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Abstract

Mutual information-based network inference algorithms are an important tool in the reverse-
engineering of transcriptional regulatory networks, but all rely on estimates of the mutual infor-
mation between the expression of pairs of genes. Various methods exist to compute estimates
of the mutual information, but none have been firmly established as optimal for network infer-
ence. The performance of 9 mutual information estimation methods are compared using three
popular network inference algorithms: CLR, MRNET and ARACNE. The performance of the
estimators is compared on one synthetic and two real datasets. For estimators that discretise
data, the effect of discretisation parameters are also studied in detail. Implementations of 5 es-
timators are provided in parallelised C++ with an R interface. These are faster than alternative
implementations, with reductions in computation time up to a factor of 3,500.

Results

The B-spline estimator consistently performs well on real and synthetic datasets. CLR was
found to be the best performing inference algorithm, corroborating previous results indicating
that it is the state of the art mutual inference algorithm. It is also found to be robust to
the mutual information estimation method and their parameters. Furthermore, when using
an estimator that discretises expression data, using N1/3 bins for N samples gives the most
accurate inferred network. This contradicts previous findings that suggested using N1/2 bins.

1 Introduction

1.1 Background

Network inference is the reverse-engineering of transcriptional regulatory networks from high-
throughput expression data. Transcriptional regulatory networks are the first level of a hierarchy of
regulatory mechanisms that operate in cells and control gene expression. Proteins called transcrip-
tion factors either activate or repress the transcription of a gene. Since these transcription factors
are themselves the products of the expression of another gene, dependence between the expression
of two genes suggests a regulatory link between them. This is the central assumption of network
inference: that dependence between the expression of two genes is due to a functional relationship.
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Network inference is a highly underdetermined problem. There are approximately 4,500 genes
in the popular model organism Escherichia coli (E. coli). This corresponds to over 10 million
pairwise interactions which must be estimated from samples that typically number less than 1000.
Several unsupervised approaches have been developed to tackle this problem, with different classes
of methods proving effective at predicting certain network motifs. It has been shown that com-
bining predictions from different classes of network inference algorithm significantly improves the
accuracy of inferred networks [1]. Examples of the techniques utilised by network inference algo-
rithms include feature selection [2] and Bayesian networks [3]. Another class of methods utilise
mutual information, an information-theoretic quantity that captures dependence between two ran-
dom variables. As well as network inference, mutual information is used in biology as a distance
measure for gene expression clustering [4]. It is often preferred to linear correlation measures due
to its ability to capture nonlinear dependencies.

Mutual information-based network inference algorithms have several advantages. Specifically,
they are well-suited to the direct, model-free inference of large-scale regulatory networks. Since they
only consider pairwise interactions they are computationally affordable even for large numbers of
genes [5]. Furthermore, considering pairwise interactions involves estimating bivariate probability
distributions, meaning that they perform relatively well with low numbers of samples [6, 7]. How-
ever, mutual information-based methods are unable to predict the type or direction of a regulatory
relationship, unlike feature selection-based methods.

1.2 Motivation and Aims

Estimating mutual information is known to be difficult [8] and various methods exist for computing
an estimate. This study examines the effect of mutual information estimators on the accuracy of
the inferred network. Three mutual information-based network inference algorithms, CLR [9], MR-
NET [10] and ARACNE [6] are used to infer the network from a matrix of gene expression values.
These algorithms produce a score for each gene pair, the ranking of which indicates the confidence
of an regulatory link between the two genes. A single network is then produced by thresholding
these scores. This score is derived from the mutual information between the expression profiles
of every gene pair, and so the method used to estimate mutual information can have a significant
effect on the accuracy of the inferred network. Further details on the network inference algorithms
can be found in Section S2.

CLR was the best-performing mutual information-based inference algorithm in the DREAM5
Network Inference Challenge [1] and has been used in the development of antibiotics [11] and mi-
crobial fuel cells [12]. ARACNE is another popular method that has been used in the study of
brain tumours [13] and the sequencing of the wheat genome [14]. MRNET has been shown to be
competitive with CLR and ARACNE [15].

This study compares the performance of CLR, MRNET and ARACNE when used with nine
of the most popular mutual information estimators. These are the Maximum Likelihood, Miller-
Madow, Chao-Shen, Shrinkage, B-spline, Kernel Density, k-nearest-neighbour, Pearson correlation
and Spearman correlation estimators. Of these estimators, the first four are histogram-based and
hence require data to discretised/binned. This study also investigates the use of the Bayesian
Blocks algorithm in network inference. Bayesian Blocks was developed by Scargle et al. to model
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Table 1: The properties of the datasets used in study [1]. For each dataset a subset of the genes
are designated as potential regulators and the accuracy of inferred networks are only evaluated
using the interactions of those genes. Proportion of links refers to the fraction of this subset of
interactions that are regulatory links in the gold standard network. For the real datasets this is
likely to be an underestimate. These values demonstrate the large class imbalance that is typical
for network inference. For more detailed information on the data used in this work see Section S3.

Type Organism Genes Regulators Samples Proportion of links

Synthetic n/a 1,643 193 805 0.014

Real E. coli 4,297 296 805 0.002

Real S. cerevisiae 5,950 183 563 0.004

astronomical time series data using piecewise constant functions [16] and can be used to discretise
continuous data into bins whose number and width are chosen to optimally fit data. The increased
sophistication of Bayesian Blocks over simpler alternatives such as equal width bins should lead
to more accurate estimates of probability distributions. It has previously been applied to network
inference and was found to improve the accuracy of inferred networks [17].

The estimators will be compared using one synthetic and two real datasets from the DREAM5
Network Inference Challenge [1]. The synthetic dataset was generated with GeneNetWeaver [18]
and is labelled as in silico, while the real datasets are from E. coli and Saccharomyces cerevisiae
(S. cerevisiae). Further details on the datasets are given in Table 1 and Section S3.

1.3 Structure and contributions

The following subsection reviews existing studies on this topic. Section 2 outlines the process of
network inference, the mathematical definition of mutual information and discusses methods of
mutual information estimation. Section 3 compares the performance of these mutual information
estimators for network inference using datasets from the DREAM5 Network Inference Challenge [1].
Detailed descriptions of the mutual information estimators, the network inference algorithms and
the performance metrics used in this and other studies on this topic can be found in the Supple-
mentary Material.

The contributions of this work are as follows:

• This is the first evaluation of mutual information estimation using the three most popular
mutual information-based network inference algorithms.

• This is the first comprehensive evaluation of the parameters of the Maximum Likelihood,
Miller-Madow, Chao-Shen and Shrinkage estimators to include Bayesian Blocks.

• This is the first evaluation of mutual information estimation for network inference to use the
area under precision-recall curve (AUPRC) as the evaluation metric, as is recommended for
the evaluation of classification problems with a large class imbalance [19–21].
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• This is the first systematic evaluation of the effect of Bayesian Blocks in network inference.

• Implementations of 5 estimators are provided in parallelised C++ with an R interface. These
are faster than alternative implementations, with reductions in computation time up to a
factor of 3,500.

1.4 Review of existing studies

Several existing studies examine mutual information estimation for network inference. However,
the inference algorithms, mutual information estimators and performance metrics vary between
them. The most recent study by Kurt et al. examined the performance of 11 mutual information
estimators, including all 9 estimators used in this study [22]. This study included raw Pearson
and Spearman correlation values as the additional estimators. For the histogram-based estima-
tors, equal width and equal frequency binning was used. This study used the network inference
algorithms RELNET, ARACNE and C3NET. The approaches were evaluated using two synthetic
datasets generated by SynTRen [23], an alternative tool to GeneNetWeaver, and two real datasets.
The real datasets were from E. coli and S. cerevisiae. The authors found that the B-spline estima-
tor and those based on the linear Pearson and correlation led to the most accurate inferred network
on all the datasets.

The C3NET algorithm [24] does not produce a ranking of scores for each gene pair. Instead, it
uses a heuristic approach to produce a single network. It is therefore not possible to evaluate its
predictions using the metric used in this study, AUPRC. Instead the authors use the F-score. The
evaluation metrics used in this study and others are discussed in Section S4. The RELNET (Rel-
evance Network) algorithm ranks gene pairs by the mutual information between their expressions,
with a higher rank corresponding to a more confident prediction of an edge [25]. It had the lowest
prediction accuracy for all mutual information estimators and so is not included in this study. For
reasons why this simplistic approach is not effective see Section S2.

