1 Disparity, Diversity, and Duplications in the Caryophyllales

- 2 Stephen A. Smith^{*,1}, Joseph W. Brown¹, Ya Yang², Riva Bruenn^{3,4}, Chloe P. Drummond^{3,5},
- 3 Samuel F. Brockington⁶, Joseph F. Walker¹, Noah Last², Norman A. Douglas^{3,7}, Michael J.
- 4 Moore³
- 5
- ⁶ ¹Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48103
- ⁷ ² Department of Plant Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St.
- 8 Paul, MN 55108
- ⁹ ³Department of Biology, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074-1097
- ⁴Current Address: Department of Plant & Microbial Biology, University of California, Berkeley,
- 11 Berkeley, California 94720-3102
- ⁵Current Address: Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive,
- 13 Madison, WI 53706
- ⁶Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United
- 15 Kingdom
- ⁷Current address: Department of Biology, University of Florida, 618A Carr Hall, Gainesville, FL
- 17 32605
- 18
- 19 CORRESPONDING AUTHOR: Stephen A. Smith; 734-615-5510; eebsmith@umich.edu
- 20
- 21 WORD COUNT
- 22 Total: 5694
- 23 Summary: 196
- 24 Introduction: 1204
- 25 Materials and Methods: 1683
- 26 Results and Discussion: 2457
- 27 This manuscript also contains 3 Main Figures (two in color), 4 Main Tables, and 5
- 28 Supplementary Figures.
- 29
- 30

2

31 Summary

32 The role whole genome duplication (WGD) plays in the history of lineages is actively • 33 debated. WGDs have been associated with advantages including superior colonization, 34 various adaptations, and increased effective population size. However, the lack of a 35 comprehensive mapping of WGDs within a major plant clade has led to uncertainty 36 regarding the potential association of WGDs and higher diversification rates. Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 37 • 38 5,036 species of Caryophyllales, representing nearly half of the extant species. We 39 phylogenetically mapped putative WGDs as identified from analyses on transcriptomic 40 and genomic data and analyzed these in conjunction with shifts in climatic niche and 41 lineage diversification rate. 42 Thirteen putative WGDs and twenty-seven diversification shifts could be mapped onto the phylogeny. Of these, four WGDs were concurrent with diversification shifts, with 43 44 other diversification shifts occurring at more recent nodes than WGDs. Five WGDs were 45 associated with shifts to colder climatic niches. While we find that many diversification shifts occur after WGDs it is difficult to consider 46 • 47 diversification and duplication to be tightly correlated. Our findings suggest that duplications may often occur along with shifts in either diversification rate, climatic 48 49 niche, or rate of evolution. 50 *Keywords*: Caryophyllales, duplications, climatic niche, diversification rates, phylogenomics 51 52 Introduction 53 Understanding the causes and correlates of diversification within flowering plants has been a

54 central goal of evolutionary biologists. Genomic and transcriptomic data have reinvigorated

55 hypotheses associating whole genome duplication (WGD) with lineage diversification rate

56 increases (e.g., Levin, 1983; Levin 2002; Barker et al. 2009; Estep et al., 2014; Soltis et al.,

- 57 2014; Edger *et al.* 2015; Puttick *et al.* 2015; Tank *et al.*, 2015; Barker *et al.* 2016; Huang *et al.*
- 58 2016; McKain *et al.* 2016; Laurent *et al.* 2017). It is not self-evident why WGDs would be
- 59 associated with increases in lineage diversification. One hypothesis suggests that the additional
- 60 genetic material provides a basis to generate new adaptations (Edger *et al.*, 2015), although this
- 61 itself assumes a co-occurrence of adaptation and lineage proliferation (Levin, 1983). The

62 apparent lack of precise co-occurrence of adaptation and lineage proliferation has been explained by the potential of a lag model (Schranz et al. 2012; Tank et al. 2015) where diversification may 63 64 follow WGD events. In the absence of overwhelming correlative signal, we are often unable to discern true ancient WGD events from aneuploidy without advanced genomic information such 65 66 as synteny mapping (Dohm *et al.*, 2012). Because it is often difficult to distinguish the two, for 67 simplicity we will define WGD broadly to include putative ancient WGD events 68 (paleopolyploidy) and ancient aneuploidy events. WGD events are thought to be a common 69 occurrence and have been associated with an estimated 15% of angiosperm speciation events 70 (Wood et al., 2009). However, whether speciation by WGD is correlated with higher 71 diversification rates remains highly debated (Mayrose et al., 2011; Estep et al. 2014; Soltis et al., 72 2014; Tank et al., 2015; Kellogg et al. 2016). Analyses based on recent WGD events have 73 concluded that immediate extinction rates are higher for polyploid plants (Mayrose et al., 2011; 74 Arrigo and Barker, 2012). This may result from small initial population sizes and an increased 75 dependence on selfing. Alternatively, despite the disadvantages of WGD, others have suggested 76 that polyploids may be superior colonizers (Soltis and Soltis, 2000). 77 Indeed, extreme environments are associated with high levels of WGD, with up to 87%

78 of species restricted to areas that were glaciated during the last ice age consisting of polyploids 79 (Brochmann, 2004). However, in the example from Arctic plants, the high level of WGD has 80 occurred post-glaciation representing a micro-evolutionary period whereas previous studies often 81 focus at much deeper macro-evolutionary time scales (Mayrose *et al.*, 2011; Tank *et al.*, 2015; 82 Soltis et al., 2014). From the perspective of a short timescale, polyploidy has the disadvantages 83 of higher error rates in mitosis (Storchová *et al.*, 2006) and masking of deleterious mutations 84 allowing them to accumulate to higher frequencies in a population (Otto & Whitton, 2000). A 85 suite of advantages however may also arise, including gain of asexuality (Miller et al. 2000) and 86 varying effects of heterosis (Comai, 2005). The net role these advantages and disadvantages play 87 on the macroevolutionary scale is difficult to determine from either the purely short-term or 88 purely long-term time scales previously used.

The long-term consequence of WGD is a central question in macroevolution and comparative genomics. However, with a suite of advantages and disadvantages, much debate surrounds the importance and patterns of correlation of WGD (Comai 2005). While polyploidization events can cause instant speciation, there is no reason to assume that these

93 singular speciation events in themselves would influence large-scale diversification rate shifts 94 when considering lineage survivorship. Instead, there may be other factors, such as the increase 95 in genetic material, perhaps increasing genetic diversity or enabling adaptation, that cause long 96 term shifts in rates of diversification. Adaptations need not be associated with shifts in the tempo 97 of diversification and those adaptations and shifts in diversification may not co-occur on the 98 same branch (i.e., there may be a lag time; Donoghue 2005; Smith *et al.*, 2011, Schranz *et al.*, 99 2012; Donoghue & Sanderson 2015; Tank et al., 2015; Dodsworth et al., 2016). In the broader 100 context of plant evolution, there are several possible outcomes of WGD in relation to the 101 evolution and diversification of clades: 1) no relationship between WGD and speciation rate or 102 habitat shift/adaptation, 2) WGD coincides with an increase of speciation rate, with or without a 103 lag time, 3) WGD promotes dispersal and habitat shifts, which has mixed relationship with 104 speciation rate, and 4) a mixture (some association, some not), similar to the previous hypothesis 105 but without explicitly promoting dispersal or habitat shift or speciation (e.g., adaptation could be 106 more prominent than dispersal and habitat shift). Here, we contribute to this discussion on 107 diversification and WGDs with an in-depth examination of the intersection of diversification and 108 WGDs happening at a range of scales within the hyperdiverse Caryophyllales. 109 The Caryophyllales comprise ~12,500 species in 39 families (Thulin et al., 2016; APG 110 IV: Chase *et al.*, 2016), representing approximately 6% of extant angiosperm species diversity. 111 The estimated crown age of Carvophyllales is approximately 67–121 millions of years ago 112 (mega-annum, Ma) (Bell et al., 2010; Moore et al., 2010). Species of the Caryophyllales exhibit 113 extreme life-history diversity, ranging from tropical trees to temperate annual herbs, and from 114 desert succulents (e.g., Cactaceae) to a diverse array of carnivorous plants (e.g., the sundews 115 Drosera and pitcher plants Nepenthes). Such extraordinary diversity makes Caryophyllales a 116 particularly useful system for investigating the relationship between WGD vs. diversification and 117 niche evolution. Our previous analyses using 62 transcriptomes representing 60 species across 118 the Caryophyllales identified 13 well-supported ancient WGD events (Yang et al., 2015). We 119 have since nearly tripled the taxon sampling and assembled a data set comprising high-coverage 120 transcriptomes and genomes from 169 species across the Caryophyllales (Yang et al., 121 submitted), providing even greater power for resolving the number and phylogenetic locations of 122 WGD events. Moreover, the growth in the number of plant taxa on GenBank that are represented 123 by traditional targeted sequences (e.g., *rbcL*, *matK*, ITS, etc.) and the growth of publicly

available collections data (e.g., GBIF, iDigBio) provide excellent opportunities to apply
megaphylogeny and niche diversification approaches at fine scales in Caryophyllales.

126 By examining WGDs and diversification within the Caryophyllales, we present an 127 important example. Not only does the dataset examined have a high density of transcriptomic 128 sampling, the diversification of the bulk of Caryophyllales occurred during a time frame 129 intermediate to that of most published studies that have probed a link between WGD and 130 macroevolution. This time frame, between 10 and 100 Ma, is important for angiosperms as much 131 of the diversification that has led to the modern flora occurred during this period and most 132 modern angiosperm families appeared by this time. Discussion of speciation rate, niche shift, and 133 WGD would be flawed without accurate mappings of WGD events within this time scale. We 134 compiled a data set with extensive and precise mapping of WGD combined with a species-level 135 phylogeny. The megaphylogeny approach has been used extensively in the past to combine data 136 from many gene regions and across broad taxonomic groups to address evolutionary questions 137 (Smith *et al.*, 2009). Here, we use this approach to help inform analyses from phylogenomic 138 studies, and provide a broad context in which to examine these genomic phenomena. With half 139 of the species sampled, this represents one of the largest and most exhaustive studies of WGDs, 140 diversification rate, and adaptive shifts.

141

142 Materials and Methods

143 Sanger sequencing and assembly. —A total of 248 new matK sequences were included in this 144 study (Table 1). To generate these sequences, leaf samples were collected in silica in the field or 145 from cultivated material, or were collected from herbarium sheets. DNA was isolated using 146 either the Nucleon Phytopure kit (GE Healthcare Life Sciences, Pittsburgh, PA, USA), using the 147 0.1 g protocol and following manufacturer's instructions, or using the Doyle & Doyle (1987) 148 protocol, with the addition of 1% PVP-40. An approximately 950 bp region in the middle of the 149 *matK* gene was amplified and sequenced using custom-designed primers (Table 2). PCRs were 150 performed in 12.5 μ L volumes with 0.5 μ L of 5 mM primer for both primers, 5-20 ng of DNA 151 template, 0.1 µL of GoTag (Promega, Madison, WI, USA), 6.25 µL of Failsafe Premix B 152 (Epicentre, Madison, WI, USA), and 4.7 µL of sterile, deionized water. Reactions were run on a 153 Bio-Rad PTC 200 thermocycler (Bio-Rad, Hercules, CA, USA) at Oberlin College. Individual 154 PCRs were cleaned in 16.5 µL reactions containing 10 U of Exonuclease I (Affymetrix,

155 ThermoFisher Scientific, Waltham, MA, USA), 2 U of shrimp alkaline phosphatase

156 (Affymetrix), 8 µL of PCR product, and 8.5 µL of sterile, deionized water. Sanger sequencing of

157 the resulting cleaned PCRs was conducted by Neogenomics (formerly SeqWright; Houston, TX,

158 USA) using an ABI 3730xl automated sequencer (Applied Biosystems, ThermoFisher

159 Scientific). The resulting forward and reverse sequences for each reaction were trimmed and *de*

novo assembled using default parameters of the Geneious assembler in Geneious versions 5-7

161 (Biomatters, Auckland, New Zealand).

