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Abstract 
 

With the advent of high-throughput technologies for genome-wide expression profiling, a large number of 
methods have been proposed to discover gene-based signatures as biomarkers to guide cancer prognosis. 
However, it is often difficult to interpret the list of genes in a prognostic signature regarding the 
underlying biological processes responsible for disease progression or therapeutic response. A 
particularly interesting alternative to gene-based biomarkers is mechanistic biomarkers, derived from 
signaling pathway activities, which are known to play a key role in cancer progression and thus provide 
more informative insights into cellular functions involved in cancer mechanism. In this study, we 
demonstrate that pathway-level features, such as the activity of signaling circuits, outperform 
conventional gene-level features in prediction performance in breast cancer prognosis. We also show that 
the proposed classification scheme can even suggest, in addition to relevant signaling circuits related to 
disease outcome, a list of genes that do not code for signaling proteins whose contribution to cancer 
prognosis potentially supplements the mechanisms detected by pathway analysis. 

 

Introduction  
 
Over the past decades, many efforts have been addressed to the identification of gene-based signatures to 
predict patient prognosis using gene expression data (Paik, et al., 2004; Sotiriou and Pusztai, 2009; van 't 
Veer, et al., 2002; Wang, et al., 2005). Despite the success of its use, gene expression signatures have not 
been exempt of problems (Ein-Dor, et al., 2006; Iwamoto and Pusztai, 2010). Specifically, one major 
drawback of multi-gene biomarkers is that they often lack proper interpretation in terms of mechanistic 
link to the fundamental cell processes responsible for disease progression or therapeutic response 
(Dopazo, 2010; van't Veer and Bernards, 2008). Actually, it is increasingly recognized that complex 
traits, such as disease or drug response, are better understood as alterations in the operation of functional 
modules caused by different combinations of gene perturbations (Barabasi, et al., 2011; Barabasi and 
Oltvai, 2004; Oti and Brunner, 2007). To address this inherent complexity different methodologies have 
tried to exploit several functional module conceptual representations, such as protein interaction networks 
or pathways, to interpret gene expression data within a systems biology context  (Barabasi, et al., 2011; 
Fryburg, et al., 2014; Hood, 2013; Vidal, et al., 2011). Actually, it has recently been shown that the 
pathway-level representation generates clinically relevant stratifications and outcome predictors for 
glioblastoma and colorectal cancer (Drier, et al., 2013) and also breast cancer (Livshits, et al., 2015). 
Moreover, mathematical models of the activity of a pathway have demonstrated a significantly better 
association to poor prognosis in neuroblastoma patients than the activity of their constituent genes, 
including MICN, a conventional biomarker (Fey, et al., 2015). This observation has recently been extended 
to other cancers (Hidalgo, et al., 2017) and to the prediction of drug effects (Amadoz, et al., 2015).  
Given that the inferred activity of the pathway should be closely related to its cellular mechanism for disease 
progression, its use to guide cancer prognosis seems promising. Recently, a number of pathway activity 
inference methods have been proposed (Hidalgo, et al., 2017; Jacob, et al., 2012; Li, et al., 2015; Martini, 
et al., 2013). Here, we use the canonical circuit activity analysis method, which has demonstrated to have 
a superior performance (Hidalgo, et al., 2017) finding significant associations of specific circuit activities, 
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directly responsible for triggering the prominent cancer hallmarks (Hanahan and Weinberg, 2011), to 
patient survival. This method recodes gene expression values into measurements of signaling circuit 
activities that ultimately account for cell responses to specific stimuli. Such activity values can be 
considered multigenic mechanistic biomarkers that can be used as features for cancer prognosis.  
We demonstrate that the activity of signaling circuits yields comparable or even better prediction in breast 
cancer prognosis than the expression of individual genes, while detected mechanistic biomarkers enjoy 
the compelling advantage of readily available interpretation in terms of the corresponding cellular 
functions they trigger. Moreover, we show that the proposed prediction scheme can even suggest, in 
addition to interesting signaling circuits related to disease outcome, a list of prognostic genes that do not 
code for signaling proteins whose contribution to cancer prognosis potentially supplements the 
mechanism included in the pathways modeled. 

Table 1.  Summary of survival outcome of the breast cancer patients in the TCGA dataset. 