A study by Olsen et al. [7] compared five mutual information estimators (Maximum Likelihood,
Miller-Madow, Shrinkage, Pearson correlation and Spearman correlation) with CLR, MRNET and
ARACNE. The evaluation metrics were F-scores and areas under receiver operating characteristic
(ROC) curve. The authors report that CLR and MRNET outperform ARACNE, and that the
Pearson and Spearman correlation estimators perform best on real data. In addition, the Miller-
Madow estimator performs well on synthetic data. Olsen et al. also find that equal frequency
binning is preferable to equal width binning.

A comprehensive review of the existing literature on mutual information estimation is was com-
pleted by Walters-Williams and Li [26]. While this is not directly applied to network inference
it is still a valuable survey and reports that the k-NN and Kernel Density estimators outperform
the Maximum Likelihood estimator. They also report that the B-spline estimator provides equiv-
alent performance to the Kernel Density and k-nearest-neighbour estimators in a much smaller
computation time.
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Expression matrix
N × p

Mutual information matrix
p× p

Confidence scores
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Predicted network
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Evaluation metric
e.g. precision, recall, ...
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Compare to Gold
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Figure 1: The network inference workflow for mutual information-based inference algorithms. Typ-
ically this process will be repeated using all possible thresholds, from which a precision-recall curve
is plotted. The area under this curve is then used to assess the accuracy of the inferred network.

2 Methods

2.1 Problem formulation and workflow

Starting with a matrix of gene expression values X ∈ RN×p, the aim of network inference is to
infer a graph G = (V,E), where each node g ∈ V represents a single gene and each edge e ∈ E,
represents a regulatory link between two genes.

From X, a mutual information estimator computes a symmetric matrix of mutual information
values of all gene pairs, whose ij-th element is the mutual information between columns i and
j of X. The network inference algorithm then computes a score for each gene pair from these
mutual information values. These scores reflect the confidence that there is an edge between two
genes. To produce a single inferred network from these edge scores we choose a threshold and
consider all scores above that threshold as edges, with all scores below designated as non-edges.
This means that the scores themselves are not analysed, only their ranks. The inferred network
is then evaluated against the true network and the precision and recall are calculated (see Section
S4 for more details). This procedure is illustrated in Figure 1. This is typically repeated for all
possible thresholds, resulting in a list of precision-recall values. These values are plotted and the
area underneath the resulting curve is used to quantify the accuracy of the predictions.

2.2 Mutual Information

Mutual information is an information-theoretic quantity that quantifies the dependence between
two random variables. For two continuous random variables x and y, their mutual information is

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132647doi: bioRxiv preprint 

https://doi.org/10.1101/132647
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined as

I(x, y) =

∫ ∫
p(x, y) log

(
p(x, y)

p(x) p(y)

)
dx dy , (1)

where p(x, y) is the joint probability distribution of x and y and p(x) and p(y) are the marginal
probability distribution of x and y respectively. If x and y are discrete variables taking values in
the sets X and Y respectively this definition becomes

I(x, y) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x) p(y)

)
. (2)

This definition can be equivalently expressed in terms of the (information theoretic) entropy as

I(x, y) = H(x) +H(y)−H(x, y) , (3)

where H(x) and H(y) are the marginal entropies defined by

H(x) = −
∑
x∈X

p(x) log p(x) , H(y) = −
∑
y∈Y

p(y) log p(y) , (4)

and H(x, y) is the joint entropy defined by

H(x, y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) . (5)

In practice, is common to use (3)-(5) to estimate I(x, y) if the mutual information estimator
involves binning the expression data. In both (1) and (2) the base of the logarithm determines the
units of I. Using log2 leads to a quantity measured in bits and the natural logarithm leads to a
quantity measured in nats.

From (1), I(x, y) is symmetric and takes values in [0,∞). It is zero if and only if x and y are
strictly independent, which is to say that p(x, y) = p(x) p(y). This enables the mutual information
to capture non-linear dependencies between variables, unlike linear measures such as the Pearson
correlation coefficient.

If p(x, y) is bivariate normal then the I(x, y) can be formulated exactly in terms of Pearson’s
correlation coefficient

ρ =
cov(x, y)

σxσy
, (6)

where cov is the covariance of x and y and σx, σy are the standard deviations of x and y
respectively. In this case

I = −1

2
log(1− ρ2) . (7)

Another common approach uses Spearman’s correlation coefficient, where x and y are replaced
by a ranking of their values.
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2.3 Mutual information estimation

An accurate estimate of the mutual information requires accurate estimates of the distributions
p(x), p(y) and p(x, y) from a finite (and often small) number of samples. Different mutual infor-
mation estimators are essentially different approaches to estimating these distributions and each
performs well in different scenarios. These different performance properties make different estima-
tors suited to different tasks.

For example, many of the applications of mutual information come from machine learning,
where mutual information can be used for feature selection [27] and independent component anal-
ysis [28]. Mutual information is also used in medical image analysis to align two images to the
same coordinate system [29]. These two machine learning applications are concerned with finding
independent random variables, and hence the mutual information estimator must be accurate near
values close to zero. Medical image registration requires finding a coordinate system that maximises
mutual information between images, and so the estimator must be accurate for large values. This is
the regime which is important for network inference, where we are concerned with detecting strong
dependencies between the expression of two genes.

One approach to estimating mutual information is to place the data into bins and use histograms
to estimate the required distributions. This simple approach is the Maximum Likelihood estimator
and is known to be negatively biased [30]. The Miller-Madow estimator [31] adds a correction
to correct this bias, while the Shrinkage estimator [32] uses a uniform distribution to regularise
the empirical distribution. Since network inference produces a ranked list of scores from mutual
information estimates a constant bias added to each value should not affect the inferred network.
The performance of these histogram-based estimators depend heavily on an appropriate choice of
origin, the number of bins and bin locations.

The Chao-Shen estimator [33] was developed to estimate the diversity of biological species from
small sample sizes using entropy. It is adapted to account for species that are not included in
a specific sample, which corresponds to an empty bin. When using the Chao-Shen estimator for
network inference, continuous expression data is binned using parameters that are decided by the
user. Since the user controls the binning of expression data it is not clear how the Chao-Shen
estimator’s design motivations are applicable for network inference, but it is included as it widely
used and has a straightforward implementation.

Binning continuous data is a hard operation that is sensitive to noise. The B-spline, Kernel Den-
sity and k-nearest-neighbour estimators use smoothing methods to obtain more accurate estimates
of the distributions. The B-spline estimator [8] is an adaptation of the Maximum Likelihood esti-
mator that allows data points to be placed in multiple bins, thus smoothing the distribution. This
procedure also reduces the dependence of the result on the choice of origin and the bin locations.
The Kernel Density estimator [34] estimates the distributions using kernel functions rather than
rectangular bins. Finally, the k-nearest-neighbour estimator [35] estimates the distribution using
distances to nearest neighbours. Two additional estimators were included that use the Spearman
and Pearson correlation with (7) to calculate the mutual information.

The parameters of the various estimators are shown in Table 2. Further information on the
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estimators and their parameters is given in Section S1.

Table 2: The parameters of the different mutual information estimators. See Section S1 for further
details on the estimators and their parameters. The parameters of the Kernel Density estimator
were not investigated.

Estimator(s) Parameters

Maximum Likelihood, Miller-Madow,
Chao-Shen, Shrinkage

Number of bins, binning method

B-spline Spline order, number of bins

Kernel Density Bandwidth, kernel (not investigated)

k-nearest-neighbour k

Spearman, Pearson correlation n/a

3 Results

3.1 Comparing mutual information estimators

A parameter study, which is discussed in Section 3.2, attempted to identify parameters that led to
large AUPRC values across all the datasets. Separate parameters were identified for each inference
algorithm. These are displayed in Table 3. As the best performing inference algorithm, CLR will
be the focus of this discussion.

3.1.1 in silico dataset

The AUPRC values for the in silico dataset are shown in Figure 2. CLR gives the largest AUPRC
values while ARACNE gives the lowest. This is the case for all three datasets. Furthermore, the
B-spline estimator gives the largest AUPRC for both CLR and MRNET. For MRNET the benefit
of using the B-spline estimator means that it performs better than CLR with many of the mutual
information estimators. This is also true of MRNET with the Kernel Density estimator, but the
AUPRC is lower than using MRNET with B-spline.