162

163 *Molecular Data for Phylogenetic Reconstruction.* —Nucleotide data from the nuclear

164 ribosomal internal transcribed spacers (ITS) and *phyC* gene, and the plastid loci *matK*, *ndhF*,

165 *rbcL*, *trnH-psbA* spacer, and *trnL-trnF* spacer were used to reconstruct the phylogeny. These data

166 were gathered first using PHLAWD (Smith & Donoghue, 2008; Smith *et al.*, 2009) and then

167 curated and combined with newly sequenced *matK* data for 124 additional species. This yielded

168 the following sampling: ITS 2,969 species, *matK* 2,270 species, *ndhF* 417 species, *phyC* 172

169 species, *rbcL* 947 species, *trnH-psbA* 240 species, and *trnL-trnF* 1,996 species. We used *mat*K,

170 rbcL, and ndhF sequences from Aextoxicon, Apium, Berberidopsis, Campanula, Clethra, Coffea,

171 Echinops, Helwingia, Ilex, Ipomoea, Lamium, Lonicera, Nyssa, Polysoma, Primula, Santalum,

172 *Valeriana*, and *Viburnum* to represent outgroups.

173

174 **Phylogenetic Reconstruction.**—We conducted phylogenetic analyses with RAxML v7.2.8 175 (Stamatakis, 2014) using the full analysis command, -f a, which conducts a rapid bootstrap and 176 then a full maximum likelihood search. The combined bootstrap and maximum likelihood search 177 allows for a more thorough maximum likelihood analysis where the initial rapid bootstrap results 178 prime the maximum likelihood analysis. However, we did not use the rapid bootstrap trees from 179 this analysis and instead, we conducted a full bootstrap, generating the bootstrap dataset using 180 phyx (Brown et al., 2017) and then conducting individual maximum likelihood runs on each 181 constructed bootstrap dataset. This allowed us to conduct SH-like approximate likelihood ratio 182 test (SH-aLRT; Guindon et al., 2010) on the resulting bootstrap set. We conducted bootstraps 183 within gene regions and we retained the individual bootstrap alignments to conduct additional 184 analyses (i.e., bootstrapped alignments contained the same number of gene-specific sites as the 185 empirical alignment). On each of the resulting trees of the bootstrap and the maximum likelihood

186 tree, we conducted SH-aLRTs as implemented in RAXML. These analyses calculate support for 187 each edge while also finding the NNI-optimal topology. RAxML completed the likelihood 188 search for each of these bootstrap replicates, however the SH-aLRT analyses often resulted in an 189 improved maximum likelihood topology. The trees that resulted from the SH-aLRT, ML, and 190 bootstrap samples, were used for further analyses. Because several deep relationships within 191 Carvophyllales are hard to resolve without large amounts of molecular data that are unavailable 192 for most of the taxa included in this analysis (Yang et al., 2015), for all phylogenetic analyses we 193 applied the following topological constraint: (Droseraceae, (Microtea, (Stegnospermataceae, 194 Limeaceae, (Lophiocarpaceae, (Barbeuiaceae, Aizoaceae))))) as per previous analysis 195 (Brockington et al., 2009; Yang et al., 2015).

196

197 *Divergence Time Estimation.* — Few tractable options for divergence time estimation exist for 198 datasets of the size presented here. We use the penalized likelihood approach (Sanderson, 2003) 199 as implemented in the program treePL (Smith & O'Meara, 2012), which can handle large-scale 200 phylogenies. The early fossil record of the Caryophyllales is sparse with only a few known 201 records (Friis *et al.*, 2011; Arakaki *et al.*, 2011): (1) fossil pollen has been ascribed to 202 Amaranthaceae (Chenopodipollis) from the Paleocene of Texas (Nichols & Traverse, 1971); (2) 203 a putative fossil infructescence from within the Phytolaccaceae in the Campanian has also been 204 reported (Cevallos-Ferriz et al., 2008), but this phylogenetic position has been disputed (pers. 205 comm. S. Manchester) and hence we excluded it; (3) Jordan & Macphail (2003) describe a 206 middle to late Eocene inflorescence from the species Caryophylloflora paleogenica, ascribed to 207 Caryophyllaceae; (4) pollen from Argentina within the Nyctaginaceae has been reported from the 208 middle Eocene (Zetter et al., 1999); and (5) fossil pollen and seeds of Aldrovanda (Degreef, 209 1997). The penalized likelihood method performs better when a calibration is used at the root. 210 For this calibration, and because there is no fossil record for the earliest Caryophyllales, we use a 211 secondary calibration from the comprehensive angiosperm divergence time analyses of Bell et 212 al. (2010). We attached several other secondary calibrations to major clades where fossils are not 213 available (Ocampo & Columbus 2010; Arakaki et al., 2011; Schuster et al., 2013; Valente et al., 214 2013; see Supp. Table S1 for detail on placement and calibrations). We conducted a priming 215 analysis to determine the best optimization parameter values. We then performed a cross

validation analysis using the random cross validation setting to determine the optimal smoothingparameter value.

218

219 *Climate occupancy analyses.* —We downloaded 6,592,700 georeferenced occurrences for the 220 Caryophyllales from GBIF (accessed on 6/1/2015; http://gbif.org). After removing samples 221 present in living collections, and therefore not necessarily representative of native climates, and 222 removing samples whose localities were over water, 6,009,552 samples remained. We extracted 223 bioclimatic values for each coordinate using the 2.5 arc-minute resolution data from WorldClim 224 (http://worldclim.org). We only included taxa that had at least three samples in these analyses to 225 reduce potential errors and to have the minimum number of samples required to calculate mean 226 and variance. The resulting overlap of the taxa represented in both the geographic and genetic 227 data was 2,843 taxa. We conducted principal component analyses (PCA) on these extracted 228 values. With both the bioclimatic values and the first two axes of the PCA, we conducted 229 ancestral state reconstruction analyses.

We also conducted contrast analyses and calculated Brownian motion rates of evolution between sister clades (comparing duplicated lineages with their sisters) for mean annual precipitation, mean annual temperature, and principal component axis 1. We calculated contrasts using phylogenetic independent contrasts. We calculated Brownian motion rates on sister

234 lineages independently using the analytical solution for rate: $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i^2}{v_i^2}$.

235

236 Diversification analyses. — To map diversification rate shifts, we conducted MEDUSA (Alfaro 237 et al., 2009; Pennell et al., 2014) analyses on the maximum likelihood tree and the bootstrap 238 trees. MEDUSA is far more computationally tractable than some other diversification estimation 239 methods. Furthermore, we required the ability to feasibly integrate over the phylogenetic 240 uncertainty within the phylogenetic dataset because of both the nature of the larger phylogenetic 241 dataset and the inherent biological uncertainty within the Caryophyllales. MEDUSA fits a birth-242 death model of diversification (with parameters r: net diversification (birth - death), and ε : 243 relative extinction (death / birth)) before using stepwise AIC (Burnham & Anderson, 2002) to 244 identify shifts in rates of diversification. These complementary analyses accommodate 245 topological and branch length uncertainty. We employed a birth-death model for 97 chronograms 246 generated from nonparametric bootstrapping of the original matrix, inferring ML trees in

9

247 RAxML, and estimating divergence times in treePL using the temporal constraints described 248 above. We discarded three trees based on poor fossil placement resulting from phylogenetic 249 uncertainty causing fossil placements to conflict.

250

251 Whole Genome Duplication Identification. — To identify WGDs (procedure described below), 252 we generated a tree based on transcriptomic data. For this tree, we used 178 ingroup data sets 253 (175 transcriptomes, 3 genomes) representing 169 species in 27 families and 40 outgroup 254 genomes (Table S1-S2 in Yang et al. submitted). We mapped putative WGD events using 255 multiple strategies: gene tree topology, plotting synonymous distance, and chromosome counts 256 (Yang et al. 2015; Yang et al., submitted). For gene tree topology analyses, we performed two 257 alternative strategies for mapping duplication events from gene trees to the species tree: mapping 258 to the most recent common ancestor (MRCA), or mapping to the species tree only when gene 259 tree and species tree topologies are compatible.

To conduct synonymous distance analyses, we performed the following procedure. For 260 261 all ingroup Caryophyllales transcriptome data sets, we calculated the distribution of paralog 262 synonymous distance following the same procedure as (Yang *et al.*, 2015). We reduced highly 263 similar peptide sequences with CD-HIT (-c 0.99 -n 5)(Li & Godzik 2006). We also carried out an 264 all-by-all BLASTP within each taxon using an E value cutoff of 10 and -max target seq set to 265 20. Resulting hits with pident < 20% or niden < 50 amino acids were removed. We removed 266 sequences with ten or more hits to avoid overrepresentation of gene families that experienced 267 multiple recent duplications. We used the remaining paralog pairs and their corresponding CDS 268 to calculate Ks values using the pipeline https://github.com/tanghaibao/bio-269 pipeline/tree/master/synonymous calculation (accessed November 29, 2014). The pipeline first

270 carries out pairwise protein alignment using default parameters in ClustalW (Larkin et al., 2007),

271 back-translates the alignment to a codon alignment using PAL2NAL (Suyama et al., 2006), and

272 calculates the synonymous substitution rate (Ks) using yn00 as part of the PAML package

273 (Yang, 2007), with Nei–Gojobori correction for multiple substitutions (Nei & Gojobori, 1986).

274 We obtained chromosome counts from the Chromosome Counts Database (CCDB;

275 http://ccdb.tau.ac.il accessed Oct 5, 2015). When multiple counts were reported from different

276 authors or different plants, we erred on the conservative estimate and recorded the lowest

277 number. For species that were not available in the database, we found counts from the literature

- 278 (e.g., Jepson eFlora http://ucjeps.berkeley.edu/eflora/ and Flora of North America
- 279 http://floranorthamerica.org) or by a consensus from species of the same genera.
- 280

281 **Results and Discussion**

282 *Phylogenetic results.* —Phylogenetic analyses showed strong support based on bootstrap and 283 SH-aLRT values for the monophyly of most Carvophyllales families (see Fig. S1). We found 284 strong support for the carnivorous clade including Droseraceae, Ancistrocladaceae, 285 Nepenthaceae, Drosophyllaceae, and Dioncophyllaceae. There was also strong support for this 286 clade as sister to a clade including Frankeniaceae, Tamaricaceae, Plumbaginaceae, and 287 Polygonaceae. However, relationships among the families showed more varied support. There 288 was weak support for the placement of other families relative to other early diverging 289 Caryophyllales (see Fig. S1). There was strong support for Caryophyllaceae sister to

- 290 Amaranthaceae. There was very weak support for Aizoaceae sister to
- 291 Phytolaccaceae+Nyctaginaceae. As with previously published analyses, there was no support for
- the monophyly of Phytolaccaceae in the traditional sense (i.e., including Phytolaccaceae s.s.,
- 293 Petiveriaceae, and *Agdestis*; APG IV) and very weak support for the placement of Sarcobataceae.
- 294 There was also weak support for the relationships among Limeaceae, Molluginaceae, and the
- 295 Portulacineae. Many of these relationships have been found to be strongly supported but
- conflicting in different analyses (Brockington et al., 2009; Soltis et al., 2011; Yang et al., 2015;
- 297 Smith *et al.*, 2015; Walker *et al.*, 2017). Here, we focused less on the systematic resolution
- 298 within the Caryophyllales and instead examine the potential relationship of diversification and
- 299 climate occupancy shifts to WGDs. Therefore, we placed more emphasis on including more taxa
- 300 over that of more gene regions (i.e., transcriptomes) at the cost of more missing data. Confident
- 301 resolution of many of the systematic relationships will require genomic and transcriptomic
- 302 sampling, as well as more thorough taxon sampling (Yang *et al.*, submitted).
- 303

304 <u>Climate occupancy reconstruction results.</u> —We performed climate occupancy ancestral
 305 reconstruction analyses on the phylogeny of 2,843 taxa that included taxa with at least three
 306 sampled geographic coordinates (Figs. 1-3). We conducted these analyses for visualization and

- 307 for comparison with diversification and WGD results (see below). Results for individual
- 308 bioclimatic variables and principal components can be found in Figs. S2-S4. Bioclimatic variable

