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 2 

Abstract 1 

SncRNA-Seq has become a routine for sncRNA profiling; however, software packages 2 

currently available are either exclusively for miRNA or piRNA annotation (e.g., miRDeep, 3 

miRanalyzer, Shortstack, PIANO), or for direct mapping of the sequence reads to the 4 

genome (e.g., Bowtie 2, SOAP and BWA), which tend to generate inaccurate counting 5 

due to repetitive matches to the genome or sncRNA homologs.  Moreover, novel 6 

sncRNA variants in the sequencing reads, including those bearing small overhangs or 7 

internal insertions, deletions or mutations, are totally excluded from counting by these 8 

algorithms, leading to potential quantification bias.  To overcome these problems, a 9 

comprehensive software package that can annotate all known small RNA species with 10 

adjustable tolerance towards small mismatches is needed. AASRA is based on our 11 

unique anchor alignment algorithm, which not only avoids repetitive or ambiguous 12 

counting, but also distinguishes mature miRNA from precursor miRNA reads.  13 

Compared to all existing pipelines for small RNA annotation, AASRA is superior in the 14 

following aspects: 1) AASRA can annotate all known sncRNA species simultaneously 15 

with the capability of distinguishing mature and precursor miRNAs; 2) AASRA can 16 

identify and allow for inclusion of sncRNA variants with small overhangs and/or internal 17 

insertions/deletions into the final counts; 3) AASRA is the fastest among all small RNA 18 

annotation pipelines tested.  AASRA represents an all-in-one sncRNA annotation 19 

pipeline, which allows for high-speed, simultaneous annotation of all known sncRNA 20 

species with the capability to distinguish mature from precursor miRNAs, and to identify 21 

novel sncRNA variants in the sncRNA-Seq sequencing reads. 22 
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 3 

Availability and Implementation: The AASRA software is freely available at 4 

https://github.com/biogramming/AASRA.  5 

  6 
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1. Introduction 1 

Given their critical regulatory roles, small noncoding RNAs (sncRNAs) have become a 2 

major focus in biomedical research [1, 2].  The next-gen sequencing technologies have 3 

allowed for the identification of hundreds thousands of sncRNAs, which have been 4 

categorized into many unique sncRNA species, e.g., microRNAs (miRNAs) [3-5], 5 

endogenous small interference RNAs (endo-siRNAs) [6, 7], PIWI-interacting RNAs 6 

(piRNAs) [8-11], small nucleolar RNAs (snoRNAs) [12], tRNA-derived small RNAs 7 

(tsRNAs) [13, 14], mitochondrial genome –encoded small RNAs (mitosRNAs) [15], etc.  8 

Among these sncRNAs, miRNAs and piRNAs have been studied extensively for the 9 

past decade largely because they were discovered first [8-11, 16].  To help 10 

investigators identify known and to predict novel miRNAs or piRNAs based on sncRNA 11 

next-gen sequencing (sncRNA-Seq) data, several software packages have been 12 

developed, e.g., ShortStack [17], miRanalyzer [18], miRDeep [19], PIANO [20], etc.  13 

Using these pipelines, researchers have not only validated previously reported 14 

sncRNAs, but also predicted sncRNAs based on their unique structural (e.g., length, 15 

stem-loop structure, etc.) and genomic features (e.g., repetitive sequences).  Currently, 16 

there are many sncRNA databases, e.g., miRBase [21], piRNABank [22], piRNA Cluster 17 

Database [23], Rfam [24-26], snoRNA-LBME-db [27], etc., where known and predicted 18 

sncRNAs (for some of the databases) are collected.  These databases serve as 19 

important resources because investigators can download these sncRNAs and use them 20 

as reference sequences to annotate their own sncRNA-Seq data for sncRNA 21 

identification and quantitation.  Currently, one way to annotate sncRNAs is to map the 22 
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sncRNA-Seq reads directly to the reference genome using Bowtie [28], SOAP [29] or 1 

BWA [30], followed by counting based on the genome feature file (e.g., GFF/GTF).  2 

Alternatively, the sncRNA-Seq reads can be aligned to the reference sncRNA 3 

sequences downloaded from the available databases, using sequence alignment 4 

software packages, e.g., miRDeep [19, 31].  Methods based on alignment to both the 5 

reference sncRNAs and the genome have also been developed, e.g., miRanalyzer [18, 6 

32].  While these pipelines perform well when used for annotating sncRNAs that are 7 

already collected in the databases, they can neither distinguish between mature and 8 

precursor miRNAs, nor count sncRNA variants with small overhangs and/or internal 9 

insertions, deletions or mutations.  In addition, there are no software packages that 10 

allow for simultaneous annotation of all known small RNA species.  To overcome these 11 

problems, we developed a new software package, which we named “AASRA” (for 12 

Anchor Alignment-based Small RNA Annotation).  AASRA is based on a novel 13 

alignment algorithm and can annotate sncRNAs of all known species collected in 14 

various sncRNA databases with a much higher mapping rate and accuracy, as well as 15 

speed, compared to all existing software packages currently available for sncRNA 16 

annotation.     17 

 18 

 19 

2. Materials and Methods 20 

2.1 Small noncoding RNA reference data  21 

The reference sncRNA datasets consists of mature and precursor miRNAs in the 22 
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miRBase (release 21) [21], tRNAs in the Genomic tRNA Database [33], piRNAs in the 1 

piRNABank [22] and piRNA Cluster Database [23], rRNAs, snoRNAs, snRNAs and 2 

mitochondrial RNAs in ENSEMBL (release 76) [34-36], and endo-siRNAs in DeepBase 3 