3.1.2 E. coli dataset

The AUPRC for the different mutual information estimators is shown in Figure 3. The AUPRC
values are lower for the E. coli dataset than for the in silico dataset, which reflects the added
difficulty of inferring a network and obtaining an accurate gold standard for real biological systems
(see Section 4.1 for discussion on this topic). For this dataset there is not an estimator that performs
significantly better than the others. However, the Kernel Density estimator performs significantly
worse than the other estimators for all three inference algorithms, and MRNET in particular.
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Table 3: The parameters that maximise the AUPRC for each combination of inference algorithm
and mutual information estimator. These parameters were chosen following the investigation whose
results are presented in Section S5. How these parameters were chosen is discussed in Section 3.2.
The parameters of the Kernel Density estimator were not investigated and the only the values
suggested by the authors of [34] were used. The Spearman and Pearson correlation estimators do
not have parameters.

Estimator CLR MRNET ARACNE

Maximum Likelihood Bayesian Blocks
Equal width

N1/3 bins
Bayesian Blocks

Miller-Madow Bayesian Blocks Bayesian Blocks Bayesian Blocks

Chao-Shen Bayesian Blocks
Equal frequency

N1/3 bins
Bayesian Blocks

Shrinkage Bayesian Blocks Bayesian Blocks Bayesian Blocks

B-spline
Spline order 4

N1/3 bins

Spline order 4

N1/3 bins

Spline order 4

N1/2 bins

k-NN k = 10 k = 10 k = 5

Kernel Density, Spearman
and Pearson correlation

n/a n/a n/a

3.1.3 S. cerevisiae dataset

The AUPRC for the different mutual information estimators is shown in Figure 4. For this dataset
the variation in AUPRC between the estimators is negligible. The parameter study also found
negligible variation in AUPRC with the parameters of all the estimators whose parameters were
investigated (not the Kernel Density estimator). Possible explanations are discussed in Section 4.2.

3.2 Mutual information estimator parameters

Part of this study examined estimator parameters with the aim of identifying optimal parameters
that maximise the AUPRC. The full results can be found in Section S5.

It was found in [7] that the optimal parameters of the Maximum Likelihood, Miller-Madow and
Shrinkage estimators are different for CLR, MRNET and ARACNE. Therefore it is expected that
the optimal parameters will be different for the three inference algorithms. If possible, parame-
ters were chosen that gave large AUPRC values on all three datasets. If parameters led to good
performance on just the in silico and E. coli datasets then they were chosen. The E. coli dataset
was given preference as its AUPRC results were found to vary more with parameters than the S.
cerevisiae results.
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Figure 2: The resulting area under precision-recall curve (AUPRC) when using the different mu-
tual information estimators with each of the inference algorithms on the in silico dataset. The
parameters for each estimator are those which were found to maximise the AUPRC following the
investigation described in Section S5. The results of this investigation can be found in Section S5.

The parameters that maximise the AUPRC when using CLR are shown in Table 4. CLR was
included here as it was the best-performing inference algorithm on all three datasets (see Section
3.1), but equivalent results for MRNET and ARACNE are available in Section S6. Table 4 shows
that there is more consistency within datasets than within estimators.

3.2.1 Number of bins for histogram-based estimators

This parameter study identified the number of bins as the key parameter of the Maximum Likeli-
hood, Miller-Madow, Chao-Shen and Shrinkage estimators. Common choices are N

1
2 bins or N

1
3

bins, which lead to the same number of bins for all genes. Another option is the Freedman-Diaconis
rule [36], which uses bins with size 2 · IQR/N

1
3 , where IQR is the inter-quartile range of the ex-

pression profile of a gene [36]. Note that this leads to different numbers of bins for each gene. The
Freedman-Diaconis rule resulted in low AUPRC values and its results are not included here. See
the Section S5 for the full results. Since the Bayesian Blocks algorithm chooses the number of bins
automatically, another option is to use the number of bins chosen by Bayesian Blocks but with
equal frequency or equal width bins.

Both Bayesian Blocks and Freedman-Diaconis bins choose the number of bins for each gene,
resulting in a distribution. These distributions are shown for each dataset in Figure 5. The
Freedman-Diaconis rule produces results that are approximately centred at N1/2. For Bayesian
Blocks the resulting distribution is closer to N1/3 and also has a smaller variance than the corre-
sponding distribution for the Freedman-Diaconis rule.

It is expected that the AUPRC from N1/3 or the number of bins from Bayesian Blocks should
give a similar AUPRC as they result in a similar number of bins (see Figure 5). This is observed
in Figures 6 and 7, which show that these two bin number rules give a larger AUPRC than N1/2
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Figure 3: The resulting area under precision-recall curve (AUPRC) when using the different mutual
information estimators with each of the inference algorithms on the E. coli dataset. The parameters
for each estimator are those which were found to maximise the AUPRC following the investigation
described in Section S5. The results of this investigation can be found in Section S5.
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Figure 4: The resulting area under precision-recall curve (AUPRC) when using the different mutual
information estimators with each of the inference algorithms on the S. cerevisiae dataset. The
parameters for each estimator are those which were found to maximise the AUPRC following the
investigation described in Section S5. The results of this investigation can be found in Section S5.
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Table 4: The mutual information estimator parameters that maximise the AUPRC when using
the CLR network inference algorithm. The Spearman and Pearson correlation estimators do not
have parameters, while the parameters of the Kernel Density estimator were not investigated. The
parameters of each estimator are shown in Table 2 and described in detail in Section S1.

Estimator in silico E. coli S. cerevisiae

Maximum Likelihood Bayesian Blocks
Equal width

BB number of bins
Equal frequency

BB number of bins

Miller-Madow Bayesian Blocks
Equal width

BB number of bins
Equal frequency

BB number of bins

Chao-Shen Bayesian Blocks
Equal width

N1/3 bins

Equal frequency
BB number of bins

Shrinkage Bayesian Blocks
Equal width

N1/3 bins
Bayesian Blocks

B-spline
Spline order 5

N1/3 bins

Spline order 2
BB number of bins

Spline order 2
10 bins

k-NN k = 13 k = 7 k = 15

bins for the in silico and E. coli datasets. The relative increase in AUPRC is smaller for the E.
coli dataset than in silico. These results also show that the AUPRC is more robust to the Binning
Method than the number of bins. For the S. cerevisiae dataset, whose results are shown in Figure
8, there is not a large variation in AUPRC between the different bin number rules. The lack of
variation in AUPRC between estimators and parameters for the S. cerevisiae dataset will be dis-
cussed in Section 4.2.

These findings indicate that using the number of bins found by Bayesian Blocks improves the
accuracy of inferred networks, even if the bin locations found by Bayesian Blocks are not used.
A simpler alternative is to use N1/3 bins, which is typically close to the number of bins used by
Bayesian Blocks.

3.3 Computation times

The computation time of each estimator is clearly an important practical consideration. The num-
ber of gene pairs is O(p2) for p genes and linear in the number of samples. Table 5 shows the
computation time of several implementations of the mutual information estimators used in this
study. In producing this work several estimators were implemented using parallel C++ with an
R interface and are available in the R package fastGeneMI. The package can be downloaded at
https://bitbucket.org/Jonathan-Ish-Horowicz/fastgenemi/src. Table 5 also includes the
computation times when using alternative implementations that compute mutual information es-
timates from a matrix of continuous expression values. Another R package, “synRNASeqNet,”
enables the calculation of mutual information estimates from binned data only and so was not
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Figure 5: The resulting number of bins for each gene in the three datasets. The Freedman-Diaconis
rule and Bayesian Blocks choose different numbers of bins for each gene, while the using N1/2 or
N1/3 bins gives the same number for all genes. 16 genes with large numbers of Freedman-Diaconis
bins have been excluded from the in silico plot for aesthetic reasons.

included. Note that using the Bayesian Blocks binning method with the datasets from this study
requires additional computation time of order 100 seconds.

The histogram-based estimators have the shortest computation times, followed by the B-spline
estimator. The computation time of the B-spline estimator is an order of magnitude larger. The
Kernel Density and k-nearest-neighbour estimators have computation times two orders of magni-
tude larger than the histogram-based methods.

4 Discussion

CLR was the best performing inference algorithm

The results in Section 3.1 provide further evidence that CLR is the state of the art mutual-
information based inference algorithm [1, 7]. Furthermore, it has been shown here to be robust
to both the choice of estimator and the estimator parameters. This was evident across all the
estimators whose parameters were investigated (see Section S5). MRNET is able to match the
performance of CLR, but this requires specific choices of estimator and parameters.