Donor vital status Pseudo label No. of  
samples 

Percentage 

Deceased (poor prognosis) Positive 124 14.1% 

Alive (good prognosis) Negative 755 85.9% 

Total 879 100.0% 

Methods 

Data source and processing 

The breast cancer gene expression and survival data used here was downloaded from The Cancer Genome 
Atlas (TCGA), release No. 20 of the International Cancer Genome Consortium (ICGC) data portal 
(https://dcc.icgc.org/releases/release_20/Projects/BRCA-US). This dataset provides the RNA-seq counts of 
18,708 genes for 879 tumor samples, in which we also have records of the vital status of corresponding 
donors, namely the overall survival outcome of the cancer patients being alive or deceased at the end of 
clinical treatment (Table 1). Since TCGA cancer data are from different origins and underwent different 
management processes, non-biological experimental variations, commonly known as batch effect, associated 
to Genome Characterization Center (GCC) and plate ID must be removed from the RNA-seq data. The 
COMBAT method (Johnson, et al., 2007) was used for this purpose. We then applied the trimmed mean of 
M-values normalization method (TMM) method (Robinson and Oshlack, 2010) for data normalization 
which is essential in applying the CCAA method. The resulting normalized values were finally entered to 
the pathway analysis method. 
A total of 60 KEGG pathways (Supplementary Table 1) were downloaded from the KEGG repository 
(Kanehisa, et al., 2012), including 2,212 gene products that participate in 3,379 nodes.  

Modeling framework for signaling pathways 

We applied the canonical circuit activity analysis method (Hidalgo, et al., 2017), as implemented in the 
hipathia R package available at https://github.com/babelomics/hipathia, in pursuit of modeling signaling 
activity.  Within the modeling context, a circuit is defined as all possible routes the signal can traverse to be 
transmitted from a particular input node to a particular output node (see Supplementary Figure 1A). A total 
of 6,101 circuits are identified and modeled in this study. The transmission of the signal depends on the 
integrity of the chain of nodes that connect the receptor to the effector and briefly, it is estimated as 
follows. The presence of the mRNA (the normalized RNA-seq counts rescaled between 0 and 1) is taken 
as a proxy for the presence of the corresponding protein in each pathway node (Bhardwaj and Lu, 2005; 
Efroni, et al., 2007; Montaner, et al., 2009; Sebastian-Leon, et al., 2014). Then, the degree of integrity of 
the circuit is estimated by modeling the signal flow across it. Specifically, the input node (receptor) is 
initialized by an incoming signal of intensity value of 1, and then for each node n of the circuit, the signal 
value sn is updated by the following rule: 

𝑆𝑛 = 𝜐𝑛 ∙ (1 − ∏ (1 − 𝑠𝑎)

𝑠𝑎∈𝐴𝑛

) ⋅ ∏(1 − 𝑠𝑖)

𝑠𝑖∈𝐼𝑛

 (1) 

where An denotes the set of signals arriving to the node from activation edges, In denotes the set of 
signals arriving to the node from inhibition edges, and vn is the (normalized) value of the current node n. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/132357doi: bioRxiv preprint 

https://doi.org/10.1101/132357
http://creativecommons.org/licenses/by/4.0/


Finally, the activity value for the circuit is defined by the signal intensity transmitted through the last 
(effector) protein of the circuit which quantifies the cell function ultimately activated by the circuit.  
Since output nodes at the end of circuits are the ultimate triggers of specific cellular actions, an effector 
circuit is defined from a functional viewpoint as a higher-level signaling entity that composes all circuits 
ending at the same output node. When applied to an effector circuit, the method returns the joint intensity 
of the signal arriving to the corresponding effector node (see Supplementary Figure 1B). Furthermore, the 
known functions triggered by each effector protein in cell can be derived from their functional 
annotations. Here we use UniProt (UniProt_Consortium, 2015) and Gene Ontology (Ashburner, et al., 
2000) (GO) annotations.  
Finally, inferred signaling activity values of those effector circuits ending at proteins with the same 
annotated functions are averaged to quantify the activity of the function realized in cell. This way we 
obtain estimated activity values directly connected to a list of cellular functions (Supplementary Figure 
1C). 
Supplementary Figure 1 depicts the different levels of abstraction from circuits, to effector circuits and 
finally functions. Eventually, a subset of curated functions can be used for a specific scenario in which the 
relevant functions are known. Here we use cancer hallmarks (Hanahan and Weinberg, 2011) . 