[37]. 4 

 5 

2.2 Simulation data 6 

Simulation sequences were based upon sncRNA sequences from the known sncRNA 7 

databases.  sncRNA variant sequences, including 1-2nt overhangs, internal insertions, 8 

deletions and mutations, were generated by randomly adding or changing 1-2nts at 9 

either end or internally using R script of the Biostrings package.  To generate the 10 

simulation Fasta file, individual sncRNAs were randomly duplicated such that the counts 11 

for each ranged from 1 to 50. 12 

 13 

2.3 Anchor alignment 14 

Anchor sequences (5-10bp) were added to both ends of the reference sncRNAs and the 15 

sequencing reads, as well as simulation sequences using the Python script.  16 

“Bowtie2-build” was employed to index all the anchored reference sncRNAs.  The 17 

anchored sequencing reads/simulation sequences were then aligned to the indexed 18 

anchored reference sncRNAs using Bowtie2 [38].  The FeatureCounts [39] was used 19 

to summarize the counts in the alignment file.  The same procedure was used to align 20 

the non-anchored sequencing reads or simulation sequences to the indexed, 21 

non-anchored reference sncRNA sequences.  22 
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 1 

2.4 Genome alignment 2 

Bowtie2-build was used to index the mouse genome (NCBI_Assembly: 3 

GCA_000001635.2).  The sequencing data were aligned to the indexed genome using 4 

Bowtie 2.  The FeatureCount was used to summarize the reads in the alignment file 5 

based on mmu.gff3 (miRbase V21). 6 

 7 

2.5 miRNA annotation using miRDeep  8 

The GRCm38 mouse genome was built according to the user manual of miRDeep [19, 9 

31].  Both miRNA sequencing reads/simulation dataset and GRCm38 pre-built genome 10 

were loaded for alignment analyses using the default setting of miRDeep.  Scatter 11 

plots were generated to correlate the predicted counts (by miRDeep) with the standard 12 

counts (simulation counts).  13 

 14 

2.6 miRNA annotation using ShortStack  15 

“Bowtie2-build” was used to generate the indexed mouse genome (NCBI_Assembly: 16 

GCA_000001635.2).  The simulation data were then aligned to the indexed genome 17 

using Bowtie 2 (ShortStack  --readfile --outdir  --genomefile), and the hits were 18 

--locifile  --outdir  --genomefile ).  Scatter plots were generated to correlate the 19 

predicted counts (by ShortStack) with the standard counts (simulation counts). 20 

 21 

2.7 miRNA annotation using miRanalyzer 22 
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The stand-alone version of miRanalyzer was downloaded and installed according to the 1 

user manual [18, 32].  The pre-built, Bowtie2-indexed genome sequences (UCSC 2 

mm9) were used as the reference mouse genome in miRanalyzer.  The mature and 3 

precursor miRNA sequences were used as the sncRNA reference dataset.  miRNA 4 

simulation data with or without overhangs were analyzed using the default parameters.   5 

Scatter plots were generated to correlate the predicted counts (by miRanalyzer) with the 6 

standard counts (simulation counts). 7 

 8 

2.8 Mouse sperm sncRNA-Seq 9 

The Institutional Animal Care and Use Committee (IACUC) of the University of Nevada, 10 

Reno approved the use of mice (Protocol#00494) for sperm collection and sncRNA-Seq. 11 

Mouse epididymal sperms were collected in the HEPES-HTF medium, and a “swim-up” 12 

procedure was performed so that only motile sperm were selected for sncRNA-Seq [40].  13 

Total RNA was isolated using the mirVana miRNA Isolation Kit (Life Technologies) 14 

following the manufacturer’s instructions.  SncRNA libraries were prepared using the 15 

Ion Total RNA-Seq Kit v2 (Life Technologies), followed by sequencing using the Ion P1 16 

chips on an Ion Proton Sequencer (Life Technologies) [40].  The sncRNA-Seq 17 

datasets have been deposited into the NCBI GEO database with the accession number 18 

of GSE81216.   19 

 20 

2.9 Data management and graphics 21 

All the data were processed using the R script and graphs were plotted using the R 22 
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script of the ggplot2 package. 1 

 2 

 3 

3. Results 4 

3.1 The anchor alignment algorithm 5 

The most popular sequence alignment software packages, e.g., Bowtie [28], SOAP [29] 6 

or BWA [30], are designed for mapping large RNA sequencing reads directly to the 7 

genome.  However, these methods are not ideal for small RNA alignment analyses for 8 

two reasons.  First, the library construction methods for large and small RNAs are 9 

fundamentally different (Figure 1A).  The Illumina sequencers perform the so-called 10 

short-read sequencing, which requires shorter DNA fragments (~200-800bp).  11 

Therefore, large RNAs have to be fragmented either physically (via heating or shearing) 12 

or enzymatically, followed by adaptor ligation (Figure 1A).  After sequencing, the 13 

shorter reads (~50-150nt) need to be aligned to the genome using Bowtie2-based 14 

TopHat followed by assembly using Cufflinks [41].  Fragmentation can generate 15 

numerous homologous fragments, which differ from each other by only a few 16 

nucleotides at either or both ends.  Since they are all derived from the same transcripts, 17 

the downstream annotation will categorize these homologous fragments as single 18 

transcripts.  In contrast, adaptors are ligated directly to small RNAs without 19 

fragmentation during sncRNA library preparation (Figure 1A) and thus, homologous 20 

fragments represent unique sncRNAs and should, therefore, be counted as individual 21 

sncRNAs.  Second, mathematically, the possibility for shorter reads (~20-40bp) to 22 
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have multiple alignments in the genome is much greater, compared to that of longer 1 

reads (50-150nt); multiple mapping leads to repetitive counting during alignment, 2 

causing quantification bias (Figure 1B).  A straightforward solution would be to align 3 

the sequencing reads to the corresponding sncRNA reference sequences instead of the 4 

genome.  However, this direct, RNA-to-RNA mapping strategy leads to multiple 5 

alignments due to the existence of homologous sncRNAs in both the reference 6 

databases and the sequencing reads.  For example, the sequencing reads of a mature 7 

miRNA would align to both the mature miRNA and its homologous precursor miRNA in 8 

the reference dataset, leading to double counting (Figure 1C).  Many sncRNAs, e.g., 9 