The B-spline estimator was the best performing mutual information estimator

We recommend using the B-spline estimator, supporting the findings of [9, 22]. The AUPRC from
the B-spline was among the largest for the in silico and E. coli datasets for each inference algorithm
used in this study. The B-spline estimator performed less well on the S. cerevisiae dataset, however
the variation in AUPRC for this dataset was smaller than the other two. The B-spline computation
time is also significantly lower than for other smoothing estimators (Kernel Density and k-nearest-
neighbour). The computation time is longer than the other histogram-based estimators, but these
lead to lower AUPRC values. This may be because the binning of data is a hard operation and is
thus extremely sensitive to noise and the locations of the bins. The B-spline estimator reduces this
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Table 5: Time to compute the mutual information between the expression of all gene pairs for the E.
coli dataset (4,297 genes, 805 samples) with different implementations of the estimators used in this
study. Results are given in seconds, with the lowest time in bold text. In brackets is the computation
time relative to the fastest implementation for that estimator. Computations were performed by
16 2.6 GHz Intel Sandy Bridge cores. If an implementation allows parallel computation then all
16 cores were used. n/a indicates that a package does not provide an implementation for that
estimator.

Estimator fastGeneMI minet [37] DepEst [38] parmigene [39]

Maximum Likelihood 6.6 (1.0) 23132.0 (3,120.1) n/a n/a

Miller-Madow 6.6 (1.0) 23,180.3 (3,509.0) 28.4 (4.3) n/a

Chao-Shen 10.7 (1.0) n/a 28.513 (2.7) n/a

Shrinkage 6.0 (1.0) 23,271.0 (3,885.6) n/a n/a

B-Spline 101.4 (1.0) n/a 178.1 (1.8) n/a

Kernel Density n/a n/a 75,188.0 (1.0) n/a

k-NN n/a n/a >86,400.0 (>211.4) 408.8 (1.0)

sensitivity by placing samples in multiple bins. The B-spline estimator was also found to be robust
to changes in its parameters (see Figures S3, S6 and S9).

When using an estimator that bins expression data, use N1/3 bins for N samples

These results indicate that when using a mutual information estimator that bins the data, using
N1/3 bins is the optimal choice. This contradicts a previous finding by Kurt et al. who reported
that N1/2 bins led to the most accurate inferred network [22]. These differing results may be
because that study used a F-score as the performance metric. We believe that AUPRC is a more
appropriate metric for network inference and therefore that N1/3 is a superior choice of bin number.
As discussed in Section 2.1, CLR, MRNET and ARACNE produce a list of edges that are ranked by
their corresponding scores. To produce a single network from this ranked list a threshold is chosen,
and any edge with a score greater than the threshold is designated as an edge. The F-score can only
be evaluated for a single network and is therefore highly dependent on the choice of threshold. The
AUPRC is computed using all possible thresholds by definition and so removes this dependency.

Bayesian Blocks did not improve the accuracy of the inferred networks on the real
datasets

For the in silico dataset, using Bayesian Blocks bins led to larger AUPRC values than equal fre-
quency or equal width bins. However, this was not the case for either of the real dataset. A possible
explanation for this difference lies in the different processing of the synthetic and real expression
data. The in silico expression data are raw values as simulated by GeneNetWeaver, while the real
expression data have undergone microarray normalisation followed by a log transform. The expres-
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sion of a single gene of the real datasets is therefore more normal than a gene from the synthetic
dataset, which has a large number of zeros. This can be seen by comparing Figures 9 and 10. Figure
9 shows a concentration of values at zero. Bayesian Blocks represents these values using a narrow
bin with a high frequency density, but equal frequency and equal width bins do not represent this
feature of the data well. Real expression data (Figure 10) does not have this feature, and the three
binning methods give qualitatively similar bins. For more information on how the expression data
was prepared see the Supplementary Material of [1].

For all the datasets the number of bins found by Bayesian Blocks was close to N1/3. Fur-
thermore, since the recommended inference algorithm-mutual information estimator combination
(CLR-B-spline) is robust to the number of bins, we recommend using N1/3 bins.

4.1 The relationship between synthetic and real expression data

These results raise questions about the relationship between synthetic and real expression data.
Synthetic expression data generators are valuable and widely used tools for benchmarking network
inference algorithms. However, the AUPRC values on the E. coli and S. cerevisiae datasets were
significantly lower than on the in silico dataset. Furthermore, the AUPRC values for the in silico
exhibited greater sensitivity to both the choice of estimator and estimator parameters.

There are many causes of the decrease in AUPRC when moving from a synthetic to a real
datasets. Measuring expression using DNA microarrays requires a set of complex steps, each of
which introduce noise. Each of these steps involves several choices that are also known to impact
on the measured expression values, such as the choice of normalisation procedure and the sample
procedure [40]. Although synthetic datasets allow the user to control additive noise it is not clear
what is an appropriate noise amplitude to choose. It is also unlikely that additive noise is a good
approximation of the noise resulting from a series of complex experimental techniques.

An additional source of the discrepancy in AURPC between the real and synthetic data concerns
the gold standard network. While the synthetic gold standard is known exactly, the real gold
standard networks contain many false negatives. For example, the DREAM5 Network Inference
Challenge identified 53 E. coli potentially novel interactions using a consensus of predictions by a
range of inference algorithms. These were edges that were not present in the gold standard networks
but were confidently predicted as edges by a number of inference algorithms. Of these interactions,
23 (43%) were subsequently verified experimentally [1]. Furthermore, since the networks used by
GeneNetWeaver are sub-networks of real biological networks they are intrinsically biased against
undiscovered regulatory links. That is to say, their potential to aid in the discovery of novel
regulatory interactions is limited since their network topologies are based on incomplete biological
knowledge. These comments do not aim to denigrate their use in the development of novel inference
algorithms, simply to note that there remains a significant discrepancy between the inference of
synthetic and real transcriptional regulatory networks.

4.2 Comparing the results of the E. coli and S. cerevisiae datasets

A similar trend was observed between the two real datasets. The E. coli dataset AUPRC statistics
were larger and more dependent on the estimator and its parameters than the S. cerevisiae dataset
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results. One cause may be that this dataset contains 563 samples while the E. coli dataset contain
805 samples. The lower number of samples makes it more difficult to estimate the probability
distributions required for an estimate of the mutual information, and so it may be that all of the
estimators are producing inaccurate mutual information estimates.

There may also be a biological explanation for the discrepancy in results between the two real
datasets. E. coli is a prokaryote and is therefore less complex than the eukaryotic S. cerevisiae. The
added complexity of the S. cerevisiae transcriptional regulatory network is most likely a primary
cause of the lower AURPC results. The lack of variation of AURPC for the S. cerevisiae dataset
could suggest that mutual information-based inference algorithms have difficulty inferring its tran-
scriptional regulatory network. However, the AUPRC values found in [1] are essentially constant
across several other types of inference algorithm. This suggests either that the currently available
approaches are fundamentally flawed, or that the S. cerevisiae gold standard is significantly more
incomplete than that of E. coli. Specifically, the integration of heterogeneous data sources may be
required for an accurate reconstruction of the S. cerevisiae transcriptional regulatory network [41].
Another possible explanation is that a larger part of the transcriptional regulation in eukaryotes is
performed by complexes of transcription factors and other proteins, which are impossible to identify
using only pairwise interactions.
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Figure 6: The AUPRC for the in silico dataset with the Maximum Likelihood, Miller-Madow,
Chao-Shen and Shrinkage estimators. An individual plot shows the AUPRC when using a single
inference algorithm and a specific number of bins with the four estimators. Each grouping of bars
represents a single estimator for the three binning methods. Each column shows results for a single
inference algorithm and each row shows results for a single number of bins. Note that when using
the Bayesian Blocks binning method the number of bins is chosen automatically, hence the AUPRC
values within columns are the same for the same MI estimator, but are included in all plots for
ease of comparison. The Freedman-Diaconis rule has been removed from this plot as its AUPRC
were significantly lower than the other number of bins but are included in Figure S2.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132647doi: bioRxiv preprint 

https://doi.org/10.1101/132647
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

CLR MRNET ARACNE

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

N
1

2

a

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

b

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

Binning method

Equal frequency
Equal width
Bayesian Blocks

c

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

N
1

3

d

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

e

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

f

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

ShrinkageN
o.