309 1 (mean annual temperature, Fig. 1) showed that there are several strong phylogenetic patterns of 310 clades with preferences for colder or warmer regions. For example, Polygonaceae, 311 Caryophyllaceae, and Montiaceae each are dominated by taxa with preferences for cold 312 environments, although each also contains early-diverging taxa with preferences to warm 313 environments. In contrast, taxa inhabiting warm environments predominate in Cactaceae, 314 Amaranthaceae, Aizoaceae, the carnivorous clade (Droseraceae, Drosophyllaceae, 315 Nepenthaceae, Ancistrocladaceae, Dioncophyllaceae), and the phytolaccoid clade 316 (Nyctaginaceae, Phytolaccaceae, Petiveriaceae, Sarcobataceae, and Agdestis). Bioclimatic 317 variable 12 (mean annual precipitation) showed a relatively consistent pattern of relatively dry to 318 intermediately wet clades throughout the group. Indeed, only a few clades inhabiting wet 319 ecosystems (in this case, the wet tropics) exist in the Caryophyllales, specifically small groups 320 within the carnivorous clade, the phytolaccoids, early-diverging Polygonaceae, and other small 321 groups throughout the Caryophyllales. The principal component loadings are presented in Fig. 2 322 and Fig. S5. Principal component 1, PCA1, showed significant differentiation throughout the 323 Caryophyllales, as for example, early-diverging Polygonaceae vs the rest of Polygonaceae, early 324 diverging Caryophyllaceae vs the rest of Caryophyllaceae, phytolaccoids vs Aizoaceae, and 325 Portulacineae + relatives vs Cactaceae, to mention a few. These results generally reflect the 326 extensive ecological diversification throughout the group. They also reflect significant 327 diversification in the temperate regions of the world especially within the Carvophyllaceae and 328 Polygonaceae contrasted with extensive diversification in the succulent lineages (especially 329 Aizoaceae and Cactaceae) found in relatively dry and warm environments. 330 331 **Diversification.**—Significant shifts in diversification were detected in most major clades (Table 332 4, Fig. 1). The results from diversification analyses on the maximum likelihood tree and 333 bootstrap tree set were generally congruent with each other. However, there were discrepancies

334 (Fig. 1). The bootstrap set recovered many shifts in Polygonaceae, the carnivorous clade,

335 Caryophyllaceae, some shifts within Cactaceae, phytolaccoids, and Amaranthaceae.

336 Disagreements on the existence and placement of shifts are primarily within Portulacineae,

337 Aizoaceae, and Amaranthaceae. Overall, MEDUSA detected 27 increases in diversification rate

using the ML tree and 16 increases using the bootstrap trees. Given the relative lack of support of

339 some of the branches in the phylogeny, we find the MEDUSA results on the set of bootstrapped

12

trees to be the most conservative while the ML results are suggestive but not definitive ofdiversification shifts.

342

343 Duplications, diversification, and climate occupancy. —WGD analyses showed thirteen 344 putative WGDs that can be mapped to clades (i.e., involve more than 1 taxon in the dataset; 345 Table 3 and Figs. 1-3). Many of these were found in early diverging lineages as opposed to 346 nested deep within families, though there are WGDs identified in Amaranthus and Claytonia. 347 We also found evidence of nested WGDs as within the phytolaccoids and Portulacineae. In 348 addition to these deeper WGDs, there were several more recent WGDs that were present in Ks 349 plots but could not be mapped to a clade (Yang *et al.*, submitted). By sampling more extensively, 350 Yang et al. (submitted) and Walker et al. (2017) found additional WGD events within the 351 Caryophyllales. We will surely find additional WGDs events in other lineages as more effort is 352 placed on denser taxon sampling using genomes and transcriptomes. We did not explore WGDs 353 that could only be mapped to terminal branches as we could not verify these phylogenetically. 354 Further discussion of specific results related to the WGDs themselves can be found in Yang et al. 355 (submitted) and Walker et al. (2017).

356 To better examine whether WGDs coincide with diversification rate shifts, increases and 357 decreases, or notable changes in climate tolerance, we mapped WGDs onto the large phylogenies 358 and summarized the number of species and climate occupancy information for each clade 359 (Tables 3-4, Figs. 1-3). Some WGD events were associated with synchronous diversification 360 events. For example, within Nyctaginaceae, a WGD event occurs on the same branch (leading to 361 Tribe Nyctagineae; Douglas & Spellenberg, 2010) as an increase in diversification rate in both 362 the ML tree and the bootstrapped dataset (Fig. 1, dup:1 div:n). These events were also associated 363 with a shift in life history and niche from an ancestral woody habit in the tropics to the largely 364 herbaceous, arid-adapted temperate Nyctagineae. This was also the case for Amaranthus (Fig. 1, 365 dup:5 div:x). Other coincident diversification and WGD events in the Droseraceae and 366 Nepenthaceae were only supported by the ML tree. Although these correlated events may, in 367 fact, be accurate, we will reserve more comments for when these are more confidently resolved. 368 Other than these simultaneous shifts and one diversification shift at the base of the MRCA of 369 Nyctaginaceae+Cactaceae, all other shifts in diversification occured more recently than WGD 370 events. Several authors have suggested that this lagging pattern may be common at the broader

371 angiosperm scale (Schranz et al. 2015, Tank et al. 2015), though the expected distance of the 372 diversification shift from the WGD event was not specified (this is discussed more below). In the 373 results presented here, some diversification events occur shortly after the WGD event, such as 374 within the Amaranthaceae (dup: 6) and Portulacineae (dup: 4). For others, it is difficult to 375 determine whether the diversification events that occur after the WGD events are significantly 376 close to the WGD to warrant suggestion of an association (e.g., dup: 7, dup: 10, dup: 8). More 377 description of a model that would generate a null expectation would be necessary to determine 378 what is "close enough" (see discussion below).

379 Many of the other inferred lineage diversification rate shifts are associated with very 380 recent, rapid radiations within genera such as those documented within *Commicarpus* 381 (Nyctaginaceae), Dianthus (Caryophyllaceae), Cerastium (Caryophyllaceae), Arenaria 382 (Caryophyllaceae), and Salicornia (Amaranthaceae), to name a few (Table 4). Although 383 polyploids were reported in these clades, we were unable to pinpoint the phylogenetic location of any WGD with our current taxon sampling (e.g., Dianthus; Carolin, 1954; Weiss et al. 2002). 384 385 Increased sampling of transcriptomes and genomes will shed more light in these areas. While we 386 only find a few WGDs that coincide well with diversification rate shifts, it is important to note 387 that the uncertainty in the phylogenies makes it difficult to map anything but the strongest 388 diversification signals. This discrepancy can be seen in the difference between the number of 389 events supported by the ML analyses and those supported by the bootstrap analyses. It is possible 390 that additional sequence data will improve phylogenetic resolution and confidence, and that 391 consequently additional diversification events will emerge.

392 Equally interesting to the few WGD events associated directly with diversification are the 393 WGD events associated with general shifts in climate tolerance. WGDs in the Polygonaceae, 394 Caryophyllaceae, Montiaceae, and the Tribe Nyctagineae appear to be associated with movement 395 into colder environments (Figs. 1-2 and Figs. S2-S3). Species arising after the WGD within the 396 Amaranthaceae occupy wetter environments than the sister clade. The WGDs within the 397 carnivorous plants were also associated with shifts in environment as Nepenthaceae are found in 398 very wet environments and the Droseraceae are found in somewhat drier environments, at least 399 comparatively. However, in these cases, perhaps the development of the wide array of 400 morphologies associated with carnivory, apart from *Drosophyllum*, is more obviously associated 401 with the WGD (Walker *et al.*, 2017).

14

402 While these qualitative assessments suggest potential correlations of shift in the climate 403 occupied and WGDs, more specific and direct comparisons are necessary to quantify the extent 404 of the shifts. For many of the clades experiencing WGD, a direct comparison with a sister clade 405 is difficult because the sister may consist of a single species, another clade with WGD, or 406 another complication. For example, there are WGDs at the base of both Polygonaceae and 407 Plumbaginaceae as well as Nepenthaceae and Droseraceae. However, we made direct 408 comparison of five duplicated lineages (see Fig. 3) in both means (i.e., character contrasts 409 between sister clades) and variances (rate of Brownian motion) of climatic variables. In each 410 case, the duplicated lineage occupied a colder mean annual temperature. This was also the case 411 with the nested WGDs of Portulacineae and the Tribe Nyctagineae. Of course, we are not 412 suggesting that all WGDs are associated with a shift to a colder climate. While such a pattern 413 may exist in some groups such as Caryophyllaceae, we emphasize the observation that there is a 414 shift in the climate occupied rather than the direction of the shift. Mean annual precipitation is 415 not as clear with some clades occupying a higher precipitation and some occupying lower 416 precipitation. Perhaps the best summary of climatic niche is the principal components of all the 417 climatic variables. Here, while the shift in units is less easily interpreted, duplicated clades 418 occupied different niches than sister lineages. This supports the hypothesis that WGD events are 419 associated with adaptations. Here, many of these adaptations are associated with shifts in 420 climatic niches. This necessitates further examination in other angiosperm clades to investigate 421 how general these results are.

The rates of niche evolution show more complicated patterns. While some clades, such as the Portulacineae, showed significant increase in a rate of niche evolution as compared to the sister clade (e.g., MAT), no clear pattern emerged across all comparisons. There were other shifts in rate such as with MAT and MAP in the Nyctaginaceae and Montiaceae, but these were not as strong as the pattern of climate occupancy itself discussed above.

With each of these patterns presented here, it is important to consider them in the context of uncertainty, both inherent in the biological processes that generate the phylogeny and in the analyses associated with large scale datasets. These large phylogenies and datasets allow for more thorough examination of the clades, but uncertainty makes precise mapping of weaker signals difficult. As mentioned above, both the mapping of diversification events and duplications demonstrate this. Furthermore, the comparisons of the sister clades for climatic

niche analyses assumes accurate identification of sister lineages. Increasing taxon sampling may
help, but additional sequence data and specimen data for phylogenetic analyses, WGD mapping
analyses, and climate niche characterization will surely improve our precision in these
investigations.

437 What emerges from these analyses of WGD, diversification, and climate occupancy? It 438 would appear as though, perhaps not unexpectedly, the patterns are complex and mixed. Some 439 WGD are associated directly with diversification events, some WGD are associated with shifts in 440 climate tolerance, some WGD are coincident with shifts in rates of niche evolution, and still 441 other WGD are associated with known adaptations (carnivory, habit shifts associated with 442 montane habitats, etc.). Some diversification shifts follow WGD events. However, it is unclear 443 whether these events are linked or correlated and, if so, if they are correlated more with diversification than an additional adaptation or other evolutionary pattern or process. As data 444 445 increase in these groups and as confidence increases in the phylogenetic relationships as well as the placement of both diversification and WGD events, we will be able to better address these 446 447 questions. However, at least for the Caryophyllales, it does not appear as though diversification 448 is tightly linked with WGD. Instead, for the clades that can be tested, we find shifts in climate 449 occupancy correspond well to WGD.

450

451 Suggestions for moving forward. —WGD are almost certainly one of the dominant processes 452 that contribute to major evolutionary events within plant lineages. This may be in the form of 453 increased diversification, development of novel traits, adaptation to new environments, and many 454 other events (e.g., Schubert and Vu, 2016; Clavijo et al. 2017). However, for several reasons, 455 these events (i.e., WGD and other evolutionary events) may not occur simultaneously. In fact, 456 there may be little to no expectation for the events to occur simultaneously (e.g., Donoghue, 457 2005; Schranz et al. 2012; Donoghue & Sanderson, 2015; Tank et al., 2015; Dodsworth et al. 458 2016). In any case, more precise expectations and null models need to be developed to allow for 459 reasonable tests of the correlations among these events. For example, there may be shifts in 460 diversification that follow a WGD, but is it close enough, or frequent enough to infer that the two 461 events are related? Is correlation possible or identifiable if, as is expected, intervening lineages 462 have gone extinct? These questions would benefit from simulation studies where the true 463 correlation pattern is known. Furthermore, more precise connections should be made to the

464 biology of speciation and genome WGDs to better determine why, specifically, WGDs would be 465 expected to correspond with any diversification pattern instead of adaptations, which may or may 466 not correspond with increases or decreases in speciation. While still challenging, investigating 467 the fate of and patterns of selection within individual genes (e.g., subfunctionalization and 468 neofunctionalization) may shed light into the genomic basis of post-WGD and possibly allow for 469 more concrete expectations for diversification. With the availability of genomes and 470 transcriptomes, this is now beginning to become a possibility (e.g., Brockington et al., 2015, 471 Walker *et al.*, 2017). Only when these suggestions are linked to more specific biological 472 hypotheses will we be able to better understand the ultimate impact of WGD in plant evolution.