MIWI2-bound piRNAs (i.e., pre-pachytene piRNAs), endo-siRNAs and mitosRNAs, 10 

contain a large number of homologs with only a few nucleotide differences in either or 11 

both ends (Figure 1C).  Thus, one such sncRNA would align to its multiple homologs, 12 

causing repetitive counting and quantification bias (Figure 1C).  Moreover, the existing 13 

alignment programs would only select the perfectly matched reads and eliminate those 14 

with minor mismatches although those may represent the sncRNAs synthesized by the 15 

cells.  To overcome these problems, we developed a universal sncRNA annotation 16 

software package, AASRA, based on our unique anchor alignment algorithm (Figure 17 

1D).  AASRA first processes both the sequencing reads and the reference sequences 18 

by adding two unique anchor sequences to both ends.  Then the anchored sequencing 19 

reads are aligned to the anchored sncRNA references using Bowtie 2.  Finally, 20 

FeatureCounts (Subread) is used to summarize the unique read counts (Figure 1D).  21 

The anchor alignment algorithm can avoid multiple and ambiguous alignments, which 22 
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are common in those straight matching algorithms (direct alignment to reference 1 

sncRNAs or to the genome by Bowtie2, or miRanalyzer, miRDeep, etc).  For example, 2 

the anchored mature miRNA reads can only align to the anchored mature miRNA 3 

references.  When the mature miRNA reads are aligned to the anchored reference 4 

precursor miRNAs, the gap-opening penalty would prevent double matching (Figure 1E).  5 

In this way, mature miRNAs can be readily distinguished from their corresponding 6 

precursor miRNAs during the alignment.  As a proof of concept, we aligned the 7 

simulation dataset containing both mature and precursor miRNA sequences to the 8 

reference miRNA dataset downloaded from the miRBase using AASRA.  The anchor 9 

alignment algorithm resulted in a perfect mapping (R2=1), whereas the direct alignment 10 

to the reference miRNAs or to the genome led to partial alignments with R2 values of 0.9 11 

and 0.5, respectively.  Together, the anchor alignment algorithm can avoid erroneous 12 

counting and can also distinguish mature miRNA reads from precursor miRNA reads 13 

accurately.    14 

 15 

3.2 Anchor optimization  16 

To include sncRNA variants that bear small overhangs or internal 17 

insertions/deletions/mutations in the sncRNA-Seq reads, we tested a number of anchor 18 

sequences to see which ones gave the best alignment results.  We first tested two 5nt 19 

anchors by aligning the simulation datasets against the reference sncRNA datasets 20 

downloaded from various sncRNA databases (Figure 2A).  The simulation dataset 21 

containing all the known sncRNAs aligned perfectly to the sncRNA reference datasets 22 
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(R2=1).  However, when the simulation datasets containing 1-2nt overhangs at either 1 

end were used, only partial alignment (R2=0.87) was achieved due to the gap-opening 2 

penalty caused by those miRNA variants (Figure 2A, Supplementary file 1: Figure S1).  3 

Since these miRNA variants are likely synthesized by the cell and the 1-2nt mutations 4 

are probably due to sequencing errors, they should not be excluded from annotation.  5 

To accommodate theses sncRNA variants, we designed C/G repeat anchors of different 6 

lengths (5nt for the reads and 10nt for the references) based on the fact that C and G 7 

are the least common nucleotides at the ends of miRNAs and thus, can have higher 8 

specificity (Supplementary file 1: Figure S2).  Using C/G repeat anchors for alignment, 9 

a 1-2nt overhang in the read sequences would lead to a mismatch instead of a 10 

gap-opening penalty, which allows for inclusion of these sncRNA variants into the 11 

counts, leading to an increased alignment rate (R2 from 0.87 to 0.92) (Figure 2A, 12 

Supplementary file 1: Figure S1).  We also examined the AG anchors as well as other 13 

possible single nucleotide anchors, and found that anchors with the C/G combination 14 

consistently yielded the highest alignment rates (Supplementary file 1: Figure S2).  We 15 

also evaluated different anchor lengths (5-10nt), and the 5nt C/G anchors were chosen 16 

as the default setting for alignment analyses using AASRA, based on the better 17 

performance compared to other lengths (Supplementary file 1: Figure S3).  By 18 

fine-tuning the parameters of AASRA, the optimal setting was determined such that the 19 

sncRNA variants with 1-2nt overhangs, internal insertions/deletions/mutations, could be 20 

included into the final counts (Supplementary file 1: Figure S4).  For annotating 21 

sncRNA sequencing reads containing small internal insertions/deletions/mutations, 22 
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AASRA (with the use of the C/G anchors) consistently outperformed the Bowtie2-based 1 

direct sncRNA-sncRNA mapping method (Supplementary file 1: Figure S5).  Overall, 2 

these data indicate that the C/G anchor-based alignment algorithm of AASRA allows for 3 

efficient mapping of not only perfect-matching sequencing reads, but also reads with 4 

small (1-2nt) overhangs and internal insertions, deletions or mutations.  5 

 6 

3.3 Performance comparison between AASRA and three existing sncRNA annotation 7 

software packages 8 

To demonstrate the superior performance of AASRA, we generated simulation datasets 9 

containing mature and precursor miRNAs with 0, 1-2nt overhangs at either end, and 10 

annotated the simulation sequence reads against the reference miRNA datasets 11 

downloaded from the miRBase using AASRA and three popular software packages for 12 

miRNA annotation, including ShortStack [17], miRDeep [19] and miRanalyzer [18] 13 