 b
in

s 
fr

om
 B

ay
es

ia
n 

B
lo

ck
s

g

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

h

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

i

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

F
re

ed
m

an
−

D
ia

co
ni

s

j

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

k

0.000

0.025

0.050

0.075

0.100

Maximum
Likelihood

Miller−
Madow

Chao−
Shen

Shrinkage

l

Figure 7: The AUPRC for the E. coli dataset with the Maximum Likelihood, Miller-Madow, Chao-
Shen and Shrinkage estimators. An individual plot shows the AUPRC when using a single inference
algorithm and a specific number of bins with the four estimators. Each grouping of bars represents
a single estimator for the three binning methods. Each column shows results for a single inference
algorithm and each row shows results for a single number of bins. Note that when using the
Bayesian Blocks binning method the number of bins is chosen automatically, hence the AUPRC
values within columns are the same for the same MI estimator, but are included in all plots for
ease of comparison. The Freedman-Diaconis rule has been removed from this plot as its AUPRC
were significantly lower than the other number of bins but are included in Figure S5.
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Figure 8: The AUPRC for the S. cerevisiae dataset with the Maximum Likelihood, Miller-Madow,
Chao-Shen and Shrinkage estimators. An individual plot shows the AUPRC when using a single
inference algorithm and a specific number of bins with the four estimators. Each grouping of bars
represents a single estimator for the three binning methods. Each column shows results for a single
inference algorithm and each row shows results for a single number of bins. Note that when using
the Bayesian Blocks binning method the number of bins is chosen automatically, hence the AUPRC
values within columns are the same for the same MI estimator, but are included in all plots for
ease of comparison. The Freedman-Diaconis rule has been removed from this plot as its AUPRC
were significantly lower than the other number of bins but are included in Figure S8.
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Figure 9: Histograms of the expression of the gadE gene (index 126) of the in silico dataset using
the three binning methods. For the equal width and equal frequency methods the number of bins
were chosen to match those used in the Bayesian Blocks case. For the unprocessed synthetic data
there are are large number of zeros which are best represented by the Bayesian Blocks bins.
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Figure 10: Histograms of the expression of the secE gene (index 1263) of the E. coli dataset using
the three binning methods. For the equal width and equal frequency methods the number of bins
were chosen to match those used in the Bayesian Blocks case. The three binning methods give
more similar results for the processed real data than for the synthetic data (Figure 9).
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Supplementary Material

S1 Descriptions of Estimators

This section consists of a detailed description of the MI estimators used in this study. As mentioned
above, to estimate I(x, y) requires estimates of the marginal distributions p(x), p(y) and the joint
distribution p(x, y). Estimates of these distributions will be denoted with as p̂.

The Maximum Likelihood, Miller-Madow, Chao-Shen, Shrinkage and B-spline estimators were
implemented in parallel C++ with an R interface. These implementations are available in the R
package fastGeneMI. The package can be downloaded from https://bitbucket.org/Jonathan-Ish-Horowicz/

fastgenemi/src. The depEst implementation [38] of the Kernel Density estimator was used with
default parameters throughout. The k-nearest-neighbour estimator implementation from the parmi-
gene R package was used [39].

S1.1 Maximum Likelihood Estimator

The first histogram-based method is the Maximum Likelihood estimator, which discretises the
continuous expression data into bins then approximates the marginal probability distributions using

p̂(xi) =
Ni

N
, (8)

where xi are the range of values covered by the i-th bin, Ni is the number of samples that
fall into bin i and N =

∑
iNi is the total number of samples. Similarly, the estimate of the joint

distribution is

p̂(xi, yj) =
Nij

N
, (9)

where yj is the range of the j-th bin in y, Nij are the number of samples in the i-th bin for x
and the j-th bin for y and N =

∑
i

∑
j Nij . The Maximum Likelihood entropy estimates are then

given by

HML(x) = −
∑
i

p̂(xi) log p̂(xi) , (10)

and

HN(x, y) = −
∑
i

∑
j

p̂(xi, yj) log p̂(xi, yj) . (11)

A mutual information estimate is then calculated using (3). (8) and (9) are often called “empir-
ical distributions. The Maximum Likelihood estimator is known to be negatively biased, especially
for small sample sizes [30]. It is also known as the “Empirical,” “Plug-in” or “Naive” estimator.
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S1.2 Miller-Madow Estimator

Introduced in [31] by Miller, this estimator introduces an additional term to the entropy estimates
(10) and (11) to correct for the negative bias of the Maximum Likelihood estimator. The entropy
estimates are

HMM(x) = HN(x) +
n̂− 1

2N
, (12)

and

HMM(x, y) = HN(x, y) +
n̂− 1

2N
, (13)

where n̂ is the number of non-empty bins. A mutual information estimate is then found using
(3).

S1.3 Chao-Shen Estimator

This estimator, proposed in [33] by Chao and Shen, was developed for the estimation of the diver-
sity of biological species via their entropy. In this context each bin corresponds to a species. This
entropy estimator attempts to correct for the fact that some species may not be included in a single
set of samples from a population. This is equivalent to a bin being empty.

The first component is a Horvitz-Thompson estimator, which attempts to correct for varying
proportions of observations within strata in a stratified sample of a target population [42]. If N
samples have been drawn from a population then the probability that bin i has been included is
1− (1− p̂(xi))N . This probability is inverse weighted for each bin when calculating the entropy.

The second component of this estimator is a Good-Turing correction, which attempts to account
for previously empty bins [43]. An approximate form of the correction is

C = 1− f1
N
, (14)

where f1 is the number of bins with a single count. Here we are assuming that the number of
empty bins is the fraction of the bins with a single count. This correction is multiplied by all the
estimates of the distributions in (4) and (5).

Together, these give the Chao-Shen entropy estimators

HCS(x) = −
∑
i

C p̂(xi) logC p̂(xi)

1− (1− C p̂(xi))N
, (15)

and

HCS(x, y) = −
∑
i

∑
j

C p̂(xi, yj) logC p̂(xi, yj)

1− (1− C p̂(xi, yj))N
, (16)

from which we can compute a mutual information estimate using (3).
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For continuous gene expression data we choose the number and width of the bins, meaning that
we control the number of empty bins. Therefore the motivation of the Chao-Shen estimator, which
was developed for discrete data, is not directly applicable in the context of network inference.

S1.4 Shrinkage Estimator

This estimator, by Hausser and Strimmer [32], attempts to prevent overfitting using a convex
sum of the empirical estimate of the distribution and a “target” distribution. For marginals, this
“shrinkage” distribution is given by

p̂s(xi) = λM ti + (1− λM)p̂(xi) , (17)

where ti is the target distribution and λM ∈ [0, 1] controls the relative weight of the two
distributions. The target distribution is chosen to be the uniform distribution,
1/number of bins, which maximises the entropy. λM is given by

λM =
1−

∑
i p̂(xi)

(N − 1)
∑

i(ti − p̂(xi))2
, (18)

and is truncated to fall in [0,1]. The joint “shrinkage” distribution is

p̂s(xi, yj) = λJ tij + (1− λJ)p̂(xi, yj) , (19)

where

λJ =
1−

∑
i

∑
j p̂(xi, yj)

2

(N − 1)
∑

i

∑
j(tij − p̂(xi, yj))2

, (20)

where the target distribution is once again 1/number of bins and λJ ∈ [0, 1]. The shrinkage
entropy estimates are

HS(x) = −
∑
i

p̂s(xi) log p̂s(xi) , (21)

and

HS(x, y) = −
∑
i

∑
j

p̂s(xi, yj) log p̂s(xi, yj) , (22)

from which a mutual information estimate can be computed using (3).

S1.5 B-Spline Estimator

This method, proposed by Daub et al. in [8], is a modification of the Maximum Likelihood esti-
mator that places samples in multiple bins, thus smoothing the distribution. This smoothing is
achieved using B-splines.

A B-spline is a piecewise polynomial function, with each polynomial being a linear combination
of so-called “basis functions.” In a B-spline of order k these basis functions are polynomials with
degree k − 1. The piecewise polynomials are joined at the elements of a knot vector t, which has
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k + m elements when smoothing m bins using a B-spline of order k. The elements of the knot
vector are given by

ti =


0 if i < k

i− k + 1 if k ≤i ≤ m− 1

m− k − 1 if i > m− 1

(23)

The knot vector is non-decreasing and fully determines the B-spline basis functions. For a B-
spline of order k the basis functions are defined between k consecutive knots. The basis functions
are determined recursively from k = 0 until the desired spline order is reached. For z ∈ [0,m−k+1],
the range of the knot vector, the m basis functions (one basis function per bin) are given by the
Cox-de Boor recursion formula [44]:

Bi,1(z) =

{
1 if z ∈ [ti, ti+1)

0 otherwise
, (24)

Bi,k(z) =Bi,k−1(z)
z − ti

ti+k−1 − ti
+Bi+1,k−1(z)

ti+k − z
ti+k − ti+1

. (25)

For k = 1 the basis functions are step functions that are 1 within a bin and 0 elsewhere, so any
sample is placed only in the bin that covers its position. In fact, a B-spline of order k places each
sample into k bins, meaning that a B-spline estimator with k = 1 is equivalent to the Maximum
Likelihood estimator. This is because there are k basis functions defined at each value of z, and
each basis function corresponds to a single bin. Since the sum of the basis functions at any z is
1 we can use them to place a each point into k bins based on its z-value. This requires that we
transform the expression values of a single gene to the range of the knot vector using

z = (m− k + 1)
x− xmin

xmax − xmin
, (26)

where x is the expression of a single gene and xmax and xmin are its maximum and minimum
expression values.