 

Cancer prognosis with inferred signaling pathway activity 

 

In this study, we are interested in evaluating the prognostic power of pathway-level mechanistic features 
and gene-based features alone and in combination. Using the hipathia method we recoded the list of gene 
expression values of each tumor sample into the corresponding lists of signaling activity values for the 
three levels of abstraction: circuits, effector circuits and functions, as described in UniProt and GO 
annotations. Therefore for each tumor sample we end up with a profile of gene expression, a profile of 
circuit signaling activity, a profile of effector circuit signaling activity, a profile of UniProt-based cellular 
function activity and a profile of GO-based cellular function activity. These profiles are sample-specific 
profiles that can be straightforwardly used as prognostic features using any classification algorithm. Note 
that pathway-level profiles are derived with no regard to any information provided by the genes whose 
products do not participate in cell signaling, and the prognostic power of pathway-level profiles may thus 
be limited by the coverage of genes in known biological pathways. In order to understand the relative 
contribution to the pathway-level profiles and gene-level profiles to the accurate separation between good 
vs poor prognosis, we devised four artificial profiles: path-gene expression profile containing only genes 
that are involved in the KEGG signaling pathways, other-gene expression profile containing only genes 
that are absent from the KEGG pathways, a combined profile consisting of signaling activity of effector 
circuits and expression of other-genes, and a combined profile consisting of signaling activity of circuits 
and expression of other-genes. Thus, we use a total of 9 types of profiles (detailed in Table 2) From the 
viewpoint of machine learning, this study is formulated as a typical binary classification problem where 
we determine a positive or negative pseudo label for each sample. Based on the data available in this 
study (Table 1) we perform a 5-fold cross-validation repeated 10 times on the dataset and report the mean 
performance over the 5 × 10 = 50 splits to assess the prognostic power for each type of profile. The 
performance is evaluated by the Area Under the ROC Curve (AUROC) criteria (Sing, et al., 2005). Note 
that usually a classifier returns a continuous prediction between 0 and 1 for each sample denoting the 
probability of that sample being in the positive class rather than in the negative class, and then assigns 
either label to the sample according to some cutoff value thresholding the prediction. In fact, AUROC is a 
cutoff-free score that measures the probability that the classifier will score a randomly drawn positive 
sample higher than a randomly drawn negative sample. 

Table 2.  Summary of different types of profiles used as predictive features for breast cancer prognosis in this study. 

Alias Profile type Number features Analysis level 

fun.vals UniProt-based functions 81 Circuit-  

go.vals GO-based functions 370 Circuit- 

eff.vals Effector circuits 1,038 Circuit- 

path.vals Circuits 6,101 Circuit- 

path.genes.vals Pathway-genes 2,212 Gene 

other.genes.vals Other-genes 16,496 Gene 

genes.vals All genes 18,708 Genes 
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eff.and.other.- genes.vals Effector and other-genes 17,534 Circuit + Gene 

path.and.other.- genes.vals Circuits and other-genes 22,597 Circuit + Gene 

 
In this study we consider 12 classification algorithms as candidate classifiers, most of which are state-of-
the-art (Table 3). When we assess the prognosis performance for a specific type of profile on a specific 
(external) cross-validation split of the data, we perform an internal 5-fold cross-validation on the training 
set to determine which classifier returns the highest cross-validated performance and the best classifier is 
then used on the test set to obtain the performance score. This procedure guarantees that the performance 
on each (external) cross-validation split is evaluated impartially for each profile with its best suited 
algorithm. 

Table 3.  The 12 classifiers considered in this study to classify prognosis for breast tumor samples. Note that majority voting 

classifier serves as a baseline negative-control model which outputs a constant label for any test sample by the dominant class in the 

training set.. 

Alias Classifier Reference 

LDA Linear discriminant analysis (Ripley, 2007; Venables and Ripley, 2002) 

LogitLasso L1-regularized logistic regression (Friedman, et al., 2010) 

LinearSVM Support Vector Machine with linear kernel (Chang and Lin, 2011) 

RadialSVM Support Vector Machine with Gaussian RBF kernel (Chang and Lin, 2011) 

KendallSVM Support Vector Machine with Kendall kernel (Jiao and Vert, 2016; Zeileis, et al., 2004) 

KNN k-nearest neighbor classifier (Ripley, 2007; Venables and Ripley, 2002) 

NB Naive Bayes classifier (Ripley, 2007) 