(Figure 2B).  The simulation sequences were aligned almost perfectly to the 14 

references datasets using AASRA for both mature and precursor miRNAs with or 15 

without overhangs (R2 ≈ 1) (Figure 2B, 2C).  In contrast, direct Bowtie2-based mapping 16 

of the simulation miRNA and precursor miRNA sequences with or without overhangs to 17 

the reference miRNA datasets or to the mouse genome resulted in poor alignment rates 18 

(R2 = 0.45 -0.49).  Although miRDeep could map sequences perfectly matching the 19 

known mature miRNAs efficiently (R2 = 0.94), it failed to align either precursor miRNA 20 

sequences or mature miRNA sequences with overhangs (Figure 2B, 2C), largely due to 21 

its strict length control criteria [19].  Thus, miRDeep cannot annotate precursor 22 
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miRNAs, mature miRNAs with mismatches, or other sncRNAs with staggered sequence 1 

patterns (e.g., piRNAs, mitosRNAs, tsRNAs, etc.).  ShortStack, similar to the direct 2 

genome alignment method, could only annotate a small fraction of the simulation 3 

sequences, largely due to repetitive and ambiguous counting.  miRanalyzer utilizes a 4 

three-phase alignment procedure (i.e., mature miRNA alignment à pre-miRNA 5 

alignment à genome alignments) in conjunction with length control.  miRanalyzer 6 

annotated the simulation data without overhangs as efficiently as AASRA (R2= 0.95), 7 

but failed to annotate simulation data containing overhangs because it dose not tolerate 8 

mismatches.  In summary, AASRA appeared to be ideal for annotating known sncRNA 9 

species simultaneously with the capability of distinguishing mature and precursor 10 

miRNAs, and recognizing sncRNA variants with small overhangs and/or internal 11 

insertions/deletions, with a speed faster than any of the five pipelines tested (Figure 12 

2C).  13 

 14 

3.4 AASRA-based annotation of sperm sncRNAs 15 

Two advantages of AASRA over the existing sncRNA annotation software packages 16 

include the following: 1) it can identify novel sncRNA variants with small overhangs or 17 

internal insertions, deletions or mutations. 2) It can annotate not only miRNAs (both 18 

mature miRNAs and pre-miRNAs), but also all known sncRNA species collected in 19 

various databases.  A key question remains: do those sncRNA variants exist in the 20 

sncRNA–Seq reads by a substantial proportion?  If so, these sncRNA variants should 21 

not be overlooked in quantitative analyses.  To answer this question, we annotated the 22 
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sperm sncRNA-Seq data generated by both the Ion Proton and the Illumina sequencers 1 

using both AASRA and miRDeep.  AASRA simultaneously annotated nine known 2 

species of sncRNAs from mouse sperm sncRNA-Seq reads (Figure 3A).  By 3 

comparing the unique mature miRNA counts determined by miRDeep and AASRA, we 4 

found that AASRA identified 37% more unique mature miRNA counts than miRDeep 5 

(Figure 3B).  While miRDeep could not annotate precursor miRNAs, AASRA identified 6 

both mature and precursor miRNAs (Figure 3C).  Interestingly, murine sperm appeared 7 

to contain numerous precursor miRNAs, which would not have been identified using 8 

miRDeep or other sncRNA annotation software packages (Figure 3C).  Further 9 

examination of the alignment results for the four miRNAs (mir-376a, mir-361, mir-93 and 10 

mir-4660) revealed that AASRA not only identified more mature miRNAs than miRDeep, 11 

but also detected various miRNA variants, including those containing small (1-2nt) 12 

overhangs, internal insertions, deletions or mutations, whereas these sncRNA variants 13 

were not detected by miRDeep (Figure 3D).  For example, ~80% of the sequencing 14 

reads aligned to miR-93 all contained overhangs, which could be either biological 15 

variants of miR-93 or sequencing errors.  Regardless, such a large number of miR-93 16 

variants would have been totally ignored if other existing software packages were used 17 

(Figure 3D).  If one wants to exclude these sncRNA variants, a more stringent 18 

alignment can be performed through adjusting the parameters, including anchor 19 

sequence and mismatch penalty.  For example, four levels of specificity settings 20 

(high_specificity1, 2, 3 and ultra) (Supplementary file 1: Figure S6A) were tested for 21 

sequence alignment stringency.  At the ultra-high specificity setting, AASRA could 22 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132928doi: bioRxiv preprint 

https://doi.org/10.1101/132928


 16 

eliminate all the sequences with 1-2nt overhangs in the simulation data (Supplementary 1 

file 1: Figure S6B).  Under the same setting, perfectly-matched miRNAs could be 2 

readily identified from a mixture of miRNA sequences with 1-2nt overhangs 3 

(Supplementary file 1: Figure S6C).  The ultra-high specificity setting made AASRA 4 

function similarly as miRDeep, whereas a less stringent setting allowed for identification 5 

of miRNA variants (Supplementary file 1: Figure S6D).  It will be up to the investigators 6 

to decide whether those sncRNA variants should be included or excluded in the final 7 

counts during sncRNA annotation depending on the nature of specific experiments 8 

conducted. 9 

 10 

4. Discussion 11 

The rapid advance of next-gen sequencing technologies has led to the discovery of 12 

hundreds thousands of sncRNAs [2].  Increasing lines of evidence suggest that these 13 

sncRNAs play regulatory roles critical to development and physiology [2].  Despite the 14 

rapid pace of sncRNA discovery, the bioinformatic tools for sncRNA annotation are very 15 

limited.  None of the currently available sncRNA annotation pipelines can annotate 16 

simultaneously all known sncRNA species, nor can they tolerate sequences with 17 

mismatches although these sncRNA variants are likely due to sequencing errors, but 18 

biologically relevant.  AASRA utilizes a unique, anchor alignment-based algorithm, and 19 

is capable of annotating all known sncRNAs simultaneously.  The specificity setting of 20 