Evaluating the B-spline for single gene gives a matrix Ax ∈ RN×m whose ij-th element is the
weighting of sample i in bin j. We then compute the marginal probability of this gene using

p̂(xj) =
1

N

N∑
i=1

Ax
ij , j = 1, ...,m . (27)

After obtaining the marginal distribution for another gene with expression profile y and obtain-
ing Ay we can compute the joint probability distribution using

p̂(x, y) =
1

N
AxT

Ay . (28)

Then we compute the mutual information of x and y using (3) - (5).
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S1.6 Kernel Density Estimator

Proposed by Moon et al. in [34], this estimator replaces rectangular histogram bins with kernels
when estimating the probability distributions. The estimate of the probability density at expression
x is given by

p̂(x) =
1

N

N∑
k=1

K(uk) , (29)

where K(uk) is the kernel function. This is a function of

uk =
(x− xk)TS−1(x− xk)

h2
, (30)

where xk is a measured expression value, S is the covariance matrix between the dimensions of
xk and h is the kernel bandwidth. Note that for this estimator x is a vector of expression values at
which we can sample the probability distribution and is not restricted to the measured expression
values. In the original paper by Moon et al. the grid positions were chosen to be the locations of the
data, but more recent implementations use a uniform grid over a range of [xmin−1.5h, xmax+1.5h],
where xmin and xmax are the minimum and maximum measured expression values.

For marginal distributions x and xk are scalars and S is the variance of the expression profile
whose density is being estimated. For joint distributions, x and xk are 2-D vectors and S is the
2x2 covariance matrix of the gene pair whose joint density is being estimated.

Using a uk of this form is known as the Fukunaga method [45], where the data has been linearly
transformed to have a unit covariance matrix. This is equivalent to a whitening transformation of

φ(xk) = Λ−
1
2 V Txk , (31)

where Λ and V are the eigenvalue and eigenvector matrices of the sample covariance matrix of x.

To find the mutual information between two genes with expression profiles x and y the density
estimates p̂(x), p̂(y) and p̂(x, y) sampled on the grid described above. The mutual information is
then calculated using (2), where the sums are now over all grid positions.

This estimator has two parameters: the kernel function and the bandwidth. A common choice
is the normalised Gaussian kernel:

K(uk) =
1

(2π)d/2 hd det(S)1/2
exp(−u/2) , (32)

where d is the dimension of the density being estimated (1 for marginal distributions and 2 for
joint distributions). The choice of h is more important than the choice of kernel when estimating
probability densities. In the original paper, Moon et al. suggest using the optimal Gaussian
bandwidth according to Silverman [46]:

h =

(
4

N(d+ 2)

)1/(d+4)

. (33)
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This choice minimises the mean squared error in p̂(x) if the true distribution is multivariate
Gaussian and was found to give to comparable mutual information estimates to data-driven (and
computationally expensive) bandwidth selection methods.

When performing density estimation for visualisation it is common to log-transform non-
negative data to obtain a density estimate that is also non-negative. This should not affect the mu-
tual information estimate due to the invariance of mutual information under homeomorphisms [35],
but this study will investigate numerically the effect of the log-transformation on the mutual infor-
mation estimate. It is also common to normalise the expression of each gene across all the samples
to variance 1.

S1.7 k-Nearest-Neighbour Estimator

This approach utilises previous work by Kozachenko and Leonenko on estimating probability dis-
tributions and entropy from nearest neighbour distances [47], which was itself based on work by
Vasicek [48]. Kraskov et al extended the analysis to produce a mutual information estimator [35].

For two expression profiles x and y, we make the pair z = (x, y). For this space we use the
maximum norm

‖z − z′‖ = max(‖x− x′‖, ‖y − y′‖) , (34)

and compute ε(i)/2, the distance of zi = (xi, yi), i = 1, ..., N to its k-th nearest neighbour.
Using (34),

ε(i) = max(εx(i), εy(i)) , (35)

where εx(i) and εx(i) are the projections of ε(i) onto the x and y directions. We then count the
number of samples with ‖xi − xj‖ < εx(i)/2 for all other samples j, and label it nx(i). Similarly,
we count the number of samples with ‖yi − yj‖ < εy(i)/2 and label it ny(i). Finally, the estimate
for the mutual information between x and y is

I(x, y) = ψ(k)− 1

k
+ ψ(N)− 1

N

(
N∑
i=1

ψ(nx(i)) + ψ(ny(i))

)
, (36)

where ψ(x) is the digamma function satisfying

ψ(x) =
d

dx
log (Γ(x)) =

Γ′(x)

Γ(x)
(37)

and Γ(x) is the gamma function.

This version of the k-NN estimator, also known as the KSG estimator after the authors of [35],
has relatively few theoretical results but it has been shown that the KSG estimator struggles to de-
tect stronger relationships [49]. This may make it inappropriate for gene network inference, where
we are primarily concerned with detecting the strongest relationships between expression profiles.

Implementations of this estimator add a small random noise (∼ 10−9) to break ties between
nearest neighbour distances. The investigation presented in Section S5 found that the AUPRC
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only changes beyond its 5th decimal place for noise with maximum amplitudes of 10−9, 10−10 and
10−11.

S1.8 Parameters of the Histogram-based methods

Table 2 shows the parameters of each estimator. Further details on the parameters of the histogram-
based estimators, the Maximum Likelihood, Miller-Madow, Chao-Shen and Shrinkage estimators
is presented below.

S1.8.1 Binning method

For the Maximum Likelihood, Miller-Madow, Chao-Shen and Shrinkage estimators there are three
binning methods available:

1. Equal width

2. Equal frequency

3. Bayesian Blocks

Histograms of the expression of the same gene are shown in Figure 9 using the three binning
methods.

For equal width binning with n bins we divide the range of the data into bins with width
(max−min)/n. Equal frequency binning uses n bins such that each has an equal frequency, which
is equivalent to the area of the resulting histogram bar.

An alternative to these methods is the Bayesian Blocks algorithm, which was developed by
Scargle et al. to model astronomical time series data using piecewise constant functions [16]. One
application of the Bayesian Blocks algorithm is to place the times of discrete events into bins, where
both the number and locations of the bins are chosen to best fit the data. This is equivalent to
creating a histogram that is an optimal representation of data. This is achieved by optimising a
fitness function, which can be any measure that quantifies how well a constant function fits the
data in a bin. This work uses the default fitness function for this application,

logL(k)(λ) = N (k) log λ− λT (k) (38)

where k is the block index, N (k) is the number of counts in block k, T (k) is the length of the
block and λ is the single parameter of the piecewise constant model.

The B-spline estimator can only be used with equal width bins.

S2 Mutual Information Inference Algorithms

Three mutual information-based network inference algorithms will be used in this work. They are
CLR, MRNET and ARACNE. As described in Section 2.1, each inference algorithm takes a sym-
metric matrix of mutual information value as an input. From this matrix the algorithm computes
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a list of scores, which are ranked in descending order. If a score between two genes has a high rank
this reflects a confident prediction of an edge between them.

The implementations of the inference algorithms were taken from the R package minet [37].

The procedure by which the scores are computed is designed in order to remove indirect con-
nections. Examples of network motifs that contain indirect connections are illustrated in Figure
S1.

A

B

C

(a) Cascade

A

B

C

(b) Fan-out

Figure S1: Two examples of network motifs that can cause systematic errors in network inference
algorithms. This is due to dependence between the expression of two genes that are only indirectly
connected in the true regulatory network. Network inference algorithms attempt to remove these
indirect connections. In (a) there will be dependence between the expression of genes A and C,
while in (b) there will be dependence between the expression of genes B and C.

S2.1 CLR

The Context Likelihood of Relatedness (CLR) algorithm is the most recent of the three inference
algorithms and was develoed by Faith et al. in 2007 [9]. It considers the mutual information
between the expression levels of a target gene and a second gene in the context of the distribution
of the mutual information between the target gene and all other genes. The score of gene i with
gene j is given by

zi = max

(
0,
I(xi;xj)− µi

σi

)
, (39)

where xi, xj are the expressions of genes i and j and µi, σi are the mean and standard deviation
of the distribution I(xi, xk), k = 1, ..., N , k 6= i. The final score between genes i and j is then given

by zij =
√
z2i + z2j .

