
wft4galaxy: A Workflow Tester for Galaxy

Marco Enrico Piras
∗

CRS4, Pula, Italy
marcoenrico.piras@crs4.it

Luca Pireddu
CRS4, Pula, Italy

luca.pireddu@crs4.it

Gianluigi Zanetti
CRS4, Pula, Italy

gianluigi.zanetti@crs4.it

ABSTRACT
Motivation. Workflow managers for scientific analysis pro-
vide a high-level programming platform facilitating stan-
dardization, automation, collaboration and access to sophis-
ticated computing resources. The Galaxy workflow man-
ager provides a prime example of this type of platform. As
compositions of simpler tools, workflows effectively com-
prise specialized computer programs implementing often
very complex analysis procedures. To date, no simple way
exists to automatically test Galaxy workflows and ensure
their correctness has appeared in the literature.
Results. With wft4galaxy we offer a tool to bring auto-
mated testing to Galaxy workflows, making it feasible to
bring continuous integration to their development and en-
suring that defects are detected promptly. wft4galaxy can
be easily installed as a regular Python program or launched
directly as a Docker container – the latter reducing instal-
lation effort to a minimum.
Availability: wft4galaxy is available online at https://
github.com/phnmnl/wft4galaxy under the Academic Free
License v3.0.
Supplementary information: Supplementary informa-
tion is available at http://wft4galaxy.readthedocs.io.

1. INTRODUCTION
Typical bioinformatics analyses involve a number of steps

to extract information from various forms of raw data; these
analysis procedures are often referred to as workflows or
pipelines. The pattern is so common that a number of work-
flow managers have been created [4] to provide high-level
platforms on which to implement these procedures, support-
ing simpler and more robust implementations than would be
reasonably feasible with simple shell scripting. Thus, with
the help of workflow managers it becomes practical to im-
plement ever more complex workflows – in fact, workflows
with tens of steps are not uncommon. The increase in com-
plexity is accompanied by an increased risk of defects. At
best, these will crash and interrupt an analysis procedure;
at worst, they will produce subtly wrong results which may
only be detected much later. Therefore, given the risks, it
seems wise to adopt a mitigation strategy: it is the authors’
opinion the workflow development should be as rigorous as
any other kind of software development, especially in light

∗Corresponding author

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

of the growing trend to release and share “standard” work-
flows. Automated workflow testing then should become an
important part of the development process – one which as
of yet has not received a lot of attention.
In this work, we present wft4galaxy, the WorkFlow Test-

ing tool for the Galaxy data analysis platform [1]. To
the best of the authors’ knowledge, wft4galaxy is the
first published automatic workflow testing tool for Galaxy.
wft4galaxy works based on the unit testing model: a test
case is specified as a set of input datasets and parameters,
expected output datasets, and the workflow itself; the work-
flow is run and the actual and expected outputs are com-
pared. The testing tool uses Galaxy’s RESTful API through
the object-orienterd interface of the BioBlend.objects pack-
age [5] to automate the entire test execution operation as
well as much of the work required to compose the test cases.
Of note, our tool is currently used in production within
the PhenoMeNal project (http://phenomenal-h2020.eu)
to continuously test the workflows integrated in the plat-
form.

2. METHODS
The testing model provided by wft4galaxy is centered

around test cases. Each test case defines a workflow and a
specific scenario which is to be tested. It contains: the path
of the workflow definition file; optionally, the parameters
of the various workflow steps; the datasets to be used as
workflow inputs; and, finally, expected output datasets. Any
number of test cases are collected in a YAML file such as
the one shown in Listing 1.
The test definition file is the input for the wft4galaxy test

runner, which automatically executes the entire collection
of tests. For each test, the runner connects to an available
Galaxy instance provided by the user and then, through the
Galaxy API: (1) uploads the workflow; (2) creates a new
Galaxy history; (3) uploads all the input datasets; (4) runs
the workflow; (5) downloads output datasets. The runner
then compares the output to the expected datasets using a
comparator function (by default, simple file equality). Fi-
nally, all test results are collected and reported.
As an aid to users having to write test definitions,

wft4galaxy provides a template generator: this tool creates
a blank definition and a well-structured directory to contain
a test suite.