AASR is adjustable such that small mismatches due to overhangs, insertions, deletions, 21 

or mutation, can be either included or excluded.  AASRA can identify a much greater 22 
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number of sncRNA counts (e.g., ~37% more identified from the murine sperm 1 

sncRNA-Seq data) compared to any of the existing pipelines because of the use of the 2 

anchor alignment algorithm.  This feature offers the possibility of minimizing 3 

quantification bias caused by 1) over-counting (due to double and ambiguous 4 

alignments), and/or 2) exclusion of variant sequences in the sncRNA-Seq data 5 

(although these variants should be counted because they are produced by the cells, but 6 

simply slightly different from the main sncRNA sequences most likely due to sequencing 7 

errors).  The fact that these variant sequences account for a large proportion of the 8 

total counts (e.g., up to 80% for mmu-miR-93), elimination of these variants would 9 

greatly skew the real expression profile, leading to inaccurate interpretation and 10 

conclusions.  Since all existing sncRNA annotation software packages do not have 11 

these functions, AASRA will be very useful for investigators to revisit their sncRNA data 12 

to see how many variants were inadvertently excluded, and whether such exclusion had 13 

caused quantitation bias that would compromise their conclusions.  Depending on the 14 

needs of the investigators, those variants can also be excluded by applying more strict 15 

alignment parameters.  16 

The capability to annotate the precursor miRNAs is another useful feature of 17 

AASRA.  Interestingly, a large number of precursor miRNAs appear to be present in 18 

sperm, which would not have been discovered if other existing programs were used.  19 

Although miRanalyzer can annotate precursor miRNAs, it can only annotate those with 20 

perfect matches, and those with small overhangs or minor mismatches would be 21 

ignored.  Mature miRNAs have been found in sperm of multiple species, including 22 
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mouse [40, 42], rat [33, 43], cow [44], horse [45], monkey [40, 46] and human [46, 47].  1 

However, sperm-borne precursor miRNAs have not been reported.  Given that these 2 

precursor miRNAs can be potentially delivered into the eggs during fertilization, their 3 

potential regulatory roles would be an intriguing topic for future investigation.   4 

In summary, AASRA represents the first universal sncRNA annotation software 5 

package, which allows for simultaneous annotation of all known sncRNAs with high 6 

speed and accuracy.  AASRA can annotate not only known sncRNA species, but also 7 

sncRNA variants containing small overhangs, or internal deletions/insertions/mutations.  8 

AASRA provides another useful bioinformatic tool for studying sncRNA biology.   9 
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Figure Legends 1 

 2 

Figure 1 Development of the anchor alignment algorithm for sncRNA annotation.  (A) 3 

Schematic illustration of the differences in large and small RNA library construction 4 

methods.  Note that adaptors are directly added to the small RNAs for sncRNA-Seq, 5 

whereas fragmentation is needed before adaptor ligation for large RNA sequencing.  6 

(B) Issues associated with direct sncRNA alignment to the genome: multiple alignment 7 

of sncRNAs to the genome due to their small sizes (20-40nt), and inability to recognize 8 

sncRNA variants (e.g., homologous piRNAs, endo-siRNAs, mitosRNAs, etc.).  (C) 9 

Issues associated with the direct sncRNA-sncRNA alignment algorithm: repetitive 10 

counting of mature miRNA reads (because they can be mapped to both mature and 11 

premature miRNA references), and certain sncRNA reads (e.g., endo-siRNAs and 12 

piRNAs, due to the presence of multiple, staggered sncRNA homologs in the reference 13 

databases, which differ by only several nucleotides).  (D) Workflow of the anchor 14 

alignment-based sncRNA annotation (AASRA) pipeline.  (E) Schematic illustration of 15 

anchor alignment algorithm.  Anchors are added to both ends of the sequencing reads 16 

and the reference sncRNAs.  Gap opening penalty can prevent mature miRNA 17 

sequence reads from mapping to the premature miRNA reference sequences.  Perfect 18 

alignment and correct annotation of both mature and precursor miRNAs were achieved 19 

for the simulation data using the anchor alignment algorithm (R2=1), whereas direct 20 

alignment of the simulation data to either the sncRNA references (R2=0.9), or the 21 

genome (R2=0.5) led to partial alignment.   22 
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 1 

Figure 2 Anchor optimization and performance comparison between AASRA and three 2 

existing sncRNA annotation pipelines.  (A) C/G anchors outperformed other anchors 3 

because the C/G anchors could turn the gap-opening penalty (causing exclusion) into 4 

mismatch penalty (leading to inclusion).  The use of a non-C/G anchors could align the 5 

simulation data without overhangs perfectly (R2=1), but simulation sequences with 2nt 6 

overhangs were only aligned partially (R2=0.87) due to gap-opening penalty that 7 

excluded many miRNA variants.  In contrast, the use of C/G anchors aligned 8 

simulation datasets with or without 2nt overhangs almost perfectly (R2= 0.999 and 0.92, 9 

respectively) because those 2nt overhangs were treated as mismatches rather than 10 

gaps and thus, those variants were counted and annotated.  (B) Performance 11 

comparison between AASRA and three existing sncRNA annotation software packages 12 