S2.2 MRNET

MRNET is based on maximum relevance/minimum redundancy (MRMR), an information-theoretic
feature selection technique that is common in machine learning [50]. “Maximum relevance” refers
to choosing features that have a high mutual information with the target variable. “Minimum
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redundancy” means that these features are chosen such that the mutual information between them
is as low as possible. Olsen et al. applied MRMR in a network inference context, in which the
target is the expression of gene i and the features are the expression levels of all other genes. The
steps of the algorithm are as follows:

1. Select the expression profile xi which has the largest mutual information with the target
expression profile y.

2. Select the next expression profile xj as the one that maximises

sj = I(xi, xj)−
1

|Xs|
∑

xk∈Xs

I(xj , xk) ,

where Xs is the set of previously selected expression profiles.

3. The score between genes i and j is given by sij = max(si, sj).

S2.3 ARACNE

The Algorithm for the Reconstruction of Accurate Cellular Networks was proposed by Margolin et
al. in 2006 [6]. It starts by computing the mutual information between all the pairs of genes. These
values are then filtered using a threshold that corresponds to a p-value in the null hypothesis of
two independent genes. It then attempts to remove indirect connections using the Data Processing
Inequality [51], which states that if an interaction between genes i and j depends on k then

I(xi, xj) ≤ min(I(xi, xk), I(xj , xk)). (40)

So for each gene triplet i, j and k, the lowest mutual information of I(xi, xj), I(xi, xk) and
I(xj , xk) can only come from an indirect connection and so the corresponding edge is removed (its
score is set to zero).

S3 Data

This study will use the in silico, e.coli and s.cerevisiae datasets from the DREAM5 Network Infer-
ence Challenge [1]. The name in silico refers to the fact that this dataset has been simulated using
GeneNetWeaver, a tool that uses ordinary differential equation models to simulate the expression of
biologically inspired regulatory networks [18]. The e.coli and s.cerevisiae datasets use experimental
data.

Each dataset consists of an expression matrix and a “gold standard” network, against which
predictions are evaluated. The in silico expression matrix contains the raw values as simulated
by GeneNetWeaver. The other two expression matrices have undergone microarray normalisation
followed by a log transform. Further details on the three datasets is displayed in Table 1.

The gold standard is only known for the in silico dataset. For the e.coli dataset was been con-
structed from RegulonDB, a database of experimentally verified transcriptional interactions [52].
The gold standard for the s.cerevisiae dataset was constructed following the reanalysis of ChIP-chip
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data [53]. The gold standards for the non-synthetic datasets are among the best in the field, but are
almost certainly incomplete. Only interactions with strong experimental verification are included
as edges in the network, so there may be many false negatives. Furthermore, only a subset of the
genes are marked as potential regulators, and so the evaluation of an inferred network only occurs
using edges between the regulators and other genes.

Detailed information on the source of all three datasets and the gold standard networks is
available in the Supplementary Material of [1].

S4 Evaluating network predictions - precision and recall

Network inference is a two-class classification task, where each pair of genes is classified as hav-
ing an edge between them or not. Receiver operating characteristic (ROC) curves are a common
method by which to evaluate such a classifier.

A predicted edge can be a true positive (TP), false positive (FP), true negative (TN) or false
negative (FN). A ROC curve plots the true positive rate

TPR =
TP

TP + FN
, (41)

against the false positive rate

FPR =
FP

FP + TN
, (42)

for various thresholds and evaluate the areas under the resulting curve (AUROC). A perfect
classifier has area 1, while a random classifier has area 1

2 . However, ROC curves are known to
be potentially misleading in classification tasks with large class imbalances, which is the case in
network inference as well as many other biological classification problems [19, 20]. Therefore we
have a large number of true negatives that are of little interest when we evaluate our predicted
networks.

As an alternative we use precision-recall curves, where

Precision =
TP

TP + FP
, (43)

and Recall is equivalent to the true positive rate. Neither precision nor recall consider the num-
ber of true negatives. Similarly to a ROC curve, we plot the precision and recall for all thresholds.
A more accurate classifier has a larger area under a precision-recall curve (AUPRC), which has a
maximum value of 1 for a perfect classifier.

The F- or F1-score is twice the harmonic mean of the precision and recall and is given by

F = 2

(
1

recall
+

1

precision

)−1
= 2

precision · recall

precision + recall
. (44)
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F-scores take values in [0, 1] and are close to 1 if both the precision and recall are close to 1,
and close to 0 otherwise.

The area under precision recall curve was computed using the PRROC R package [54].

S5 Finding the best parameters for each estimator

This section will identify the best parameters for the Maximum Likelihood, Miller-Madow, Chao-
Shen, Shrinkage, B-spline and k-nearest-neighbours estimators. To recap, for the Maxiumum Like-
lihood, Miller-Madow, Chao-Shen and Shrinkage estimators these are the number of bins and the
binning method, unless the Bayesian Blocks binning method is used, in which case the number of
bins are selected automatically. For the B-spline method we must choose the number of bins and
the spline order. For the k-nearest-neighbour estimator we choose k and the amplitude of the noise
added to each sample to break ties. The Kernel Density estimator has parameters (bandwidth and
kernel function) but these were not investigated.

S5.1 In silico data

S5.1.1 Maximum Likelihood, Miller-Madow, Chao-Shen and Shrinkage estimators

First we compare the Maximum Likelihood, Miller-Madow, Chao-Shen and Shrinkage estimators.
These estimators have been grouped together as they share the same parameters: binning method
and number of bins. These results are shown in Figure S2. This work is not a comparison of
inference algorithms, however it is worth noting that CLR (plots a, d, g and j in Figure S2) consis-
tently has the largest AUPRC while ARACNE (plots c, f, i and l) has the smallest. This pattern
is observed across all the mutual information estimators and datasets used in this study and will
not be commented on again.

Using Bayesian Blocks increases the AUPRC for all 4 estimators when using CLR or ARACNE.
For MRNET, Bayesian Blocks is the optimal parameter choice for the Miller-Madow and Shrinkage
estimators.

For all of these estimators using N1/3 bins is preferable to N1/2 bins, but both of these choices
give lower AUPRCs than Bayesian Blocks. Of these two choices, N1/3 gives a larger AUPRC. This
is probably due to N1/3 being closer to the number of bins used by Bayesian Blocks than N1/2, as
shown in Figure 5. The Freedman-Diaconis rule leads to a far lower AUPRC than the other choices
of bin number for all the estimators and inference algorithms.

Since the Bayesian Blocks algorithm chooses the number of bins automatically, this improve-
ment may be due to a more appropriate number of bins rather than the positioning of the bins.
Plots g, h and i of Figure S2 show the AUPRC when using Equal Width and Equal Frequency bins
with the number of bins chosen by Bayesian Blocks. These plots show that the locations of the
bins also have a positive impact on the AUPRC, but that the majority of the increase in AUPRC
when using Bayesian Blocks is from choosing an optimal number of bins.
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From these results we can conclude that using Bayesian Blocks improves the performance of
inference algorithms on this dataset. Furthermore, the number of bins is a more important param-
eter than the binning method for this dataset, in that if the number of bins is chosen “well,” then
all the estimators are robust to the choice between equal frequency and equal width bins. Finally,
using N1/2 equal width bins with the shrinkage estimator results in a low AUPRC for all three
inference algorithms.

S5.1.2 B-spline estimator

Figure S3 shows the AUPRC when using the B-spline estimator on the in silico dataset with var-
ious spline orders and bin numbers. For all three inference algorithms increasing the spline order
generally increases the AUPRC, however for some choices of the number of bins this is not the case.
For example, when using MRNET with 10 bins the AUPRC decreases as the spline order increases.
For ARACNE the increase in AUPRC with spline order is smaller than for CLR or MRNET, and
is barely noticeable.

Over the three inference algorithms and the various spline orders using N1/3 gives either the
largest or almost largest AUPRC. For this dataset the integer value of N1/3 is 9, which is close to
the recommended value of 10. Accordingly, the AUPRC between the two parameter choices are
very similar. Using the same number of bins as Bayesian Blocks leads to a slightly lower AUPRC,
and using N1/2 bins is significantly worse. Once again, using the Freedman-Diaconis rule leads to
a much lower AUPRC than any other parameter choice.

It is also interesting to note the increase in AUPRC for MRNET when using the B-spline esti-
mator. When using the Maximum Likelihood, Miller-Madow, Chao-Shen and Shrinkage estimators
the AUPRC of MRNET was significantly below CLR, however the difference is much smaller when
using the B-spline estimator.