GBM Gradient Boosting Machine (Friedman, 2001) 

RF Random Forest (Breiman, 2001; Liaw and Wiener, 2002) 

SparseSVM L1-regularized L2-loss Support Vector Machine (Fan, et al., 2008) 

PAM Nearest shrunken centroid classifier (Tibshirani, et al., 2002) 

Constant Majority voting classifier — 

Results 

3.1 Signaling pathway activity leads to improved prognosis for breast tumor 
samples 

The performance of using different types of profiles (Table 2) as predictive features to classify survival 
outcome for breast cancer patients is shown in Figure 1 Under either criterion of AUROC to evaluate the 
classification performance, we observe that the activity values of signaling circuits, denoted by  path.vals, 
yield the best performance overall. In particular, they outperform the profiles based solely on gene 
expression values, denoted by path.genes.vals, other.genes.vals and genes.vals. In other words, we are 
able to integrate the expression values of path-genes into the a priori knowledge of cell signaling to 
obtain pathway-level features that achieve improved prognosis. Interestingly, these pathway-level 
features relate to biological processes and cellular functions per se. Although the pathway-level features 
are derived from the expression of path-genes and thus agnostic to the expression of other-genes, the 
inclusion of other-genes to the signaling circuits activity values, denoted by eff.and.other.genes.vals and 
path.and.other.genes.vals profiles, does not significantly improve the performance (no significant 
differences after applying a two-sided t-test comparing differences between the cross-validation AUROC 
scores obtained by each pair of profiles, and adjusted for multiple testing (Benjamini and Hochberg, 
1995), see Table 4).  
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Fig. 1. The AUROC performance of using different types of profiles as predictive features to classify survival outcome for breast cancer patients. 

Boxplot represents the variance of the performance on 50 cross-validation splits. Dotted vertical lines separate profiles by the underlying analysis levels. 

When comparing the prognostic power between pathway-level and gene-level profiles, we have also 
derived cellular function activity profiles, denoted by fun.vals and go.vals (Table 2), and observed that the 
performance of these profiles are slightly worse than other pathway-level profiles (Fig. 1). This is 
probably due to the excessively simplistic procedure that basically averages the signaling activity values 
of effector circuits ending at proteins with the same annotated keywords according to Uniprot or GO 
(Hidalgo, et al., 2017), annotations that can be incomplete and ambiguous to some extent. 

Table 4.  FDR-adjusted p-values comparing the corresponding classification scores of feature s in columns versus features in files 

over 50 cross-validation splits. See Figure 1 for the performance values of each feature. Significant values are in boldface and 

marked with an asterisk.. 

 1 2 3 4 5 6 7 8 

1 fun.vals 0.1467 0.1306 0.0119* 0.8267 0.1908 0.1908 0.0815 0.002* 

2 go.vals  0.0024* 0.0004* 0.1557 0.0120* 0.0119* 0.0046* <0.0001* 

3 eff.vals   0.0815 0.0255* 0.8743 0.8743 0.6422 0.0235* 

4 path.vals    0.0046* 0.1408 0.1394 0.3702 0.6422 

5 path.genes     0.0255* 0.0255* 0.0046* 0.0002* 

6 other.genes      0.9483 0.2167 0.0039* 

7 genes       0.2 0.0032* 

8 eff.and.other.genes        0.0473* 

 

Table 5 summarizes the best-performing classifiers for each type of prognostic profile in the sense that 
they are most frequently selected by internal cross-validation. Notably, it evidences that Support Vector 
Machines with various kernels are recurrently selected as the competent classifier in breast cancer 
prognosis that suits well for both gene-level and pathway-level features. 

Table 5.  Top two most frequently selected classifiers by internal cross-validation for each type of prognostic profile in classifying 

breast cancer prognosis evaluated by AUROC. 
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Profile alias mean SD Classifier 1 Classifier 2 

fun.vals 0.6962 0.05438 RadialSVM GBM 

go.vals 0.6807 0.06095 RadialSVM LinearSVM 

eff.vals 0.7087 0.05099 RadialSVM LinearSVM 

path.vals 0.7211 0.06316 RadialSVM LinearSVM 

path.genes.vals 0.6938 0.05636 RadialSVM LinearSVM 

other.genes.vals 0.7075 0.05254 LinearSVM RadialSVM 

genes.vals 0.7075 0.05272 LinearSVM RadialSVM 

eff.and.other.genes.vals 0.7127 0.05838 LinearSVM RadialSVM 

path.and.other.genes.vals 0.7246 0.05359 LinearSVM RadialSVM 

 