473

474 Acknowledgements

475 We thank Caroline Parins-Fukuchi for discussion of the project and comments on the

476 manuscript. We thank Gregory Stull, Oscar Vargas, Ning Wang, Sonia Ahluwalia, Jordan Shore,

477 Lijun Zhao, Alex Taylorm, and Drew Larson for helpful comments on the manuscript. The

- 478 authors thank Hilda Flores, Helga Ochoterena, Tom Wendt and the staff at the Plant Resources
- 479 Center at the University of Texas at Austin, the Lyon Arboretum, David Anderson, John
- 480 Brittnacher, Anna Brunner, Joseph Charboneau, Arianna Goodman, Heather-Rose Kates, Patricia
- 481 Herrnández Ledesma, Lucas Majure, Nidia Mendoza, Michael Powell, Rick Ree, Carl Rothfels,
- 482 Flora Samis, Jeffrey Sanders, Elizabeth Saunders, Rich Spellenberg, Greg Stull, Mats Thulin,

483 Erin Tripp, and Sophia Weinmann for help with obtaining material. We thank the Cambridge

- 484 University Botanic Gardens for growing material for this study. This work was supported by
- 485 NSF DEB awards 1352907 and 1354048.
- 486

487 Author contributions

- 488 S.A.S., J.F.W., Y.Y., M.J.M., and S.F.B. designed research. C.P.D, R. B., N.L., and N.A.D.
- collected data. S.A.S., J.W.B., and Y.Y. analyzed the data. S.A.S. led the writing. All authorsread and contributed to the manuscript.
- 491
- 492 **References**
- 493 Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G,

494 Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species

495	diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, USA
496	106: 13410–13414.
497	Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group
498	classification for the orders and families of flowering plants: APG IV. Botanical Journal
499	of the Linnean Society 181: 1-20.
500	Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore
501	MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world's major
502	succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108:
503	8379–8384.
504	Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plants genomes.
505	Current Opinion in Plant Biology 15: 140–146.
506	Barker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: Analyses of
507	the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis
508	and other Brassicales. Genome Biology and Evolution 1: 391-399.
509	Barker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: The evolutionary
510	importance of polyploidy after a century of study. Am. J. Bot. 103: 1139-1145.
511	Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re-revisited.
512	American Journal of Botany 97: 1296–1303.
513	Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004.
514	Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521-536.
515	Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis
516	DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses
517	on pollination biology and perianth differentiation in the core Caryophyllales.
518	International Journal of Plant Sciences 170: 627–643.
519	Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK,
520	Moore MJ, Smith SA. 2015. Lineage-specific gene radiations underlie the evolution of
521	novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170–1180.
522	Brown JW, Walker JF, Smith SA. 2017. phys: Phylogenetic tools for Unix. Bioinformatics
523	btx063.
524	Burnham KP, Anderson DR. 2003. Model Selection and Multimodel Inference: A Practical
525	Information-Theoretic Approach. Springer, New York.

Carolin RC. 1954. Stomatal size, density and morphology in the genus Dianthus. Kew Bulletin

527	9: 251-258.
528	Cevallos-Ferriz SRS, Estrada-Ruiz E, Perez-Hernandez BR. 2008. Phytolaccaceae
529	infructescence from Cerro del Pueblo formation, upper Cretaceous (late Campanian),
530	Coahuila, Mexico. American Journal of Botany 95: 77-83.
531	Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ,
532	Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the Angiosperm Phylogeny
533	Group classification for the orders and families of flowering plants: APG IV. Botanical
534	Journal Linnean Society 181: 1-20.
535	Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P,
536	Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu FH,
537	McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L,
538	Duncan O, Trösch J, Yu G, Bolser DM, Namaati G, Kerhornou A, Spannagl M,
539	Gundlach H, Haberer G, Davey RP, Fosker C, Palma FD, Phillips A, Millar AH,
540	Kersey PJ, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD. 2017. An
541	improved assembly and annotation of the allohexaploid wheat genome identifies
542	complete families of agronomic genes and provides genomic evidence for chromosomal
543	translocations. Genome Research doi: 10.1101/gr.217117.116
544	Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Review Genetics
545	6: 836–846.
546	Degreef JD. 1997. Fossil Aldrovanda. Carnivorous Plant Newsletter 26: 93-97. Available at:
547	http://www.carnivorousplants.org/cpn/articles/CPNv26n3p93_97.pdf%5Cnpapers3://public
548	ation/uuid/A61A0327-61CF-4683-BF3F-EE5AFFD69F49.
549	Dodsworth S, Chase M, Leitch A. 2016. Is post-polyploidization diploidization the key to the
550	evolutionary success of angiosperms. Botanical Journal of the Linnean Society 180:
551	1095–8339.
552	Dohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H,
553	Weisshaar B, Himmelbauer H. 2012. Palaeohexaploid ancestry for Caryophyllales
554	inferred from extensive gene-based physical and genetic mapping of the sugar beet

555 genome (Beta vulgaris). *The Plant Journal* **70:** 528–40.

- Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons
 from plant phylogeny. *Paleobiology* 31:77-93.
 Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant
 diversification. *New Phyt.* 207:260-274.
 Douglas N, Spellenberg R. 2010. A new tribal classification of Nyctaginaceae. *Taxon* 59: 905–
- 561 910. 562 Devie II Devie II 1987 A rapid DNA isolation procedure for small quantities of fresh loof
- 562 Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf
 563 tissue. *Phytochemical Bulletin* 19: 11-15.
- 564 Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der
- 565 JP, Wafula EK, Tang M, Hofberger JA. 2015. The butterfly plant arms-race escalated
- 566 by gene and genome duplications. *Proceedings of the National Academy of Sciences*,
- 567 USA **112:** 8362–8366.
- 568 Estep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG, Hodkinson TR, Layton DJ,
- Malcomber ST, Pasquet R, Kellogg EA. 2014. Allopolyploidy, diversification, and the
 Miocene grassland expansion. *Proceedings of the National Academy of Sciences of the* United States of America 111: 15149–15154.
- 572 Friis EM, Crane P, Pedersen KR. 2011. Early Flowers and Angiosperm Evolution. Cambridge.
- 573 Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
- algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
 performance of PhyML 3.0. *Systematic Biology* 59: 307–321.
- Huang, CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Hong Ma. 2016. Multiple Polyploidization
 Events across Asteraceae with Two Nested Events in the Early History Revealed by
 Nuclear Phylogenomics. *Mol Biol Evol.* 33: 2820-2835.
- Jordan GJ, Macphail MK. 2003. A middle-late Eocene inflorescence of Caryophyllaceae from
 Tasmania, Australia. *American Journal of Botany* 90: 761–768.
- 581 Kellogg EA. 2016. Has the connection between polyploidy and diversification actually been
 582 tested? *Current opinion in plant biology* 30: 25–32.
- 583 Laurent S, Salamin N, Robinson-Rechavi M. 2017. No evidence for the radiation time lag
- model after whole genome duplications in Teleostei. (A von Haeseler, Ed.). *PloS one* 12:
 e0176384.
- 586 Levin DA. 1983. Polyploidy and novelty in flowering plants. *American Naturalist* 122: 1–25.

587	Levin DA. 2002. The Role of Chromosomal Change in Plant Evolution. Oxford University
588	Press: New York.
589	Li, Weizhong, and Adam Godzik. 2006. Cd-Hit : A Fast Program for Clustering and
590	Comparing Large Sets of Protein or Nucleotide Sequences. Bioinformatics Applications
591	Note 22 (13): 1658–59. doi:10.1093/bioinformatics/btl158.
592	McKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish
593	TJ, Pires JC, Stevenson DW, Leebens-Mack JH. 2016. A Phylogenomic Assessment
594	of Ancient Polyploidy and Genome Evolution across the Poales. Genome Biol. Evol. 8:
595	1150-1164.
596	Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP.
597	2011. Recently formed polyploid plants diversify at lower rates. Science 333: 1257.
598	Miller JS, Venable DL. 2000. Polyploidy and the evolution of gender dimorphism in plants.
599	Science 289: 2335–2338.
600	Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010. Phylogenetic analysis of 83
601	plastid genes further resolves the early diversification of eudicots. Proceedings of the
602	National Academy of Sciences, USA 107: 4623–4628.
603	Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and
604	nonsynonymous nucleotide substitutions. <i>Molecular Biology and Evolution</i> 3: 418–426.
605	Nichols DJ, Traverse A. 1971. Palynology, petrology, and depositional environments of some
606	early Tertiary lignites in Texas. Geoscience and Man 3: 37-48.
607	Ocampo G, Columbus T. 2010. Molecular phylogenetics of suborder Cactineae
608	(Caryophyllales), including insights into photosynthetic diversification and historical
609	biogeography. Am. J. Bot. 97: 1827-1847.
610	Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34:
611	401–437.
612	Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME,
613	Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting
614	macroevolutionary models to phylogenetic trees. <i>Bioinformatics</i> 30: 2216–2218.
615	Puttick MN, Clark J., Donoghue P. 2015. Size is not everything: rates of genome size
616	evolution, not C-value, correlate with speciation in angiosperms. Proc. Roy. Soc. B. 282:
617	20152289.

Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times

619	in the absence of a molecular clock. <i>Bioinformatics</i> 19: 301–302.
620	Schranz E, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and
621	diversification: the WGD Radiation Lag-Time Model. Current opinion in plant biology
622	15: 147–153.
623	Schubert I, Vu GTH. 2016. Genome Stability and Evolution: Attempting a Holistic View.
624	Trends in Plant Sciences 21: 749-757.
625	Schuster TM, Setaro SD, Kron KA. 2013. Age Estimates for the Buckwheat Family
626	Polygonaceae Based on Sequence Data Calibrated by Fossils and with a Focus on the
627	Amphi-Pacific Muehlenbeckia. Plos ONE 8(4): e61261.
628	Smith SA, Beaulieu JM, Donoghue MJ. 2009. Mega-phylogeny approach for comparative
629	biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary
630	Biology 9: 37.
631	Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. Understanding angiosperm
632	diversification using small and large phylogenetic trees. American Journal of Botany 98:
633	404–414.
634	Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in
635	flowering plants. Science 322: 86-89.
636	Smith SA, O'Meara BC. 2012. treePL: divergence time estimation using penalized likelihood
637	for large phylogenies. Bioinformatics 28: 2689-2690.
638	Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals
639	conflict, concordance, and gene duplications with examples from animals and plants.
640	BMC Evolutionary Biology 15: 150.
641	Soltis PS, Soltis DS. 2000. The role of genetic and genomic attributes in the success of
642	polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051–7057.
643	Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-
644	Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD. 2011. Angiosperm
645	phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704-730.
646	Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty:
647	Gottlieb's legacy. Philosophical Transactions of the Royal Society of London B:
648	Biological Sciences 369: 20130351.

649	Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
650	large phylogenies. Bioinformatics 30: 1312–1313.
651	Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O'toole E, Pellman D. 2006.
652	Genome-wide genetic analysis of polyploidy in yeast. Nature 443: 541.
653	Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence
654	alignments into the corresponding codon alignments. Nucleic Acids Research 34 (suppl
655	2): W609–W612.
656	Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa
657	EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification:
658	increased diversification rates often follow whole genome duplications. New Phytologist
659	207: 454–467.
660	Thulin M, Moore AJ, El-Seedi H, Larsson A, Christin P-A, Edwards EJ. 2016. Phylogeny
661	and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the
662	new family Corbichoniaceae. Taxon 65: 775–793.
663	Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V.
664	2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Botanical
665	Journal of the Linnean Society Linnean Society of London. 174:110-129.
666	Walker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017.
667	Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the
668	carnivorous Caryophyllales. bioRxiv: 115741.
669	Weiss H, Dobes C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and
670	hexaploid cytotypes between and within populations in Dianthus sect. Plumaria
671	(Caryophyllaceae). New Phyto. 156: 85-94.
672	Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009.
673	The frequency of polyploid speciation in vascular plants. Proceedings of the National
674	Academy of Sciences, USA 106: 13875–13879.
675	Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK-S, Carpenter EJ, Zhang Y,
676	Chen L, Yan Z, Xie Y, Sage RF. 2015. Dissecting molecular evolution in the highly
677	diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology
678	and Evolution 32: 2001–2014.

679	Yang Y, Moore M, Brockington S, Mikenas J, Olivieri J, Walker J, Smith S. submitted.
680	Improved Transcriptome Sampling Pinpoints 26 Paleopolyploidy Events In
681	Caryophyllales, Including Two Paleo-Allopolyploidy Events. <i>bioRxiv</i> : 143529.
682	Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and
683	Evolution 24: 1586–1591.
684	Zetter R, Hofmann CC, Draxler I, Durango de Cabrera J, Del MVergel M, Vervoorst F.
685	1999. A rich middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE
686	Tierra del Fuego province, Argentina. Abhandlungen der Geologischen Bundesanstalt
687	56: 439–460.
688	

24

689 Tables

- 690 **Table 1** Voucher information and GenBank accession numbers for newly reported plastid *matK*
- 691 sequences. Families follow APG IV (Angiosperm Phylogeny Group, 2016).