S5.1.3 k-Nearest-Neighbour estimator

Figure S4 shows the results for the k-NN estimator for a range of values of k. For both CLR and
MRNET the AUPRC increases from k = 2 to k u 10 and is approximately constant for larger values
of k. For ARACNE this increase in AUPRC stops for k ≥ 5. For CLR, MRNET and ARACNE
the largest AUPRC is when k = 13, 14 and 14 respectively.

S5.2 E. coli data

S5.2.1 Maximum Likelihood, Miller-Madow, Chao-Shen and Shrinkage estimators

The AUPRC values for the E. coli dataset when using the Maximum Likelihood, Miller-Madow,
Chao-Shen and Shrinkage estimators are shown in Figure S5. The AUPRC values are lower for this
dataset than for the in silico dataset, which reflects the added difficulty of both inferring a network
and obtaining an accurate gold standard for real biological systems. The variation in AUPRC
between estimators, binning methods and bin numbers is also smaller for E. coli than for in silico.

Unlike for the in silico dataset, using Bayesian Blocks does not increase the AURPC for any of
the mutual information estimator-inference algorithm combinations. However, the inference algo-
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rithms are more robust to the choice of bin number and binning method.

Equal width bins are preferable for all the estimators when using CLR and all but the Chao-
Shen estimator for MRNET. For ARACNE, equal frequency bins give a larger AUPRC for the
Maximum Likelihood, Miller-Madow and Shrinkage estimators.

For CLR, using N1/3 bins (which are similar values, as shown by Figure 5) gives the highest
AUPRC for all of these estimators. MRNET follows the same trend but the Chao-Shen estima-
tor has the largest AUPRC when used with the same number of bins as Bayesian Blocks. For
ARACNE, the Chao-Shen and Shrinkage estimators perform better when used with N1/2 bins,
while with the Maximum Likelihood and Chao-Shen estimators are best used with N1/3 and the
Bayesian Blocks number of bins respectively.

There are specific parameter choices that lead to low AUPRC values. The Freedman-Diaconis
rule leads to the lowest AUPRC. However, this difference is negligible when using CLR or ARACNE
with the Chao-Shen and Shrinkage estimators (plots j and l in Figure S5).

S5.2.2 B-spline estimator

Figure S6 shows the AUPRC when using the B-spline estimator on the E. coli dataset with various
spline orders and bin numbers. Unlike for the in silico dataset, the AUPRC does not increase with
spline order. When varying the number of bins the change in AUPRC is ∼ 0.001, except when
using MRNET with the Freedman-Diaconis rule. In this case the AUPRC is significantly lower
than all choices of bin number.

Yet again, CLR performs best with ARACNE performing worst, however, now the Freedman-
Diaconis rule only leads to low AUPRC values when using MRNET. For both CLR and ARACNE
the number of bins does not strongly affect the AUPRC.

S5.2.3 k-Nearest-Neighbour Estimator

The same trends are apparent for the E. coli data as for the in silico dataset, however the difference
between low and high values of k for CLR and MRNET are now smaller than for the in silico data.

S5.3 S. cerevisiae data

S5.3.1 All estimators

The AUPRC values for the various estimators are shown in Figures S8, S9 and S10. This dataset
has the lowest AUPRC values andn there is very little variation in AUPRC between different
parameters or estimators. The variation between inference algorithms is also lower than for the in
silico and E. coli datasets.
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S6 Best estimator parameters by inference algorithm - MRNET
and ARACNE

Tables S1 and S2 show the estimator parameters that maximised the AUPRC when using MRNET
and ARACNE respectively.

Table S1: The mutual information estimator parameters that maximise the AUPRC when using
the MRNET network inference algorithm. The parameters of each estimator are shown in Table
2 and described in detail in Section S1. The parameters of the Kernel Density estimator were not
investigated and the only the values suggested by the authors of [34] were used. The Spearman
and Pearson correlation estimators do not have parameters.

Estimator in silico E. coli S. cerevisiae

Maximum Likelihood
Equal width

N1/3 bins

Equal width

N1/3 bins
Bayesian Blocks

Miller-Madow Bayesian Blocks
Equal width

N1/3 bins
Bayesian Blocks

Chao-Shen
Equal width

BB number of bins
Equal frequency

BB number of bins

Equal width

N1/2 bins

Shrinkage Bayesian Blocks
Equal width

N1/3 bins
Bayesian Blocks

B-spline
Spline order 4

N1/3 bins

Spline order 2
BB number of bins

Spline order 3
BB number of bins

k-NN k = 14 k = 9 k = 15

Kernel Density, Spearman
and Pearson correlation

n/a n/a n/a
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Figure S2: The AUPRC for the in silico dataset with Maximum Likelihood, Miller-Madow, Chao-
Shen and Shrinkage estimators. An individual plot shows the AUPRC when using a single inference
algorithm and a specific number of bins with the four estimators. Each grouping of bars represents
a single estimator for the three binning methods. Each column shows results for a single inference
algorithm and each row shows results for a single number of bins. Note that when using the
Bayesian Blocks binning method the number of bins is chosen automatically, hence the AUPRC
values within columns are the same for the same MI estimator, but are included in all plots for
ease of comparison.
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Figure S3: The AUPRC results for the in silico dataset with the B-spline estimator. Each plot
shows the AUPRC results for a single inference algorithm, with the results being grouped by spline
order.
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Figure S4: The AUPRC results when using the k-Nearest-Neighbour estimator on the in silico
dataset. Each plot contains the AUPRC results for a single inference algorithm and each bar
represents the AUPRC when using k nearest neighbours to estimate the mutual information.
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Figure S5: The AUPRC for the E. coli dataset with Maximum Likelihood, Miller-Madow, Chao-
Shen and Shrinkage estimators. An individual plot shows the AUPRC when using a single inference
algorithm and a specific number of bins with the four estimators. Each grouping of bars represents
a single estimator for the three binning methods. Each column shows results for a single inference
algorithm and each row shows results for a single number of bins. Note that when using the
Bayesian Blocks binning method the number of bins is chosen automatically, hence the AUPRC
values within columns are the same for the same MI estimator, but are included in all plots for
ease of comparison.
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Figure S6: The AUPRC results for the E. coli dataset with the B-spline estimator. Each plot shows
the AUPRC results for a single inference algorithm, with the results being grouped by spline order.
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Figure S7: The AUPRC results when using the k-Nearest-Neighbour estimator on the E. coli
dataset. Each plot contains the AUPRC results for a single inference algorithm and each bar
represents the AUPRC when using k nearest neighbours to estimate the mutual information.
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Figure S8: The AUPRC for the S. cerevisiae dataset with Maximum Likelihood, Miller-Madow,
Chao-Shen and Shrinkage estimators. An individual plot shows the AUPRC when using a single
inference algorithm and a specific number of bins with the four estimators. Each grouping of bars
represents a single estimator for the three binning methods. Each column shows results for a single
inference algorithm and each row shows results for a single number of bins. Note that when using
the Bayesian Blocks binning method the number of bins is chosen automatically, hence the AUPRC
values within columns are the same for the same MI estimator, but are included in all plots for
ease of comparison.
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Figure S9: The AUPRC results for the S. cerevisiae dataset with the B-spline estimator. Each plot
shows the AUPRC results for a single inference algorithm, with the results being grouped by spline
order.
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Figure S10: The AUPRC results when using the k-Nearest-Neighbour estimator on the S. cerevisiae
dataset. Each plot contains the AUPRC results for a single inference algorithm and each bar
represents the AUPRC when using k nearest neighbours to estimate the mutual information.
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Table S2: The mutual information estimator parameters that maximise the AUPRC when using
the ARACNE network inference algorithm. The parameters of each estimator are shown in Table
2 and described in detail in Section S1. The parameters of the Kernel Density estimator were not
investigated and the only the values suggested by the authors of [34] were used. The Spearman
and Pearson correlation estimators do not have parameters.

Estimator in silico E. coli S. cerevisiae

Maximum Likelihood Bayesian Blocks
Equal frequency

N1/3 bins
Bayesian Blocks

Miller-Madow Bayesian Blocks
Equal frequency

BB number of bins
Bayesian Blocks

Chao-Shen Bayesian Blocks
Equal width

N1/2 bins
Bayesian Blocks

Shrinkage Bayesian Blocks
Equal frequency

N1/2 bins

Equal width
BB number of bins

B-spline
Spline order 5

10 bins

Spline order 4

N1/2 bins

Spline order 3
FD number of bins

k-NN k = 14 k = 3 k = 15

Kernel Density, Spearman
and Pearson correlation

n/a n/a n/a
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