3.2 Signaling circuits selected as features relevant for cancer prognostic account for cancer hallmarks 

From the clinical standpoint of cancer prognosis, we are interested in identifying a small set of 
biomarkers that can guide decision making in cancer prognosis. As our analysis is made at the level of 
pathways, we would like to detect a few signaling circuits whose activity, and thus the underlying cell 
functionality, has a significant impact on discriminating the prognosis classes of cancer patients. We 
opted for the Random Forest classifier to perform this analysis, since it simultaneously predicts the 
survival outcome of tumor samples and scores the importance of each feature that is ultimately used in the 
prediction. We focus on the feature importance measure returned by fitting a Random Forest which 
accounts for the mean decrease in classification performance if we randomly permute the data of the 
corresponding feature. Table 6 lists the five top-scored signaling circuits by fitting Random Forests with 
the profiles of circuit activities (denoted by path.vals). The role played by each signaling circuit in cancer 
progression can be inferred from the underlying cellular functions (taken from GO annotations) triggered 
by the last (effector) protein on the circuit. Thus, the first circuit, belonging to the HIF-1 signaling 
pathway, starts with the TLR4 receptor, which is known to be related to progression of several cancers 
(breast, ovarian, prostate and head and neck) via Lipopolysaccharide Stimulation (Yang, et al., 2014) and 
ends in the EDN1 effector, an hypoxia-inducible factor that mediates cancer progression (Semenza, 
2012).  Another relevant circuit belongs to the NF-kappa B signaling pathway and has the IL1B protein as 
receptor and the CXCL2 as effector. Polymorphisms in the receptor have been linked to several cancers in 
different populations (El-Omar, et al., 2000; Lu, et al., 2005) and it has been demonstrated the role of 
CXCL2 in tumor growth and angiogenesis (Keane, et al., 2004). Similarly, polymorphisms in the LEP 
protein, the receptor of another circuit in the Adipocytokine signaling pathway, have been linked to cancer 
(Cleveland, et al., 2010), and its effector, the tyrosine phosphatase Shp2 (PTPN11), contributes to the 
pathogenesis of many cancers and other human diseases (Chan, et al., 2008). The Cell cycle signaling 
pathway contains another relevant circuit whose receptor TTK transmits the signal until the cohesin 
complex. This four proteins complex is essential for chromosome segregation and DNA repair and 
mutations in its component genes have recently been identified in several types of tumors (Losada, 2014). 
Finally, the fifth most relevant circuit, belonging to the Tight junction pathway, contains the AKT3 
serine/threonine kinase with a known role in tumorigenesis (Testa and Bellacosa, 2001), is signaled by the 
receptor ACTN4, a protein which has been related to cell invasion and metastasis (Honda, 2015). 
Supplementary Table 2 shows an expanded list of top-scored 50 circuits.  

Table 6.  Top five circuits with the highest feature importance measure by fitting Random Forests with path.vals in classifying 

breast cancer prognosis. 

Pathway name Receptor 

Gene(s) 

Effector 

Gene(s) 

Effector protein  function 

HIF-1  TLR4 EDN1 Growth/survival factor in cancer 

NF-kappa B  IL1B CXCL2 Inflammatory response and angiogenesis 

Adipocytokine  LEP PTPN11 Protein phosphatase 
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Cell cycle TTK Cohesin complex 

(SMC1B, SMC3, 

STAG1, RAD21) 

Chromosome segregation and DNA repair 

Tight junction ACTN4, MAGI3 AKT3 Cell invasion and metastasis 

Table 7.  Top five effector circuits with the highest feature importance measure by fitting Random Forests with eff.vals in 

classifying breast cancer prognosis. 