				NCBI
D 1	T	Voucher specimen	Collection	accession
Family	Taxon	(Herbarium acronym)	locality	number
Achatocarpaceae	Achatocarpus gracilis H.Walter	Silvia H. Salas Morales et al. 5608 (TEX)	Mexico: Oaxaca	KY952292
Achatocarpaceae	Phaulothamnus spinescens A.Gray	Michael J. Moore et al. 976 (OC)	United States: Texas	KY952477
Achatocarpaceae	Phaulothamnus spinescens A.Gray	William R. Carr 27176 (TEX)	United States: Texas	KY952478
Amaranthaceae	Allenrolfea occidentalis (S.Watson) Kuntze	Michael J. Moore 474 (OC)	United States: Texas	KY952314
Amaranthaceae	Alternanthera caracasana Kunth	Michael J. Moore 1808 (OC)	United States: Texas	KY952319
Amaranthaceae	Amaranthus cruentus L.	Michael J. Moore 356 (OC)	United States: Ohio (cultivated)	KY952320
Amaranthaceae	Amaranthus sp.	Michael J. Moore 1801 (OC)	United States: Texas	KY952321
Amaranthaceae	Amaranthus sp.	Michael J. Moore 2186 (OC)	United States: Ohio	KY952322
Amaranthaceae	Amaranthus sp.	Michael J. Moore 2187 (OC)	United States: Illinois	KY952323
Amaranthaceae	<i>Atriplex prosopidum</i> I.M.Johnst.	Hilda Flores Olvera et al. 1658 (MEXU)	Mexico: Coahuila	KY952340
Amaranthaceae	Atriplex sp.	Michael J. Moore 1689 (OC)	United States: Texas	KY952338
Amaranthaceae	Atriplex sp.	Michael J. Moore 1699 (OC)	United States: Texas	KY952339
Amaranthaceae	Celosia argentea L. var. plumosa	Michael J. Moore 359 (OC)	United States: Ohio (cultivated)	KY952359
Amaranthaceae	<i>Charpentiera ovata</i> Gaudich. var. <i>ovata</i>	Flora K. Samis 7 (Lyon Arboretum living collection, accession 2011.0034)	United States: Hawaii	KY952360
Amaranthaceae	Charpentiera tomentosa Sohmer var. maakuaensis Sohmer	Flora K. Samis 6 (Lyon Arboretum living collection, accession 88.0141)	United States: Hawaii	KY952361
Amaranthaceae	Chenopodium album L.	Michael J. Moore 344 (OC)	United States: Ohio	KY952362
Amaranthaceae	Gossypianthus lanuginosus (Poir.) Moq.	Michael J. Moore 1807 (OC)	United States: Texas	KY952408
Amaranthaceae	Guilleminea densa	Michael J. Moore et	Mexico:	KY952412

	(Humb. & Bonpl. ex Schult.) Moq.	al. 2445 (OC)	Chihuahua	
Amaranthaceae	Kali tragus (L.) Scop.	Michael J. Moore 453 (OC)	United States: Texas	KY952506
Amaranthaceae	Nototrichium divaricatum D.H.Lorence	Flora K. Samis 3 (Lyon Arboretum living collection, accession 96.0036 #3)	United States: Hawaii	KY952468
Amaranthaceae	Nototrichium humile Hillebr.	Flora K. Samis 2 (Lyon Arboretum living collection, accession 2001-0254)	United States: Hawaii	KY952469
Amaranthaceae	Suaeda jacoensis I.M.Johnst.	Hilda Flores Olvera et al. 1662 (MEXU)	Mexico: Coahuila	KY952514
Amaranthaceae	Suaeda jacoensis I.M.Johnst.	Michael J. Moore et al. 2617 (OC)	Mexico: Nuevo Leon	KY952515
Amaranthaceae	Suaeda mexicana (Standl.) Standl.	Hilda Flores Olvera et al. 1654 (MEXU)	Mexico: Coahuila	KY952516
Amaranthaceae	<i>Tidestromia lanuginosa</i> (Nutt.) Standl.	Michael J. Moore 1128 (OC)	United States: Texas	KY952521
Amaranthaceae	Zuckia brandegeei (A.Gray) S.L.Welsh & Stutz var. plummeri (Stutz & S.C.Sand.) Dorn	Joseph L. M. Charboneau 9672 (RM)	United States: Colorado	KY952528
Cactaceae	<i>Leuenbergeria</i> <i>quisqueyana</i> (Alain) Lodé	Flora K. Samis 11 (Lyon Arboretum living collection, accession 2000.0281)	United States: Hawaii	KY952473
Caryophyllaceae	<i>Moehringia macrophylla</i> (Hook.) Fenzl	Arianna Goodman 1 (OC)	United States: Oregon	KY952464
Caryophyllaceae	Paronychia lundellorum Torr. & A.Gray	William R. Carr 17607 (MEXU)	United States: Texas	KY952472
Caryophyllaceae	Saponaria officinalis L.	Michael J. Moore et al. 1819 (OC)	United States: Indiana	KY952507
Caryophyllaceae	Schiedea kaalae Wawra	Flora K. Samis 5 (Lyon Arboretum living collection, accession 92.0513)	United States: Hawaii	KY952509
Caryophyllaceae	<i>Spergularia salina</i> J.Presl & C.Presl	Michael J. Moore 1693 (OC)	United States: Texas	KY952512
Didiereaceae	<i>Alluaudia ascendens</i> (Drake) Drake	Michael J. Moore 1645	United States (cultivated)	KY952318
Dioncophyllaceae	<i>Triphyophyllum</i> <i>peltatum</i> (Hutch. & Dalziel) Airy Shaw	Carel C. H. Jongkind et al. 7136 (WAG)	Liberia	KY952524
Droseraceae	Drosera burmannii Vahl cv. Pilliga Red	Michael J. Moore 1814 (OC)	United States (cultivated)	KY952400
Droseraceae	Drosera peltata Thunb.	Michael J. Moore	Australia:	KY952401

		1817 (OC)	Tasmania	
			(cultivated)	
Droseraceae	Drosera regia Stephens	Michael J. Moore 1812 (OC)	United States (cultivated)	KY952402
Drosophyllaceae	Drosophyllum lusitanicum (L.) Link	Michael J. Moore 1816 (OC)	United States (cultivated)	KY952403
Frankeniaceae	<i>Frankenia gypsophila</i> I.M.Johnst.	Michael J. Moore et al. 1880 (OC)	Mexico: Nuevo Leon	KY952406
Microteaceae	Microtea debilis Sw.	Manuel Rimachi 11128 (TEX)	Peru: Loreto	KY952415
Montiaceae	Claytonia sibirica L.	Arianna Goodman 2 (OC)	United States: Oregon	KY952363
Montiaceae	Phemeranthus parviflorus (Nutt.) Kiger	Michael J. Moore et al. 2214 (OC)	United States: New Mexico	KY952479
Nyctaginaceae	Abronia angustifolia Greene	Michael J. Moore et al. 2063 (OC)	Mexico: Coahuila	KY952281
Nyctaginaceae	<i>Abronia angustifolia</i> Greene	Michael J. Moore et al. 896 (OC)	United States: New Mexico	KY952282
Nyctaginaceae	<i>Abronia bigelovii</i> Heimerl	Michael J. Moore et al. 704 (OC)	United States: New Mexico	KY952283
Nyctaginaceae	<i>Abronia elliptica</i> A.Nelson	Norman A. Douglas 2039 (DUKE)	United States: Arizona	KY952284
Nyctaginaceae	<i>Abronia fragrans</i> Nutt. ex Hook.	Billie L. Turner 20- 22 (SRSC)	United States: Texas	KY952285
Nyctaginaceae	<i>Abronia fragrans</i> Nutt. ex Hook.	Glenn Kroh et al. 3021 (TEX)	United States: Texas	KY952286
Nyctaginaceae	<i>Abronia macrocarpa</i> L.A.Galloway	Steve L. Orzell et al. 6492 (TEX)	United States: Texas	KY952287
Nyctaginaceae	<i>Abronia mellifera</i> Douglas ex Hook.	N. Elizabeth Saunders BP 19 (SIU)	United States: Wyoming	KY952288
Nyctaginaceae	<i>Abronia mellifera</i> Douglas ex Hook.	N. Elizabeth Saunders BP 20 (SIU)	United States: Wyoming	KY952289
Nyctaginaceae	Abronia nana S.Watson var. nana	Robert C. Sivinski et al. 3108 (NMC)	United States: Arizona	KY952290
Nyctaginaceae	Abronia umbellata Lam.	N. Elizabeth Saunders LU 45 (SIU)	United States: California	KY952291
Nyctaginaceae	<i>Acleisanthes acutifolia</i> Standl.	James Henrickson et al. 22916 (TEX)	Mexico: Coahuila	KY952293
Nyctaginaceae	<i>Acleisanthes</i> <i>angustifolia</i> (Torr.) R.A.Levin	Michael J. Moore 460 (OC)	United States: Texas	KY952294
Nyctaginaceae	<i>Acleisanthes</i> cf. <i>purpusiana</i> (Heimerl) R.A.Levin	James Henrickson 23026 (TEX)	Mexico: Coahuila	KY952309
Nyctaginaceae	Acleisanthes chenopodioides (A.Gray) R.A.Levin	Michael J. Moore et al. 733 (OC)	United States: Texas	КҮ952295

Nyctaginaceae	Acleisanthes crassifolia A.Gray	Michael J. Moore et al. 569 (OC)	United States: Texas	KY952296
Nyctaginaceae	Acleisanthes diffusa (A.Gray) R.A.Levin var. diffusa	Michael J. Moore et al. 624 (OC)	United States: Texas	KY952297
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. lanceolata	Michael J. Moore et al. 870 (OC)	United States: New Mexico	KY952298
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. lanceolata	Michael J. Moore et al. 903 (OC)	United States: Texas	KY952299
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. megaphylla (B.A.Fowler & B.L.Turner) Spellenb. & J.Poole	Alfred T. Richardson 1666 (TEX)	Mexico: Chihuahua	KY952300
Nyctaginaceae	Acleisanthes longiflora A.Gray	Michael J. Moore 435 (OC)	United States: Texas	KY952301
Nyctaginaceae	Acleisanthes longiflora A.Gray	Michael J. Moore et al. 571 (OC)	United States: Texas	KY952302
Nyctaginaceae	<i>Acleisanthes nana</i> I.M.Johnst.	Jackie Smith et al. 798 (TEX)	Mexico: San Luis Potosi	KY952303
Nyctaginaceae	Acleisanthes obtusa (Choisy) Standl.	Michael J. Moore et al. 984 (OC)	United States: Texas	KY952304
Nyctaginaceae	Acleisanthes palmeri (Hemsley) R.A.Levin	George S. Hinton 28620 (TEX)	MexicoNuevo Leon	KY952305
Nyctaginaceae	Acleisanthes parvifolia (Torr.) R.A.Levin	Michael J. Moore 452 (OC)	United States: Texas	KY952306
Nyctaginaceae	Acleisanthes purpusiana (Heimerl) R.A.Levin	James Henrickson 22709 (TEX)	Mexico: Coahuila	KY952307
Nyctaginaceae	Acleisanthes purpusiana (Heimerl) R.A.Levin	Billie L. Turner 6205 (TEX)	Mexico: Coahuila	KY952308
Nyctaginaceae	Acleisanthes undulata (B.A.Fowler & B.L.Turner) R.A.Levin	James Henrickson 23195 (TEX)	Mexico: Coahuila	KY952310
Nyctaginaceae	Acleisanthes wrightii (A.Gray) Benth. & Hook.	Michael J. Moore et al. 620 (OC)	United States: Texas	KY952311
Nyctaginaceae	Allionia choisyi Standl.	Norman A. Douglas 2187 (DUKE)	Mexico: Coahuila	KY952315
Nyctaginaceae	Allionia incarnata L.	Michael J. Moore et al. 1352 (OC)	Mexico: Nuevo Leon	KY952316
Nyctaginaceae	Allionia sp.	Michael J. Moore 424 (OC)	United States: Texas	KY952317
Nyctaginaceae	<i>Andradea floribunda</i> Allemão	André M. Amorim 2294 (NY)	Brazil	KY952324
Nyctaginaceae	<i>Andradea floribunda</i> Allemão	Jacquelyn Ann Kallunki 701 (NY)	Brazil	KY952325
Nyctaginaceae	Anulocaulis annulatus	Richard W.	United States:	KY952326

