 0.73 5.76 6.09 4.77 0.48 0.17 

Average 1.06 1.74 2.50 4.23 0.49 0.20 
1 NBA = number born alive; TNB = total number born; PD = proportion born dead; LBW 853 

= average litter birth weight (LBW); PWM =  pre-weaning mortality; NW = number 854 

weaned; NWBW = average litter wean weight; Weight = weight at off-test; ADG = 855 

average daily body weight gain from birth to off-test.  856 

2 As a reference a p-value of 0.10, 0.05 and 0.01 is equivalent to a negative log p-value of 857 

2.30, 3.0 and 4.6, respectively.  858 

 859 
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Table 3. Summary of the number of haplotypes that displayed unfavorable effects across 860 

multiple (i.e. > 4) traits for Landrace (LR) and Large White (LW) populations. 861 

Breed Type of Trait1 Number of 
Haplotypes 

LR 
Production and Reproduction 4 

Reproduction 3 

LW 
Production and Reproduction 13 

Reproduction 3 
1 The type of trait refers a Production trait (i.e. weight at off-test; average daily body 862 

weight gain from birth to off-test) or a Reproductive Trait (i.e. number born alive; total 863 

number born; proportion born dead; average litter birth weight; pre-weaning mortality; 864 

number weaned; average litter wean weight). 865 
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Figure 1. Overview of algorithm that identifies unfavorable haplotypes. 880 

Figure 2. Summary1 of the proportion of runs of homozygosity (ROH) of at least 1 881 

Megabase the algorithm captures (Panel 1) and the length of the ROH the haplotype tags 882 

(Panel 2) across simulation scenarios2 by percentile class3 and whether the algorithm 883 

identified the haplotype. 884 

1 The summary statistic in Panel 1 is the mean ± 95 % confidence interval and in Panel 2 885 

is the 1st, 2nd and 3rd quartiles. 886 

2 Refers to ancestral population scenario simulated. Scenario 1 = “Ne1000” parameter in 887 

Geno-Diver; Scenario 2 = “Ne250” parameter in Geno-Diver. Scenario 3 = 888 

“Ne100_Scen1” parameter in Geno-Diver. Scenario 4 = “Ne70” parameter in Geno-889 

Diver. 890 

3 The ROH percentile class is outlined on the x-axis and the first 4 represent quantiles for 891 

the true negative effects (i.e. 0.05 represents the highly negative ROH effects) and the 892 

last 4 represent quantiles for the true positive effects (i.e. 0.95 represent highly positive 893 

effects). The y-axis refers to the algorithms summary statistics for the number of true 894 

ROH identified out of all true ROH effects within the given quintile. 895 

4 The number below either negative or positive ROH refers to the percentage of the ROH 896 

that the algorithm correctly found out of the all negative or positive true ROH effects. 897 

Figure 3. Summary (mean ± CI)1 of the correlation between individual inbreeding load 898 

(IIL) and the true genetic signal (Panel 1)2, prediction accuracy for IIL and genotypic 899 

estimates Bayesian ridge regression (Panel 2)3 and significance of the regression 900 

coefficient based on either a genome wide inbreeding metrics or IIL (Panel 3)4
 across 901 

simulation scenarios5. 902 
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1 CI: 95% confidence interval. 903 

2 TGV: true genotypic value; TBV: true additive genetic value; TDD: true dominance 904 

deviation.  905 

3 EGV: estimated genotypic value; EBV: estimated breeding value.  906 

4 Pedigree: pedigree inbreeding; Genomic: genomic inbreeding based on diagonals of 907 

genomic relationship matrix; Homozygosity: proportion of genome homozygous. 908 

5 Refers to ancestral population scenario simulated. Scenario 1 = “Ne1000” parameter in 909 

Geno-Diver; Scenario 2 = “Ne250” parameter in Geno-Diver. Scenario 3 = 910 

“Ne100_Scen1” parameter in Geno-Diver. Scenario 4 = “Ne70” parameter in Geno-911 

Diver. 912 
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Figure 1. Overview of algorithm that identifies unfavorable haplotypes. 913 

  914 
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Figure 2. Summary1 of the proportion of runs of homozygosity (ROH) of at least 1 915 

Megabase the algorithm captures (Panel 1) and the length of the ROH the haplotype tags 916 

(Panel 2) across simulation scenarios2 by percentile class3 and whether the algorithm 917 

identified the haplotype. 918 

 919 
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Figure 3. Summary (mean ± CI)1 of the correlation between individual inbreeding load 920 

(IIL) and the true genetic signal (Panel 1)2, prediction accuracy for IIL and genotypic 921 

estimates Bayesian ridge regression (Panel 2)3 and significance of the regression 922 

coefficient based on either a genome wide inbreeding metrics or IIL (Panel 3)4
 across 923 

simulation scenarios5. 924 

 925 
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