wft4galaxy offers flexibility in the selection of appropri-
ate comparator functions. The default one simply veri-
fies that the files are identical. However, this method is
not always appropriate – consider, for instance situations

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 12, 2017. ; https://doi.org/10.1101/132001doi: bioRxiv preprint

https://github.com/phnmnl/wft4galaxy
https://github.com/phnmnl/wft4galaxy
http://wft4galaxy.readthedocs.io
http://phenomenal-h2020.eu
https://doi.org/10.1101/132001
http://creativecommons.org/licenses/by-nc-nd/4.0/

workflows :
test_case :

file: " workflow .ga"
params :

3:
" respC ": " gender "

inputs :
" DataMatrix ": " input / dataMatrix .tsv"

expected :
output :

file: " expected / variableMetadata .tsv"
comparator : " comparators . same_row_col "

Listing 1: Example of "Test definition file"

where an analysis may have multiple solutions of compa-
rable quality or cases that are subject to some acceptable
degree of round-off error. To handle these cases wft4galaxy
allows the user to override the default behaviour with cus-
tomized comparator functions, which must be simple Python
callables with the signature shown in Listing 2. When spec-
ified in a test definition, the custom comparator is auto-
matically loaded and invoked by the wft4galaxy frame-
work to decide whether or not the generated output is
acceptable for the test. The wft4galaxy framework pro-
vides a growing package of ready-made comparators (called
wft4galaxy.comparators), which also includes the default
base_comparator. Of course, users can also implement their
own comparator functions for their tests.

def my_custom_comparator (generated_file_path ,
expected_file_path):

""" Return True if the two files are " equal ";
False otherwise . """

Listing 2: Signature of a comparator function.

As the individual tests are executed, wft4galaxy prints
to standard output information about the tests in progress.
The format of the output is modelled after the one presented
by the Python Unit Test Framework – i.e., for every test
case, wft4galaxy prints whether it passed or failed. For
debugging, more detailed logging can be activated; users
can also choose to retain all output files produced by a test
run for further analysis and debugging (by default, as soon
as the test completes all its datasets and Galaxy histories
are deleted).

Automatic test case generation.
The wft4galaxy framework further simplifies the creation of
workflow test cases through the wft4galaxy-wizard, which
generates “ready-to-run” workflow test cases from existing
Galaxy histories. With the wizard, the steps to create a
working test case are reduced to the following. First, the
user creates a new history with the required input datasets.
Then, the user runs the workflow, after setting any required
tool parameters. The workflow should produce a set of new
output datasets within the same history. Now, assuming
that the workflow has produced correct results, the his-
tory can be transformed into a test case by running the
wft4galaxy-wizard. The wizard will inspect the history

to extract and store the underlying workflow (i.e., its .ga
definition file) and all its datasets (both input and output)
in a new test directory. The suite definition file is then
automatically generated: it will contain a single test case
configured to execute the extracted workflow on the input
datasets and compare the generated datasets to the outputs
of the recorded workflow run.

Figure 1: Automatic generation of a test case from a Galaxy
history.

Programmatic Usage.
To integrate wft4galaxy with third-party tools or for elabo-
rate automation requirements, it can also be used program-
matically. Its API is organized around two main packages:
wft4galaxy.core and wft4galaxy.wrapper. The former
contains the core logic of the test framework, exposing an
Object-Oriented (OO) API for defining and running test
cases and test suites programmatically (Listing 3 shows an
example of its usage). On the other hand, the latter package
contains an OO representation of Galaxy workflows and his-
tories providing a simplified way to inspect inputs, parame-
ters and outputs of tested Galaxy workflows and histories.

from wft4galaxy .core import WorkflowTestCase
workflow_filename = " workflow .ga"
inputs = {" InputText ": {"file": " input "}}
expected_outputs = {

" OutputText ": {
"file": " expected_outputs "