	(Coville) Standl.	Spellenberg 3162 (NMC)	California	
Nyctaginaceae	Anulocaulis eriosolenus (A.Gray) Standl.	James Henrickson et al. 23103 (TEX)	Mexico: Coahuila	KY952327
Nyctaginaceae	Anulocaulis eriosolenus (A.Gray) Standl.	Michael J. Moore et al. 611 (OC)	United States: Texas	KY952328
Nyctaginaceae	Anulocaulis hintoniorum B.L.Turner	Patricia Hernández Ledesma 52 (MEXU)	Mexico: Coahuila	KY952329
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. gypsogenus (Waterf.) Spellenb. & T.Wootten	Michael J. Moore 402 (OC)	United States: New Mexico	KY952330
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. howardii Spellenb. & T.Wootten	Thomas Wootten et al. s.n. (NMC)	United States: New Mexico	KY952331
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. lasianthus I.M.Johnston	Michael J. Moore et al. 610 (OC)	United States: Texas	KY952332
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore 493 (OC)	United States: Texas	KY952333
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore et al. 825 (OC)	United States: Nevada	KY952334
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore et al. 853 (OC)	United States: Arizona	KY952335
Nyctaginaceae	Anulocaulis reflexus I.M.Johnst.	Michael J. Moore et al. 242 (TEX)	Mexico: Chihuahua	KY952336
Nyctaginaceae	Anulocaulis reflexus I.M.Johnst.	Michael J. Moore 483 (OC)	United States: Texas	KY952337
Nyctaginaceae	<i>Boerhavia anisophylla</i> Torr.	Norman A. Douglas 2194 (DUKE)	Mexico: Durango	KY952341
Nyctaginaceae	Boerhavia ciliata Brandegee	Norman A. Douglas 2145 (DUKE)	United States: Texas	KY952342
Nyctaginaceae	<i>Boerhavia coccinea</i> Mill.	Michael J. Moore 366 (OC)	United States: New Mexico	KY952343
Nyctaginaceae	Boerhavia coulteri (Hook.f.) S.Watson var. palmeri (S.Watson) Spellenb.	Richard W. Spellenberg 13273 (NMC)	United States: Arizona	KY952344
Nyctaginaceae	<i>Boerhavia dominii</i> Meikle & Hewson	H. Smyth 42 (NY)	Australia: South Australia	KY952345
Nyctaginaceae	<i>Boerhavia gracillima</i> Heimerl	Richard W. Spellenberg 12447 (NMC)	United States: Texas	KY952347
Nyctaginaceae	<i>Boerhavia intermedia</i> M.E.Jones	Richard W. Spellenberg 13279	United States: Arizona	KY952348

		(NMC)		
Nyctaginaceae	<i>Boerhavia lateriflora</i> Standl.	Norman A. Douglas 2161 (DUKE)	Mexico: Sonora	KY952349
Nyctaginaceae	Boerhavia linearifolia A.Gray	Michael J. Moore et al. 581 (OC)	United States: Texas	KY952350
Nyctaginaceae	<i>Boerhavia purpurascens</i> A.Gray	Richard W. Spellenberg 13261 (NMC)	United States: Arizona	KY952351
Nyctaginaceae	Boerhavia repens L.	J. S. Rose 2	United States: Hawaii	KY952352
Nyctaginaceae	Boerhavia repens L.	Richard W. Spellenberg 7183 (NMC)	Yemen: Sana	KY952353
Nyctaginaceae	<i>Boerhavia</i> sp.	Erin Tripp et al. 4090 (OC)	Namibia	KY952346
Nyctaginaceae	<i>Boerhavia torreyana</i> (S.Watson) Standl.	Michael J. Moore et al. 633 (OC)	United States: Texas	KY952354
Nyctaginaceae	Bougainvillea campanulata Heimerl	Michael Nee 51257 (TEX)	Bolivia: Santa Cruz	KY952355
Nyctaginaceae	<i>Bougainvillea glabra</i> Choisy	Michael J. Moore 538 (OC)	United States: Ohio (cultivated)	KY952356
Nyctaginaceae	Bougainvillea spinosa (Cav.) Heimerl	J. Saunders et al. 3371 (TEX)	Argentina: San Juan	KY952357
Nyctaginaceae	<i>Bougainvillea stipitata</i> Griseb.	Michael Nee 50723 (TEX)	Bolivia: Santa Cruz	KY952358
Nyctaginaceae	<i>Colignonia glomerata</i> Griseb.	Michael Nee 52523 (NY)	Bolivia	KY952364
Nyctaginaceae	Colignonia scandens Benth.	Martin Grantham 63 (SFBG living collection, accession 1996-0202)	Ecuador	KY952365
Nyctaginaceae	<i>Commicarpus ambiguus</i> Meikle	Mats Thulin 11015 (UPS)	Somalia: Sanaag	KY952366
Nyctaginaceae	<i>Commicarpus arabicus</i> Meikle	Mats Thulin et al. 9294 (UPS)	Yemen: Taizz	KY952367
Nyctaginaceae	<i>Commicarpus arabicus</i> Meikle	Richard W. Spellenberg 7217 (NMC)	Yemen: Ibb	KY952368
Nyctaginaceae	<i>Commicarpus arabicus</i> Meikle	Richard W. Spellenberg 7297 (NMC)	Yemen: Ibb	KY952369
Nyctaginaceae	<i>Commicarpus australis</i> (Meikle) Govaerts	Richard W. Spellenberg et al. 9469 (NMC)	Australia: Western Australia	KY952370
Nyctaginaceae	<i>Commicarpus boissieri</i> (Heimerl) Cufod.	Mats Thulin 11423 (UPS)	Oman: Dhofar	KY952371
Nyctaginaceae	<i>Commicarpus boissieri</i> (Heimerl) Cufod.	Carl J. Rothfels et al. 4331	Oman: Ash Sharqiyah	KY952373
Nyctaginaceae	Commicarpus	Patricia Hernández	Mexico: Baja	KY952372

	brandegeei Standl.	Ledesma 55 (MEXU)	California Sur	
Nyctaginaceae	<i>Commicarpus coctoris</i> N.A.Harriman	Richard W. Spellenberg et al. 12883 (NMC)	Mexico: Oaxaca	KY952374
Nyctaginaceae	<i>Commicarpus</i> <i>commersonii</i> (Baill.) Cavaco	Mats Thulin et al. 11836 (UPS)	Madagascar: Toliara	KY952380
Nyctaginaceae	<i>Commicarpus decipiens</i> Meikle	Erin Tripp et al. 4127 (NMC)	Namibia	KY952375
Nyctaginaceae	<i>Commicarpus</i> grandiflorus (A.Rich.) Standl.	Mats Thulin et al. 9311 (UPS)	Yemen: Taizz	KY952376
Nyctaginaceae	Commicarpus greenwayi Meikle	Mats Thulin 606 (UPS)	Tanzania: Iringa	KY952377
Nyctaginaceae	Commicarpus helenae (Roem. & Schult.) Meikle	Richard W. Spellenberg et al. 7504 (NMC)	Yemen: Dhamar	KY952378
Nyctaginaceae	Commicarpus hiranensis Thulin	Mats Thulin et al. 11225 (UPS)	Ethiopia: Harerge	КҮ952379
Nyctaginaceae	<i>Commicarpus mistus</i> Thulin	Mats Thulin et al. 9786 (UPS)	Yemen: Mahrah	KY952381
Nyctaginaceae	Commicarpus parviflorus Thulin	Mats Thulin 6318 (UPS)	Somalia: Banaadir	KY952382
Nyctaginaceae	<i>Commicarpus</i> <i>pedunculosus</i> (A.Rich.) Cufod.	Mats Thulin 1301 (UPS)	Ethiopia: Arussi	KY952383
Nyctaginaceae	<i>Commicarpus</i> <i>plumbagineus</i> (Cav.) Standl.	Mats Thulin 10747 (UPS)	Somalia: Togdheer	KY952384
Nyctaginaceae	<i>Commicarpus</i> <i>plumbagineus</i> (Cav.) Standl.	Mats Thulin et al. 11330 (UPS)	Ethiopia: Harerge	KY952385
Nyctaginaceae	<i>Commicarpus</i> <i>plumbagineus</i> (Cav.) Standl.	Richard W. Spellenberg et al. 7374 (NMC)	Yemen: Ta'izz	KY952386
Nyctaginaceae	Commicarpus praetermissus N.A.Harriman	Richard W. Spellenberg et al. 12905 (NMC)	Mexico: Michoacán	KY952387
Nyctaginaceae	<i>Commicarpus reniformis</i> (Chiov.) Cufod.	Mats Thulin 4200 (UPS)	Somalia: Sool	KY952388
Nyctaginaceae	Commicarpus reniformis (Chiov.) Cufod.	Mats Thulin et al. 8337 (UPS)	Yemen: Hadramaut	KY952389
Nyctaginaceae	Commicarpus scandens (L.) Standl.	Michael J. Moore 1127 (OC)	United States: Texas	KY952390
Nyctaginaceae	<i>Commicarpus scandens</i> (L.) Standl.	Richard W. Spellenberg et al. 12887 (NMC)	Mexico: Puebla	KY952391
Nyctaginaceae	<i>Commicarpus sinuatus</i> Meikle	Mats Thulin 10737 (UPS)	Somalia: Woqooyi Galbeed	KY952392

2	1
3	L
-	

Nyctaginaceae	<i>Commicarpus sinuatus</i> Meikle	Richard W. Spellenberg 7144 (NMC)	Yemen: Sana'a	KY952393
Nyctaginaceae	Commicarpus sinuatus Meikle	Richard W. Spellenberg 7506 (NMC)	Yemen: Dhamar	KY952394
Nyctaginaceae	<i>Commicarpus</i> <i>squarrosus</i> (Heimerl) Standl. var. <i>squarrosus</i>	Erin Tripp et al. 4049 (NMC)	Namibia	KY952395
Nyctaginaceae	<i>Commicarpus</i> <i>stenocarpus</i> (Chiov.) Cufod.	Mats Thulin et al. 8062 (UPS)	Yemen: Hadramaut	KY952396
Nyctaginaceae	<i>Cuscatlania vulcanicola</i> Standl.	José L. Linares 12938 (MEXU)	El Salvador: Sonsonate	KY952397
Nyctaginaceae	<i>Cuscatlania vulcanicola</i> Standl.	José L. Linares 13440 (MEXU)	El Salvador: Sonsonate	KY952398
Nyctaginaceae	<i>Cyphomeris</i> <i>gypsophiloides</i> (M.Martens & Galeotti) Standl.	Michael J. Moore et al. 582 (OC)	United States: Texas	KY952399
Nyctaginaceae	<i>Grajalesia fasciculata</i> (Standl.) Mirand <i>a</i>	José L. Linares 13416 (MEXU)	El Salvador: Sonsonate	KY952409
Nyctaginaceae	<i>Guapira discolor</i> (Spreng.) Little	Richard W. Spellenberg 13294 (NMC)	United States: Florida	KY952410
Nyctaginaceae	<i>Guapira eggersiana</i> (Heimerl) Lundell	Scott Á. Mori 25542/40 (NY)	French Guiana	KY952411
Nyctaginaceae	<i>Mirabilis albida</i> (Walter) Heimerl	Norman A. Douglas 2035 (DUKE)	United States: Arizona	KY952416
Nyctaginaceae	<i>Mirabilis albida</i> (Walter) Heimerl	William R. Carr 11075 (TEX)	United States: Texas	KY952417
Nyctaginaceae	Mirabilis alipes (S.Watson) Pilz	Arnold Tiehm 13461 (TEX)	United States: Nevada	KY952418
Nyctaginaceae	Mirabilis bigelovii A.Gray var. retrorsa (A. Heller) Munz	James D. Morefield et al. 3780 (TEX)	United States: California	KY952419
Nyctaginaceae	<i>Mirabilis</i> cf. <i>glabrifolia</i> (Ortega) I.M.Johnst.	Michael J. Moore et al. 1244 (OC)	Mexico: San Luis Potosi	KY952428
Nyctaginaceae	Mirabilis cf. nesomii B.L.Turner	George S. Hinton 25567 (TEX)	Mexico: Nuevo Leon	KY952449
Nyctaginaceae	<i>Mirabilis coccinea</i> (Torr.) Benth. & Hook.f.	Norman A. Douglas 2133 (DUKE)	United States: Arizona	KY952420
Nyctaginaceae	Mirabilis coccinea (Torr.) Benth. & Hook.f.	Steven P. McLaughlin et al. 9354 (ARIZ)	United States: Arizona	KY952421
Nyctaginaceae	<i>Mirabilis comata</i> (Small) Standl.	Norman A. Douglas 2084 (DUKE)	United States: Arizona	KY952422
Nyctaginaceae	<i>Mirabilis decumbens</i> (Nutt.) Daniels	Richard W. Spellenberg et al. 4073 (TEX)	Mexico: Zacatecas	KY952423