Pathway name Effector gene Effector protein function 

AMPK  LEPR Regulation of fatty acid metabolism 

Adipocytokine  PPARα Peroxisome proliferation and fatty acid metabolism 

Pathways in cancer IL6 Blockage of differentiation, Anti-apoptosis 

Cell cycle Cohesin complex 

(SMC1B, SMC3, 

STAG1, RAD21) 

Chromosome segregation and DNA repair 

Toll-like receptor IL6 Inflammation, Immune response, Anti-apoptosis 

 

Table 7 lists the top-scored effector circuits by fitting Random Forests with the profiles of effector circuit 
activities (denoted by eff.vals). Although the cohesion complex effector is again selected, the effector 
circuit level analysis provided a slightly different perspective of relevant aspects of signaling in cancer 
patient survival. Thus, two effector circuits with effector proteins LEPR and PPARα, from the AMPK and 
the Adipocytokine signaling pathways, respectively, are activators of the fatty acid metabolism. Two more 
effector pathways ending in the Interleukin 6 (IL6), related to inflammatory processes and immune 
response in the Toll-like receptor pathway, seem more likely to be involved in blocking the cell 
differentiation through the Pathways in cancer (KEGG id hsa05200). Actually, it has been described that 
IL6 blocks apoptosis in cells during the inflammatory process, keeping them alive in toxic environments, 
but the same process protects cells from apoptosis and chemotherapeutic drugs during neoplastic growth 
(Hodge, et al., 2005). Supplementary Table 3 shows an expanded list of top-scored 50 effector circuits. 
Beyond the top scored signaling circuits (Table 6) and effector circuits (Table 7), other relevant circuits 
are listed in Supplementary Tables 2 and 3. Although an exhaustive list of the consequences that 
processes differentially activated can have in tumorigenesis is beyond the scope of this work, it is worth 
noticing that cancer a hallmark such as apoptosis inhibition is represented by inhibition of signaling 
circuits IL6-BCL2 in the HIF-1 signaling pathway and IL10-BNIP3 in the FoxO signaling pathway 
(eighth and ninth in Supplementary Table 2, respectively), both containing the protein STAT3, known to 
mediate apoptosis inhibition in breast cancer (Gritsko, et al., 2006) (see Figure 2). The graphic 
representation of the complete effector circuits containing the two signaling circuits in the HIF-1 
signaling pathway and the FoxO signaling pathway has been obtained with the hipathia web tool 
(Hidalgo, et al., 2017), using the path.genes.vals gene expression profiles (that are converted to  eff.vals 
and path.vals profiles by the program). 
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Fig. 2.  Effector circuits containing Signaling circuits IL6-BCL2 in the HIF-1 signaling pathway and IL10-BNIP3 in the FoxO signaling pathway, both 

highlighted in the figure. Both circuits contain the protein STAT3, known to mediate apoptosis inhibition in breast cancer. 

 

Table 8.  Top five genes unrelated to signaling ranked by importance in the classification of survival outcome by fitting Random 

Forests with path.and.other.genes.vals profile, along their functions as annotated in Gene Ontology. 

Gene ID Gene symbol Gene full name GO Function 

6944 VPS72 Vacuolar protein sorting 72 homolog DNA binding  

150356 CHADL Chondroadherin like Collagen binding 

340273 ABCB5 ATP binding cassette subfamily B 

member 5 

ATP binding, Efflux transmembrane transporter 

activity 

8543 LMO4 LIM domain only 4 Transcription factor activity, Sequence-specific 

DNA binding 

4976 OPA1 OPA1, mitochondrial dynamin like 

GTPase 

GTPase activity 

 