(miRDeep, ShortStack and miRanalyzer).  Simulation datasets containing both mature 13 

(red dots) and premature (green dots) miRNA sequences with 0-2nt overhangs were 14 

aligned to the reference sncRNA dataset using direct sncRNA-sncRNA alignment 15 

(no-anchor), direct alignment to the genome (genome), miRDeep, ShortStack and 16 

miRanalyzer.  (C) Summary of the performance of AASRA and other five sncRNA 17 

annotation pipelines tested.   18 

 19 

Figure 3 Annotation of sperm sncRNA-Seq data using AASRA.  (A) Pie chart showing 20 

the count distribution of nine sncRNA species in murine sperm annotated using AASRA.  21 

(B) Scatter plot showing that AASRA could identify 37% more miRNAs than miRDeep in 22 
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1/12 of the time needed by miRDeep.  (C) Counts of four miRNAs and their precursors 1 

in the sperm sncRNA-Seq data, as determined by AASRA.  (D) Counts of four mature 2 

miRNAs in murine sperm sncRNA data, as determined by AASAR and miRDeep.  (E) 3 

The contents of the AASRA counts of the four mature miRNAs shown in Figure D.  4 

Note that mismatches, deletions, insertions, and overhangs appear to be common in 5 

the sncRNA sequencing reads.  6 

 7 

  8 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132928doi: bioRxiv preprint 

https://doi.org/10.1101/132928


 23 

References 1 

1. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev 2 
Genet 2009; 10:94-108. 3 

2. Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small 4 
RNAs with New Technologies. Annu Rev Genet 2015; 49:367-394. 5 

3. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. 6 
Science 2001; 294:862-864. 7 

4. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with 8 
probable regulatory roles in Caenorhabditis elegans. Science 2001; 9 
294:858-862. 10 

5. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel 11 
genes coding for small expressed RNAs. Science 2001; 294:853-858. 12 

6. Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W. Male germ cells express 13 
abundant endogenous siRNAs. Proc Natl Acad Sci U S A 2011; 14 
108:13159-13164. 15 

7. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, 16 
Anger M, Sachidanandam R, Schultz RM, Hannon GJ. Pseudogene-derived 17 
small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008; 18 
453:534-538. 19 

8. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class 20 
of small RNAs binds mammalian Piwi proteins. Nature 2006; 442:199-202. 21 

9. Grivna ST, Pyhtila B, Lin H. MIWI associates with translational machinery and 22 
PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad 23 
Sci U S A 2006; 103:13415-13420. 24 

10. Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in 25 
mammalian testes. Genes Dev 2006; 20:1993-1997. 26 

11. Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi 27 
MC. Specific association of Piwi with rasiRNAs derived from retrotransposon and 28 
heterochromatic regions in the Drosophila genome. Genes Dev 2006; 29 
20:2214-2222. 30 

12. Maxwell ES, Fournier MJ. The small nucleolar RNAs. Annu Rev Biochem 1995; 31 
64:897-934. 32 

13. Liao JY, Guo YH, Zheng LL, Li Y, Xu WL, Zhang YC, Zhou H, Lun ZR, Ayala FJ, 33 
Qu LH. Both endo-siRNAs and tRNA-derived small RNAs are involved in the 34 
differentiation of primitive eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 35 
2014; 111:14159-14164. 36 

14. Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: 37 
tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23:2639-2649. 38 

15. Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro 39 
L, Hsieh JT, Yan W. The mitochondrial genome encodes abundant small 40 
noncoding RNAs. Cell Res 2013; 23:759-774. 41 

16. Ambros V. microRNAs: tiny regulators with great potential. Cell 2001; 42 
107:823-826. 43 

17. Axtell MJ. ShortStack: comprehensive annotation and quantification of small 44 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132928doi: bioRxiv preprint 

https://doi.org/10.1101/132928


 24 

RNA genes. RNA 2013; 19:740-751. 1 
18. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on 2 

the detection and analysis of microRNAs in high-throughput sequencing 3 
experiments. Nucleic Acids Res 2011; 39:W132-138. 4 

19. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, 5 
Rajewsky N. Discovering microRNAs from deep sequencing data using 6 
miRDeep. Nat Biotechnol 2008; 26:407-415. 7 

20. Wang K, Liang C, Liu J, Xiao H, Huang S, Xu J, Li F. Prediction of piRNAs using 8 
transposon interaction and a support vector machine. BMC Bioinformatics 2014; 9 
15:419. 10 

21. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence 11 
microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42:D68-73. 12 

22. Sai Lakshmi S, Agrawal S. piRNABank: a web resource on classified and 13 
clustered Piwi-interacting RNAs. Nucleic Acids Res 2008; 36:D173-177. 14 

23. Rosenkranz D. piRNA cluster database: a web resource for piRNA producing loci. 15 
Nucleic Acids Res 2016; 44:D223-230. 16 

24. Daub J, Eberhardt RY, Tate JG, Burge SW. Rfam: annotating families of 17 
non-coding RNA sequences. Methods Mol Biol 2015; 1269:349-363. 18 

25. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: 19 
annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005; 20 
33:D121-124. 21 

26. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA 22 
family database. Nucleic Acids Res 2003; 31:439-441. 23 

27. Lestrade L, Weber MJ. snoRNA-LBME-db, a comprehensive database of human 24 
H/ACA and C/D box snoRNAs. Nucleic Acids Res 2006; 34:D158-162. 25 

28. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient 26 
alignment of short DNA sequences to the human genome. Genome Biol 2009; 27 
10:R25. 28 

29. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment 29 
program. Bioinformatics 2008; 24:713-714. 30 

30. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 31 
transform. Bioinformatics 2009; 25:1754-1760. 32 

31. An J, Lai J, Lehman ML, Nelson CC. miRDeep*: an integrated application tool for 33 
miRNA identification from RNA sequencing data. Nucleic Acids Res 2013; 34 
41:727-737. 35 

32. Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM. 36 
miRanalyzer: a microRNA detection and analysis tool for next-generation 37 
sequencing experiments. Nucleic Acids Res 2009; 37:W68-76. 38 

33. Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in 39 
genomic sequence. Nucleic Acids Res 2009; 37:D93-97. 40 

34. Pignatelli M, Vilella AJ, Muffato M, Gordon L, White S, Flicek P, Herrero J. ncRNA 41 
orthologies in the vertebrate lineage. Database (Oxford) 2016; 2016. 42 

35. Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, 43 
Searle SM, Amode R, Brent S, Spooner W, Kulesha E, et al. Ensembl 44 
comparative genomics resources. Database (Oxford) 2016; 2016. 45 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132928doi: bioRxiv preprint 

https://doi.org/10.1101/132928


 25 

36. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, 1 
Clapham P, Fitzgerald S, Gil L, Giron CG, Gordon L, et al. Ensembl 2016. 2 
Nucleic Acids Res 2016; 44:D710-716. 3 

37. Zheng LL, Li JH, Wu J, Sun WJ, Liu S, Wang ZL, Zhou H, Yang JH, Qu LH. 4 
deepBase v2.0: identification, expression, evolution and function of small RNAs, 5 
LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 6 
2016; 44:D196-202. 7 

38. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 8 
Methods 2012; 9:357-359. 9 

39. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program 10 
for assigning sequence reads to genomic features. Bioinformatics 2014; 11 
30:923-930. 12 

40. Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase – A database 13 
for sperm-borne RNA contents. Biology of Reproduction 2016:In Press. 14 

41. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg 15 
SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of 16 
RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7:562-578. 17 

42. Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M. Novel small 18 
noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One 19 
2012; 7:e44542. 20 

43. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress 21 
exposure alters sperm microRNA content and reprograms offspring HPA stress 22 
axis regulation. J Neurosci 2013; 33:9003-9012. 23 

44. Govindaraju A, Uzun A, Robertson L, Atli MO, Kaya A, Topper E, Crate EA, 24 
Padbury J, Perkins A, Memili E. Dynamics of microRNAs in bull spermatozoa. 25 
Reprod Biol Endocrinol 2012; 10:82. 26 

45. Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth 27 
AK, Teague S, Love CC, Varner DD, Chowdhary BP, et al. Stallion sperm 28 
transcriptome comprises functionally coherent coding and regulatory RNAs as 29 
revealed by microarray analysis and RNA-seq. PLoS One 2013; 8:e56535. 30 

46. Boerke A, Dieleman SJ, Gadella BM. A possible role for sperm RNA in early 31 
embryo development. Theriogenology 2007; 68 Suppl 1:S147-155. 32 

47. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. 33 
A survey of small RNAs in human sperm. Hum Reprod 2011; 26:3401-3412. 34 

  35 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132928doi: bioRxiv preprint 

https://doi.org/10.1101/132928


 26 

Supplementary file 1: Figure S1. Comparison of alignment accuracy between AASRA 1 

(CG_anchor) and the direct sncRNA-sncRNA alignment method (No_anchor) using 2 

sncRNA simulation data containing miRNAs, endo-siRNAs, piRNAs, snRNAs and 3 

tRNAs.  Figure S2. Comparison of alignment accuracy between the CG or AG anchor 4 

using miRNA simulation data containing mature and premature miRNAs.  Figure S3. 5 

Comparison of alignment accuracy among anchors with different lengths (5-10nt) using 6 

sncRNA simulation datasets containing miRNAs, endo-siRNAs, piRNAs, snRNAs and 7 

tRNAs with (0nt) or without 1-2nt overhangs.  Figure S4. Comparison of alignment 8 

accuracy affected by different Bowtie2 parameters using sncRNA simulation datasets 9 

containing miRNAs, endo-siRNAs, piRNAs, snRNAs and tRNAs with (0nt) or without 10 

1-2nt overhangs.  Figure S5. Comparison of alignment accuracy between AASRA 11 

(CG_anchor) and the direct sncRNA alignment method (No_anchor) using sncRNA 12 

simulation datasets containing miRNAs, endo-siRNAs, piRNAs, snRNAs and tRNAs 13 

with 1nt internal deletions (A), insertions (B) or mutations (C).  Figure S6. The AASRA 14 