}
}
test_case = WorkflowTestCase (

base_path , workflow_filename ,
inputs , expected_outputs)

test_result = test_case .run(enable_logger =True)
test_result . check_output (" OutputText ")

Listing 3: Example of programmatic test case definition and
execution.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 12, 2017. ; https://doi.org/10.1101/132001doi: bioRxiv preprint

https://doi.org/10.1101/132001
http://creativecommons.org/licenses/by-nc-nd/4.0/

Docker integration
wft4galaxy can easily run within a Docker container, com-
pletely avoiding any installation hassles. This feature is
particularly useful when using continuous integration (CI)
services such as Travis CI and Jenkins, where users ben-
efit from not using root privileges for installing new soft-
ware packages. To simplify the usage of the wft4galaxy
Docker image, we provide the wft4galaxy-docker script,
which configures the container execution to use wft4galaxy
as if it were locally installed. The script can be run stan-
dalone, after simply downloading it from the wft4galaxy
GitHub repository.

3. CONCLUSION
wft4galaxy is a tool to simplify and automate work-

flow tests. It supports the adoption of “unit testing” and
continuous integration into the workflow development and
maintenance process. Its native support for Docker enables
easy integration with specialized CI systems, such as Jenk-
ins. Indeed, within the PhenoMeNal project, Jenkins with
wft4galaxy are used to test complex workflows such as the
ones described by De Atauri et al. [3]. Although in its cur-
rent version wft4galaxy is tied to the Galaxy platform, in
the future we would like to investigate the feasibility of ex-
tending it to work with other workflow management systems
and, in particular, implementations of the Common Work-
flow Language [2].

Acknowledgements
The authors would like to thank the fellow members of
the PhenoMeNal team for their valuable feedback. This
work was partially supported by the European Commission’s
Horizon2020 programme under the PhenoMeNal project
(654241) and by the Region of Sardinia under project ABLE.

References
[1] E. Afgan, D. Baker, M. van den Beek, D. Blanken-

berg, D. Bouvier, M. Čech, J. Chilton, D. Clements,
N. Coraor, C. Eberhard, B. Grüning, A. Guerler,
J. Hillman-Jackson, G. Von Kuster, E. Rasche, N. So-
ranzo, N. Turaga, J. Taylor, A. Nekrutenko, and
J. Goecks. The Galaxy platform for accessible, repro-
ducible and collaborative biomedical analyses: 2016 up-
date. Nucleic Acids Research, 44(May):gkw343, 2016.
ISSN 0305-1048. doi:10.1093/nar/gkw343.

[2] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman,
J. Chilton, M. Heuer, A. Kartashov, D. Leehr, H. Mé-
nager, M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and
L. Stojanovic. Common Workflow Language, v1.0. 1
2016. doi:10.6084/M9.FIGSHARE.3115156.V2.

[3] P. De Atauri, P. Moreno, V. Selivanov, C. Foguet,
S. Marin, S. Neumann, and M. Cascante. Workflows For
Fluxomics In The Framework Of Phenomenal Project. 1
2016. doi:10.5281/ZENODO.154584.

[4] J. Leipzig. A review of bioinformatic pipeline frame-
works. Briefings in Bioinformatics, (January):bbw020,
3 2016. ISSN 1467-5463. doi:10.1093/bib/bbw020.

[5] S. Leo, L. Pireddu, G. Cuccuru, L. Lianas, N. So-
ranzo, E. Afgan, and G. Zanetti. BioBlend.objects:
Metacomputing with galaxy. Bioinformat-
ics, 30(19):2816–2817, 2014. ISSN 14602059.
doi:10.1093/bioinformatics/btu386.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 12, 2017. ; https://doi.org/10.1101/132001doi: bioRxiv preprint

http://dx.doi.org/10.1093/nar/gkw343
http://dx.doi.org/10.6084/M9.FIGSHARE.3115156.V2
http://dx.doi.org/10.5281/ZENODO.154584
http://dx.doi.org/10.1093/bib/bbw020
http://dx.doi.org/10.1093/bioinformatics/btu386
https://doi.org/10.1101/132001
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Conclusion