3.3 The classification algorithm suggests additional prognostic genes that do not 
code for signaling proteins 

In order to find genes that could be relevant for patient survival that are not in the signal pathways, we 
build a profile by combining signaling circuit activity profiles and gene expression profiles corresponding 
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to genes outside signaling pathways (the other-genes profile), denoted by path.and.other.genes.vals. A 
feature selection procedure in breast cancer prognosis based on such a profile can select signaling circuits 
along with genes unrelated to signaling, whose activity is related to patient survival. Thus, Random Forest 
was again used to assess feature importance when fit with the path.and.other.genes.vals profile to classify 
survival outcome. Table 8 lists the top 5 most important gene features (the other-genes part of the 
path.and.other.genes.vals composed profile). These genes are of particular interest given that they might 
represent relevant cancer processes not included in cell signaling. Notably, the gene ABCB5 belongs to 
the ATP-binding cassette subfamily B which is well known to be involved in multiple drug resistance in 
cancer therapy (Dean, et al., 2001), probably because its functionality of efflux transmembrane 
transporter.  It has also been reported that ABCB5 could mediate cell-to-cell fusion and contribute to 
breast cancer chemoresistance in expressing breast tumors (Frank, et al., 2005; Frank, et al., 2003). In 
addition, ABCB5, as a “pro-survival” gene, has been suggested to be a potential target against drug 
resistant breast cancer cells (Yang, et al., 2010). Besides, ABCB5 has been linked to melanoma (Wilson, 
et al., 2014). LMO4 encodes a LIM- domain protein that has been reported as an essential mediator of cell 
cycle progression in ErbB2/HER2/Neu-induced breast cancer which is characterized by poor survival due 
to high proliferation and metastasis rates (Matthews, et al., 2013; Montañez-Wiscovich, et al., 2009). It 
has been reported that LMO4 interacts with the renowned tumor suppressor BRCA1 and inhibits BRCA1 
activity (Sum, et al., 2002; Sutherland, et al., 2003). OPA1 encodes a mitochondrial fusion protein which 
might be a target for mitochondrial apoptotic effectors (Olichon, et al., 2003), such as sorafenib (Zhao, et 
al., 2013). The role in cancer survival played by two most important genes according to the predictor, 
VPS72 and CHADL, is not as clear from the literature. It is worth mentioning that a mutation in VPS72 in 
cervix cancer with a high FATHMM pathogenicity score (Shihab, et al., 2015) is described in the 
COSMIC database (entry COSM458603). Regarding CHADL, it has been related to chondrocyte 
differentiation (Tillgren, et al., 2015) and extracellular matrix remodeling (Barallobre-Barreiro, et al., 
2012). Therefore, both genes are potentially involved in cancer processes, which suggest that further 
investigation of the complete list of top-ranked other-genes could render new cancer drivers and potential 
therapeutic targets. An expanded list containing the top 50 most important features among the other-genes 
can be found in Supplementary Table 4, in which many genes with cancer-related functions can be seen. 
Functions for the genes have been taken from their Uniprot (UniProt_Consortium, 2015) annotations and, 
when absent, from GeneCards annotations (Stelzer, et al., 2016).  

3.4 Availability of data and results 

All experiments are produced with R and codes are available via 
https://github.com/YunlongJiao/hipathiaCancerPrognosis.  
There is an R package available at https://github.com/babelomics/hipathia. Additionally, there is a web 
interface to the hipathia methodology that includes prediction functionalities, which is freely available at: 
http://hipathia.babelomics.org/. 

Conclusions 
In this study we have proposed a novel scheme to classify survival outcome for breast cancer patients 
based on mechanistic features consisting of signaling pathway activity profiles. We applied a pathway 
activity analysis method (Hidalgo, et al., 2017) to recode gene expression profiles into activity values of 
signaling circuits and demonstrated that, making use of the state-of-the-art computational tools, signaling 
circuit activity yields better prediction in breast cancer prognosis than gene expression. An additional 
advantage is that the identified pathway-level biomarkers are mechanistic signatures whose contribution 
to cancer progression can be readily interpreted in terms of the underlying cellular functions and 
biological processes. 
The three feature sets path.genes.vals, eff.vals and path.vals are composed by the same genes (those 
present in the pathways). However, the prediction performance of the genes recoded into circuits activity 
values with the hipathia method (eff.vals and path.vals) clearly outperforms (see Table 4) to those of the 
original genes (path.genes.vals). Moreover, predictors based on circuits (eff.vals and path.vals) have 
similar performance (see Table 4) to predictors based on all the genes (genes.vals), which include more 
information than the subset of genes. It is worth noting that genes in the circuits represent only 12% of the 
total number of genes, but have the same predictive performance, which suggests that combining the 
genes into circuits provides a real added value for prediction purposes.   
Although a significant improvement of the performance was not observed when the expression values of 
other-genes were concatenated to the activity values of signaling circuits, the analysis based on the 
combination of both data provides an interesting perspective regarding the interpretation of the 
biomarkers detected. In fact, the selected genes from the category of other-genes represent other aspects 
of the mechanism of the disease not explained by cell signaling. This approach allows expanding the 
scope of the analysis beyond the processes included in the pathways modeled. 
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Central to our proposed scheme is the idea of promoting gene-level analysis to pathway-level analysis by 
obtaining patient-specific personalized profiles of signaling circuit activity. Reliable models of pathway 
activity (Hidalgo, et al., 2017) can be used to derive robust multigenic biomarkers, similar to the popular 
MammaPrint (van't Veer and Bernards, 2008), which in addition account properly for the underlying 
disease mechanisms or mechanisms of drug action.   
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