ultra-high specificity function.   15 

 16 
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Figure	S1.	Comparison	of	alignment	accuracy	between	AASRA	(CG_anchor)	and	the	direct	
sncRNA-sncRNA	alignment	method	(No_anchor)	using	sncRNA	simulation	data	containing	
miRNAs,	endo-siRNAs,	piRNAs,	snRNAs	and	tRNAs.	 	 (A)	Scatter	plots	showing	alignment	of	the	
simulation	sncRNA	datasets	with	or	without	1-2nt	overhangs	by	AASRA	(CG_anchor)	and	the	direct	
sncRNA	alignment	method.	 	 (B)	Bar	graphs	comparing	the	correlation	coefficient	(R2)	values	
between	predicted	counts	(calculated	by	the	algorithm)	and	standard	counts	(known	for	the	
simulation	data)	identified	using	AASRA	(CG_anchor)	and	the	direct	sncRNA	alignment	method	
(No_anchor).	 	 	 (C)	Bar	graphs	comparing	the	correct	mapping	rates	of	the	simulation	datasets	
between	AASRA	and	the	direct	sncRNA	alignment.	The	correct	mapping	rate	is	defined	as	the	
number	of	correctly	mapped	reads/	total	reads.	 	
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Figure	S2.	Comparison	of	alignment	accuracy	between	the	CG	or	AG	anchor	using	miRNA	
simulation	data	containing	mature	and	premature	miRNAs.	 	 (A)	Scatter	plots	showing	
correlations	between	the	predicted	counts	(calculated	by	the	algorithm)	and	standard	counts	
(known	for	the	simulation	data)	derived	from	alignment	using	the	CG	anchor	(blue	dots)	or	the	AG	
anchor	(red	dots).	The	CG	anchor	yielded	better	results	than	the	AG	anchor.	 	 (B)	Bar	graphs	
comparing	the	correlation	coefficient	values	between	the	predicted	counts	(calculated	by	the	
algorithm)	and	standard	counts	(known	for	the	simulation	data)	identified	using	the	CG	or	AG	
anchor	for	alignment.	 	 (C)	Frequency	of	the	four	nucleotides	at	both	ends	of	miRNAs	in	the	miRNA	
index	file.	MiRNA	sequences	that	start	with	cytosine	and	end	with	guanine	are	the	least	common	
and	thus,	the	CG	anchor	is	a	better	choice	due	to	a	lower	frequency	at	both	ends	of	sncRNAs.	 	 	
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Figure	S3.	Comparison	of	alignment	accuracy	among	anchors	with	different	lengths	(5-10nt)	using	
sncRNA	simulation	datasets	containing	miRNAs,	endo-siRNAs,	piRNAs,	snRNAs	and	tRNAs	with	
(0nt)	or	without	1-2nt	overhangs.	 	 (A)	Bar	graphs	showing	correlation	rates	between	predicted	
counts	(by	software	calculation)	and	standard	counts	(simulation	data)	when	anchors	of	different	
lengths	(5-10nt)	were	used	for	alignment.	 	 (B)	Bar	graphs	showing	correct	mapping	rates	of	the	
simulation	datasets	when	anchors	of	different	lengths	(5-10nt)	were	used	for	alignment.	 	 	
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Figure	S4.	Comparison	of	alignment	accuracy	affected	by	different	Bowtie2	parameters	using	
sncRNA	simulation	datasets	containing	miRNAs,	endo-siRNAs,	piRNAs,	snRNAs	and	tRNAs	with	
(0nt)	or	without	1-2nt	overhangs.	 	 (A)	Bowtie2	commands	with	parameters	used	for	comparison.	 	
AASRA	default	parameters	were	optimized	based	on	those	yielding	the	best-reported	alignment	
results	by	Bowtie2	(Reprot_best_aligment).	Bowtie	default	parameters	(Default_seed)	are	tested	as	
well.	Seed	length	(-L)	was	optimized	for	miRNA	alignment	in	AASRA.	AASRA	default	allows	1	
mismatch	in	seed	sequence	alignment	(-N	1).	 	 (B)	Bar	graphs	showing	the	correlation	rates	
between	predicted	counts	(by	software	calculation)	and	standard	counts	(simulation	data)	when	3	
different	Bowtie2	parameters,	as	illustrated	in	panel	A,	were	used	for	alignment.	Default	AASRA	
parameter	produces	the	best	overall	alignment	accuracy	for	simulation	datasets.	 	
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Figure	S5.	Comparison	of	alignment	accuracy	between	AASRA	(CG_anchor)	and	the	direct	sncRNA	
alignment	method	(No_anchor)	using	sncRNA	simulation	datasets	containing	miRNAs,	
endo-siRNAs,	piRNAs,	snRNAs	and	tRNAs	with	1nt	internal	deletions	(A),	insertions	(B)	or	
mutations	(C).	 	 	
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Figure	S6.	The	AASRA	ultra-high	specificity	function.	 	 (A)	The	parameters	adjusted	for	various	
levels	of	alignment	stringency.	 	 -L	is	the	seed	length	of	alignment;	–i	functions	to	govern	the	
interval	between	two	seed	substrings	used	during	multispeed	alignment,	controlling	sensitivity	and	
speed;	--rfg	--rdg	controls	the	gap	opening	penalty.	 	 The	highest	stringency	(ultra_high_specificity)	
setting	can	eliminate	sequences	containing	1-2nt	overhangs.	 	 (B)	Scatter	plots	showing	alignment	
results	at	the	four	levels	of	specificity	settings	(High_specificty_1-3,	and	ultra_high_specificity)	
using	sncRNA	simulation	datasets	containing	miRNAs,	endo-siRNAs,	piRNAs,	snRNAs	and	tRNAs	
with	(0nt)	or	without	1-2nt	overhangs.	 	 (C)	No	effects	of	sequences	with	overhangs	on	the	
alignment	results	under	the	ultra-high	specificity	setting.	 	 Simulation	datasets	containing	no	(0nt)	
or	1-2nt	overhangs	were	merged	and	used	for	mapping	against	the	reference	dataset.	 	 The	
ultra_high_specificity	setting	effectively	eliminated	the	interference	from	the	reads	with	overhang	
nucleotides	(R2=0.889).	 	 (D)	Bar	graphs	showing	the	counts	of	sperm	sncRNA	reads	aligned	to	four	
mature	miRNAs	using	miRDeep	and	AASRA	at	default	(CG_anchor)	and	ultra-high	specificity	
settings	(Ultra_high_specificity).	Counts	for	different	variant	types	of	the	four	miRNAs	identified	
using	AASRA	under	the	default	(GC_anchor)	and	ultra	high	specificity	(Ultra_high_specificity)	
settings.	The	ultra_high_specificity	setting	effectively	removed	miRNA	variants	in	the	sncRNA-Seq	
data.	
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