2	2
э	2

Nyctaginaceae	Mirabilis donahooiana Le Duc	Alice Le Duc et al. 247 (TEX)	Mexico: Michoacán	KY952424
Nyctaginaceae	Mirabilis exserta Brandegee	Pedro Tenorio 10586 (MEXU)	Mexico	KY952425
Nyctaginaceae	Mirabilis gigantea (Standl.) Shinners	J. Quayle et al. 752 (TEX)	United States: Texas	KY952426
Nyctaginaceae	Mirabilis glabra (S.Watson) Standl.	Michael J. Moore et al. 674 (OC)	United States: New Mexico	KY952446
Nyctaginaceae	Mirabilis glabrifolia (Ortega) I.M.Johnst.	Guy Nesom et al. 7654 (TEX)	Mexico: Coahuila	KY952427
Nyctaginaceae	Mirabilis glabrifolia (Ortega) I.M.Johnst.	Michael J. Moore et al. 1325 (OC)	Mexico: Nuevo Leon	KY952429
Nyctaginaceae	Mirabilis gracilis (Standl.) LeDuc	Alice Le Duc et al. 71 (TEX)	Mexico: Jalisco	KY952430
Nyctaginaceae	<i>Mirabilis grandiflora</i> (Standl.) Standl.	EDL 1863 (MEXU)	Mexico	KY952431
Nyctaginaceae	<i>Mirabilis greenei</i> S.Watson	George E. Pilz 998 (TEX)	United States: California	KY952432
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford et al. 32449 (F)	China: Xizang (Tibet)	KY952433
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford et al. 41198 (F)	China: Xizang (Tibet)	KY952434
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford et al. 41435 (F)	China: Xizang (Tibet)	KY952435
Nyctaginaceae	Mirabilis hintoniorum Le Duc	Patricia Hernández Ledesma 118 (MEXU)	Mexico: Michoacán	KY952436
Nyctaginaceae	<i>Mirabilis jalapa</i> L.	Michael J. Moore s.n.	United States (cultivated)	KY952437
Nyctaginaceae	<i>Mirabilis laevis</i> (Benth.) Curran	Andrew C. Sanders et al. 29410 (TEX)	United States: California	KY952438
Nyctaginaceae	Mirabilis latifolia (A.Gray) Diggs, Lipscomb & O'Kennon	Victor L. Cory 24549 (GH)	United States: Texas	KY952439
Nyctaginaceae	Mirabilis linearis (Pursh) Heimerl	Billie L. Turner 21- 854 (TEX)	United States: Texas	KY952440
Nyctaginaceae	Mirabilis linearis (Pursh) Heimerl var. decipiens (Standl.) S.L.Welsh	Michael J. Moore et al. 1984 (OC)	Mexico: Coahuila	KY952441
Nyctaginaceae	Mirabilis longiflora L.	Michael J. Moore et al. 1230 (OC)	Mexico: San Luis Potosi	KY952442
Nyctaginaceae	Mirabilis longiflora L. var. wrightiana (A.Gray ex Britton & Kearney) Kearney & Peebles	Alice Le Duc 185 (TEX)	United States: New Mexico	KY952443
Nyctaginaceae	Mirabilis melanotricha	Michael J. Moore et	Mexico: San	KY952444

2	3
2	5

	(Standl.) Spellenb.	al. 1191 (OC)	Luis Potosi	
Nyctaginaceae	Mirabilis melanotricha (Standl.) Spellenb.	Norman A. Douglas 2067 (DUKE)	United States: New Mexico	KY952445
Nyctaginaceae	Mirabilis multiflora (Torr.) A.Gray	Michael J. Moore 1110 (OC)	United States: Texas	KY952447
Nyctaginaceae	Mirabilis multiflora (Torr.) A.Gray	Norman A. Douglas 2037 (DUKE)	United States: Arizona	KY952448
Nyctaginaceae	Mirabilis nesomii B.L.Turner	Michael J. Moore et al. 2179 (NMC)	Mexico: Nuevo Leon	KY952450
Nyctaginaceae	<i>Mirabilis nesomii</i> B.L.Turner	Michael J. Moore et al. 2643 (NMC)	Mexico: Nuevo Leon	KY952451
Nyctaginaceae	Mirabilis nyctaginea (Michx.) MacMill.	William R. Carr 14590 (TEX)	United States: Texas	KY952452
Nyctaginaceae	Mirabilis oligantha (Standl.) Standl.	José L. Panero 2816 (MEXU)	Mexico: Baja California	KY952453
Nyctaginaceae	Mirabilis oxybaphoides (A.Gray) A.Gray	George S. Hinton 25572 (TEX)	Mexico: Nuevo Leon	KY952454
Nyctaginaceae	Mirabilis polonii Le Duc	Alice Le Duc 259 (MEXU)	Mexico: Nuevo Leon	KY952455
Nyctaginaceae	<i>Mirabilis pringlei</i> Weath.	Alice Le Duc et al. 63 (TEX)	Mexico: Jalisco	KY952456
Nyctaginaceae	Mirabilis pudica Barneby	Arnold Tiehm 10971 (TEX)	United States: Nevada	KY952457
Nyctaginaceae	<i>Mirabilis texensis</i> (J.M.Coult.) B.L.Turner	Billie L. Turner 22- 417 (TEX)	United States: Texas	KY952458
Nyctaginaceae	Mirabilis triflora Benth.	Ramón Cuevas G. et al. 3415 (MEXU)	Mexico: Jalisco	KY952459
Nyctaginaceae	Mirabilis urbani Heimerl	Mark Fishbein et al. 5107 (MEXU)	Mexico: Michoacan	KY952460
Nyctaginaceae	<i>Mirabilis violacea</i> (L.) Heimerl	Patricia Hernández Ledesma 63 (MEXU)	Mexico: Distrito Federal	KY952461
Nyctaginaceae	Mirabilis viscosa Cav.	Michael J. Moore et al. 1824 (NMC)	Mexico: San Luis Potosi	KY952462
Nyctaginaceae	Mirabilis viscosa Cav.	Patricia Hernández Ledesma 13 (MEXU)	Mexico	KY952463
Nyctaginaceae	Neea belizensis Donn.Sm.	Cyrus L. Lundell 17692 (TEX)	Guatemala: Petén	KY952465
Nyctaginaceae	<i>Neea cauliflora</i> Poepp. & Endl.	Schanke S15106 (NY)	Peru	KY952466
Nyctaginaceae	<i>Neea psychotrioides</i> Donn.Sm.	Robert L. Wilbur 63654	Costa Rica: Heredia	KY952467
Nyctaginaceae	<i>Nyctaginia capitata</i> Choisy	Michael J. Moore et al. 617 (OC)	United States: Texas	KY952470
Nyctaginaceae	Okenia hypogaea Schltdl. & Cham.	Thomas R. Van Devender et al. 92- 1069 (NMC)	Mexico: Sonora	KY952471
Nyctaginaceae	Pisonia aculeata L.	C. Martínez 1209 (TEX)	Mexico: Oaxaca	KY952483
Nyctaginaceae	Pisonia brunoniana	J. S. Rose 3	United States:	KY952484

	Endl.		Hawaii	
Nyctaginaceae	<i>Pisonia capitata</i> (S.Watson) Standl.	Ana L. Reina Guerrero et al. 2000- 193 (NMC)	Mexico: Sonora	KY952485
Nyctaginaceae	<i>Pisonia capitata</i> (S.Watson) Standl.	Thomas R. Van Devender et al. 2003- 17 (TEX)	United States: Arizona	KY952486
Nyctaginaceae	Pisonia macranthocarpa (Donn.Sm.) Donn.Sm.	Dennis E. Breedlove et al. 30361 (TEX)	Mexico: Chiapas	KY952487
Nyctaginaceae	<i>Pisonia sandwicensis</i> Hillebr.	Flora K. Samis 1 (Lyon Arboretum living collection)	United States: Hawaii	KY952488
Nyctaginaceae	Pisonia sylvatica Standl.	José L. Linares 13403 (MEXU)	El Salvador: Sonsonate	KY952489
Nyctaginaceae	<i>Pisonia umbellifera</i> (J.R.Forst. & G.Forst.) Seem.	Flora K. Samis 12 (Lyon Arboretum living collection, accession 68.0453)	United States: Hawaii	KY952490
Nyctaginaceae	Pisonia zapallo Griseb.	Israel G. Vargas et al. 2001 (TEX)	Bolivia: Santa Cruz	KY952491
Nyctaginaceae	Pisoniella arborescens (Lag. & Rodr.) Standl.	Alice Le Duc et al. 231 (NMC)	Mexico: Oaxaca	KY952492
Nyctaginaceae	Pisoniella arborescens (Lag. & Rodr.) Standl.	William R. Anderson 13522 (NY)	Mexico: Oaxaca	KY952493
Nyctaginaceae	Ramisia brasiliensis Oliv.	Jomar G. Jardim 1507 (NY)	Brazil	KY952495
Nyctaginaceae	Reichenbachia hirsuta Spreng.	Michael Nee 47813 (NY)	Bolivia	KY952496
Nyctaginaceae	Reichenbachia paraguayensis (D.Parodi) Dugand & Daniel	Maria Maguidaura Hatschbach 49218 (NY)	Brazil	KY952497
Nyctaginaceae	Salpianthus arenarius Bonpl.	Richard W. Spellenberg 12903 (NMC)	Mexico: Michoacán	KY952503
Nyctaginaceae	Salpianthus macrodontus Standl.	Thomas R. Van Devender et al. 91- 894 (NMC)	Mexico: Sonora	KY952504
Nyctaginaceae	Salpianthus purpurascens (Cav. ex Lag.) Hook. & Arn.	Richard W. Spellenberg et al. 12885 (NMC)	Mexico: Oaxaca	KY952505
Nyctaginaceae	Tripterocalyx carneus (Greene) L.A.Galloway	Norman A. Douglas 2060 (DUKE)	United States: New Mexico	KY952525
Nyctaginaceae	<i>Tripterocalyx crux-</i> <i>maltae</i> (Kellogg) Standl.	Arnold Tiehm et al. 12213 (TEX)	United States: Nevada	KY952526
Nyctaginaceae	<i>Tripterocalyx</i> <i>micranthus</i> (Torr.) Hook.	B. MacLeod et al. 751 (TEX)	United States: Colorado	KY952527
Phytolaccaceae	<i>Agdestis clematidea</i> Moc. & Sessé ex DC.	George S. Hinton 25023 (TEX)	Mexico: Tamaulipas	KY952313

Phytolaccaceae	<i>Gallesia integrifolia</i> (Spreng.) Harms	Michael Nee et al. 50072 (TEX)	Bolivia: Santa Cruz	KY952407
Phytolaccaceae	Hilleria latifolia (Lam.)	Michael Nee 33807	Bolivia: Santa	KY952413
Phytolaccaceae	H.Walter Petiveria alliacea L.	(TEX) Lucas C. Majure 4132 (FLAS)	Cruz United States: Florida	KY952476
Phytolaccaceae	Phytolacca americana L.	Michael J. Moore 342 (OC)	United States: Ohio	KY952480
Phytolaccaceae	Phytolacca icosandra L.	Mark H. Mayfield et al. 1001 (TEX)	Mexico: Guerrero	KY952481
Phytolaccaceae	Phytolacca octandra L.	Juan A. Encina et al. 1545 (TEX)	Mexico: Nuevo Leon	KY952482
Phytolaccaceae	Rivina humilis L.	Michael J. Moore 1129 (OC)	United States: Texas	KY952499
Phytolaccaceae	Seguieria aculeata Jacq.	Elsa Zardini et al. 22101 (TEX)	Paraguay	KY952510
Phytolaccaceae	Seguieria paraguariensis Morong	Michael Nee 48735 (TEX)	Bolivia: Santa Cruz	KY952511
Phytolaccaceae	<i>Trichostigma octandrum</i> (L.) H.Walter	Michael Nee 47094 (TEX)	Bolivia: Santa Cruz	KY952522
Phytolaccaceae	<i>Trichostigma</i> <i>peruvianum</i> (Moq.) H.Walter	Flora K. Samis 10 (Lyon Arboretum living collection, accession 94.0377)	United States: Hawaii	KY952523
Plumbaginaceae	Aegialitis annulata R.Br.	Christopher T. Martine 4043 (OC)	Australia: Western Australia	KY952312
Plumbaginaceae	<i>Limonium limbatum</i> Small	Michael J. Moore et al. 694 (OC)	United States: New Mexico	KY952414
Plumbaginaceae	Plumbago scandens L.	Michael J. Moore et al. 1828 (OC)	Mexico: San Luis Potosi	KY952494
Polygonaceae	Eriogonum longifolium Nutt. var. longifolium	Michael J. Moore 1796 (OC)	United States: Texas	KY952404
Polygonaceae	Eriogonum rotundifolium Benth.	Michael J. Moore 1769 (OC)	United States: New Mexico	KY952405
Polygonaceae	<i>Persicaria odorata</i> LaLlave	Flora K. Samis 9 (Lyon Arboretum living collection, accession 88.0439)	United States: Hawaii	KY952475
Polygonaceae	Persicaria sp.	Michael J. Moore 1177	United States: Ohio	KY952474
Polygonaceae	<i>Reynoutria japonica</i> (Houtt.) Ronse Decr.	Michael J. Moore 2188 (OC)	United States: Ohio	KY952498
Polygonaceae	<i>Rumex albescens</i> Hillebr.	Flora K. Samis 4 (Lyon Arboretum living collection, accession 2008-0119)	United States: Hawaii	KY952500
Polygonaceae	Rumex sp.	Michael J. Moore 1800 (OC)	United States: Texas	KY952501
Polygonaceae	Rumex sp.	Michael J. Moore	United States:	KY952502

		1805 (OC)	Texas	
Sarcobataceae	Sarcobatus vermiculatus	Michael J. Moore et	United States:	KY952508
Salcobalaceae	(Hook.) Torr.	al. 813 (OC)	Utah	K 1932308
Stegnospermataceae	Stegnosperma cubense	Silvia H. Salas	Mexico:	KY952513
Steghospermataceae	A.Rich.	Morales 2649 (NY)	Oaxaca	K1932313
Talinaceae	Talinum cf. aurantiacum	Michael J. Moore et	Mexico:	KY952517
Tailliaceae	Engelm.	al. 1985 (OC)	Coahuila	K1932317
		Flora K. Samis 8		
Talinaceae	Talinum fruticosum (L.)	(Lyon Arboretum	United States:	KY952518
Tannaceae	Juss.	living collection,	Hawaii	K1752510
		accession 2012.0008)		
Talinaceae	Talinum paniculatum	Michael J. Moore	United States	KY952520
Tannaceae	(Jacq.) Gaertn.	1789 (OC)	(cultivated)	K1752520
		Michael J. Moore et	Mexico:	
Talinaceae	<i>Talinum</i> sp.	al. 1974 (MEXU)	Coahuila	KY952519

692

693 **Table 2** List of primers used to amplify the *matK* sequences newly reported here. Within each

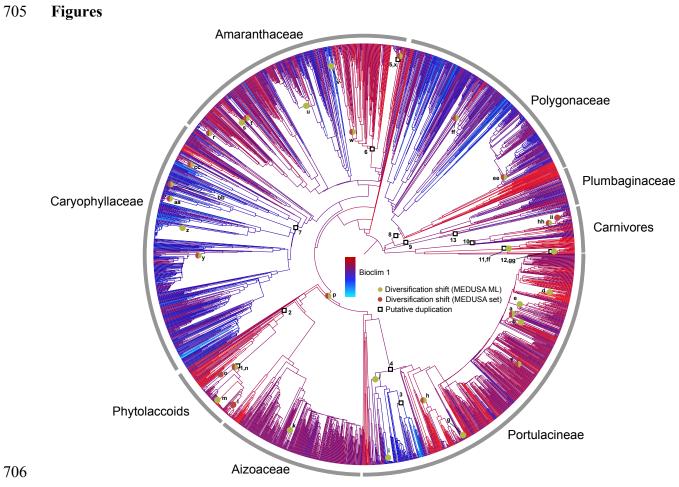
694 primer name, the number indicates the approximate position of the primer in nucleotides

695 downstream from the start of *matK*.

696

Primer name	Sequence $(5' \rightarrow 3')$	Notes
matK.300F.Car	TTG CAG TCA TTG TGG AAA TTC C	works broadly across most of Caryophyllales, but generally fails in Caryophyllaceae and Frankeniaceae
matK.1350R.Car	GCC AAA GTT CTA GCA CAA GAA AG	works broadly across most of Caryophyllales
matK.210F.Car	TTC GGC TAA TGA TTC TCA CCA A	designed specifically for Caryophyllaceae
matK.1345R.Car	GAG CCA AAG TTC TAG CAC AAG AA	designed specifically for Caryophyllaceae
matK.1355R.Car	TGT GTT TAC GAG CTA AAG TTC TAG	designed specifically for Caryophyllaceae
matK.300F.Fra	TCG CTG TCT TTG CTG AAA TTC C	designed specifically for Frankeniaceae

- 698 **Table 3** Summary of WGD events at identified clades with distance to diversification shift and
- 699 climate occupancy information. Numbers correspond to those in Figs. 1 and 2.

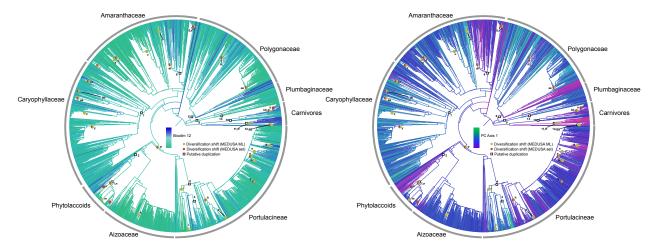

#	Putative WGD	Distance to diversification shift in nodes ML(BS)	Subtending species (sister)	Mean annual temp °C (sister)	Mean annual precip mm (sister)
	Tribe Nyctagineae within the				
1	Nyctaginaceae	0 (0)	123 (40)	17.49 (20.08)	482.9 (997.08)
					1007.58
2	Phytolaccoid clade	6 (6)	182 (407)	19.64 (18.36)	(452.47)

			/ >		
3	Claytonia	NA	38 (15)	5.28 (7.25)	790.5 (970.36)
4	Portulacineae	1 (1)	1600 (38)	16.19 (19.35)	699.87 (736.42)
5	Amaranthus	0 (0)	28 (1)	16.27 (27.09)	797.74 (117.63)
6	Tribe Gomphrenoideae within	7 (7)	172 (41)	17.01 (17.75)	971.05 (1290.5)
6	Amaranthaceae	7 (7)	172 (41)	17.91 (16.65)	871.95 (1289.5)
	in Caryophyllaceae (Alsinoideae + Caryophylloideae sensu Greenberg and				
7	Donoghue 2011)	9 (9)	793 (13)	11.44 (12.06)	761.43 (720.00)
8	Polygonaceae	13 (13)	670 (70)	16.3. (16.89)	1084.17 (794.28)
9	Plumbaginaceae	NA	70 (670)	16.89 (16.3)	794.28 (1084.17)
10	Droseraceae	8 (NA)	67 (108)	16.3 (19.08)	1280.57 (1491.72)
11	Nepenthaceae	4 (NA)	89 (19)	22.52 (20.05)	2170.5 (1611.63)
12	Ancistrocladaceae	0 (NA)	15 (3)	24.17 (25.6)	1899.13 (2882.4)
13	Tamaricaceae	NA	19 (3)	14.09 (16.21)	568.32 (469.61)

#	Family	Diversification shift	Mean shift (ML)	Mean shift (BS)
a	Cactaceae	Echinops	1.7957	2.2008
b	Cactaceae	within Gymnocalycium	6.9152	
c	Cactaceae	Gymnocalycium	-0.001	0.0555
d	Cactaceae	Hylocereus+Selenicereus	0.1175	
e	Cactaceae	<i>Rhipsalis+Schlumbergera+Echinocereus</i> +relatives	0.0514	
f	Cactaceae	Stenocactus	-0.057	-0.019
g	Anacampserotaceae	Anacampseros	0.2624	
h	Portulacaceae	Portulaca	0.0427	0.0447
i	Montiaceae	Montiopsis	0.9418	
j	Montiaceae	Montiaceae	0.0325	
k	Aizoaceae	Drosanthemum+Delosperma+Hereroa+relatives	0.1469	
1	Nyctaginaceae	Boerhavia		0.0747
m	Nyctaginaceae	Commicarpus	0.9642	
n	Nyctaginaceae	Tribe Nyctagineae	0.0484	0.0485
0	Nyctaginaceae	Abronia		-0.084
р	Nyctag.+Aizo+Cact.+relatives	Nyctag.+Aizo+Cact.+relatives	0.0168	0.019
r	Amaranthaceae	Salicornia	0.2732	0.1649
s	Amaranthaceae	Suaeda clade 1	0.1027	
t	Amaranthaceae	Suaeda clade 2	-0.036	-0.028
u	Amaranthaceae	Atriplex	0.0384	
v	Amaranthaceae	Corispermum	0.1186	
w	Amaranthaceae	Froelichia+Gomphrena+relatives	0.0217	0.0132
x	Amaranthaceae	Amaranthus	0.335	0.2049
у	Caryophyllaceae	Dianthus	0.0662	0.0409
z	Caryophyllaceae	Cerastium	0.7137	
aa	Caryophyllaceae	Arenaria	0.4606	0.425
bb	Caryophyllaceae	Moehringia	1.0971	0.995
сс	Caryophyllaceae	Schiedea	0.2339	0.2767
dd	Polygonaceae	Fagopyrum	-0.04	-0.034
ee	Polygonaceae	<i>Eriogonum</i> +relatives	0.0432	0.0364
ff	Nepenthaceae	within Nepenthes	0.042	
gg	Ancistrocladaceae	Ancistrocladus	0.1426	
hh	Droseraceae	within Drosera 1	0.2237	0.2076
ii	Droseraceae	within Drosera 2		0.1622

Table 4 Summary of diversification shifts. Letters correspond to those in Figs. 1 and 2.

706


Fig. 1 Chronogram of the Caryophyllales with putative WGD mapped along with identified 707

708 diversification shifts. Diversification analyses were performed on the maximum likelihood tree

709 (ML) as well as the bootstrap tree set (set) and those shifts that were identified in both groups are

- 710 shown. The branches are colored based on Bioclim variable 1 (Mean Annual Temperature).
- 711

713 Fig. 2 The chronograms and mapping of diversification and WGD are as in Fig. 1 (see caption

- for details). A) The branches are colored based on Bioclim variable 12 (Mean Annual
- 715 Precipitation), and B) based on the principal component analyses (PCA) axis 1.

716

bioRxiv preprint doi: https://doi.org/10.1101/132878; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

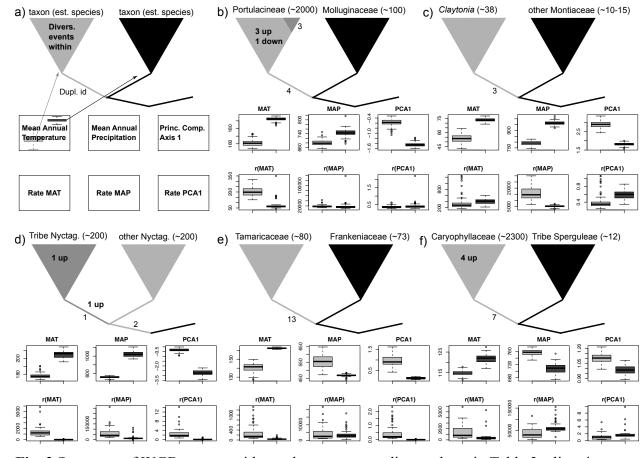


Fig. 3 Summary of WGD events, with numbers corresponding to those in Table 3, climatic
variables, and diversification shifts. Numbers along branches denote WGD, with the numbers
corresponding to those in Fig. 1 and Table 3. Numbers inside clades denote the number of
diversification rate shifts. Estimated species numbers are listed beside clade names. Box plots
show the values estimated (ancestral values are listed in the top rows, rates in the bottom rows)
for both the left and right clades across bootstrap samples. Clades shaded grey denote a WGD.
b), c), and d) have nested WGD.

42

Supporting Information

- Fig. S1 The cladogram with support mapped for the bootstrap replicates described in themethods.
- **Fig. S2** The chronograms and mapping of temperature variables (bioclimatic variables 13-19)
- that are not presented in Fig. 1.
- **Fig. S3** The chronograms and mapping of precipitation variables (bioclimatic variables 13-19)
- that are not presented in Fig. 2.
- Fig. S4 The chronograms and mapping of PCA axis 2 on the broader Caryophyllales.
- 733 Fig. S5 Principal component loadings for bioclimatic variables.