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Abstract 

DNA methylation is important to establish a cell’s developmental identity. It also modulates 

cellular responses to endogenous developmental stimuli or environmental changes. We designed 

an in vitro myeloid differentiation model to analyze the genetic and developmental contribution 

to methylome dynamics using whole-genome bisulfide sequencing and transcriptome 

sequencing. Using a recursive partitioning approach, we identified 34,502 differentially 

methylated regions (DMRs) associated with genetic background and/or developmental stimuli. 

Specifically, 23,792 DMRs (69%) were significantly associated with inter-individual variations, 

of which 82% were associated with genetic polymorphisms in cis. Notably, inter-individual 

variations further modified 57 of 212 (26%) developmental DMRs with transcriptomic 

responses. Our study presents a novel analytical approach to determine the bona fide genetic 

contribution embedded in outlier patterns of CpG-SNPs in individual methylomes. This approach 

can be used to study genetic and epigenetic mechanisms underlying differential responses to 

developmental stimuli, environmental changes, and inter-individual differences in drug 

responses.   
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Introduction 

Differentiation and development from a single zygote to a multicellular complex organism 

requires the precise regulation of gene expression at various developmental stages. The complex 

regulatory system that drives developmental progression depends on the interaction of multiple 

components, including transcription factor expression and its DNA occupancy(Spitz and Furlong 

2012), epigenetic regulation(Reik 2007), and mechanisms of post-translational modification of 

proteins(Deribe et al. 2010). In addition to modulating developmental changes, epigenetic 

regulation, including DNA methylation, contributes to phenotype variability among normal 

individuals. Although  differential methylation patterns have been well studied in normal 

development(Smith and Meissner 2013), diseases(Lopez-Serra and Esteller 2012; Stricker et al. 

2013; Schoofs et al. 2014), in different tissues(Ziller et al. 2013), and human populations(Heyn 

et al. 2013), the effects of inter-individual variability(Jiang et al. 2015) in responses of the 

methylome (i.e., the set of nucleic acid methylation modifications) to the same developmental 

stimuli remain largely unexplored. 

The role of genetic variations in modulating the DNA methylation pattern has been recognized 

since the discovery of single-nucleotide polymorphisms (SNPs) at cytosine–phosphate–guanine 

dinucleotides (CpG-SNPs)(Moser et al. 2009; Shoemaker et al. 2010). Whereas most CpG sites 

are methylated in mammalian genomes, CpH (H represents A, C, or T) sites are 

unmethylated(Ehrlich et al. 1982). Therefore, genetic variations at CpG-SNPs are expected to 

have one allele from a CpG site and the other from a CpH site(Shoemaker et al. 2010).  

Individuals with CpG/CpG, CpG/CpH, or CpH/CpH genotypes at CpG-SNPs exhibit full 

methylation, partial methylation, and no methylation, respectively. Therefore, differential 

methylation at CpG-SNPs is generally considered to be a technical artifact in methylome 
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analysis, and exclusion of CpGs located within 10 bp of known polymorphisms in the dbSNP 

database is recommended for methylation arrays(Price et al. 2013).  However, this filtering 

strategy also leads to considerable loss (up to one tenth) of CpGs that might carry bona fide 

variations. Genomewide DNA methylation quantitative trait loci (mQTLs) analyses have 

established that the DNA methylation could be affected by adjacent genetic variants(Shoemaker 

et al. 2010; Zhang et al. 2010; Heyn et al. 2014; Zhang et al. 2014). While these studies revealed 

a fundamental connection between sequence variants and epigenetic differences (differential 

DNA methylation), they largely relied on array-based methylome measurement platforms and 

SNP arrays, which have focused on association of differential methylation of single CpG probes 

on the methylation array with common SNPs. However, methylome is jointly established and 

maintained by the DNA methyltransferases and the tet methylcytosine dioxygenases, which have 

local coordinated activities and lead to similar methylation status among adjacent CpGs on the 

same DNA molecule(Guo et al. 2017).  Functionally, gene silencing through DNA methylation 

involves the hypermethylation of entire CpG islands instead of individual important 

CpGs(Esteller 2008).  Gene expression status is determined by the regional methylation density 

of a cis-element and not that of individual critical CpG sites(Weber et al. 2007). Subsequently, a 

block structure was proposed for allele-specific methylation patterns(Shoemaker et al. 2010). We 

hypothesized that a subset of genetic variations can affect methylation levels of multiple CpGs in 

their adjacent regions, which we termed as regional methylation quantitative trait loci in cis 

(cisR-mQTLs). On the other side, although array studies show that 0.16–1.5% of common SNPs 

can affect adjacent methylation patterns based on single CpG probe analyses(Kerkel et al. 2008; 

Schalkwyk et al. 2010), the effects of cisR-mQTLs associated with private and common SNPs 
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have not been quantified(Schultz et al. 2015), in part because of the technical limitations of 

array-based platforms. 

DNA methylation profiling has transitioned from single-gene–based(Keshet et al. 1985) and 

array-based(Price et al. 2013) analyses to genome-wide investigation using whole-genome 

bisulfite sequencing (WGBS)(Lister et al. 2009).  WGBS has 2 inherent advantages. First, it 

measures genome-wide methylation in an unbiased manner, including intergenic and intronic 

methylations that might regulate transcription and splicing activities. Second, genome-wide 

genetic variations in a sample, including private SNPs, can be directly inferred from WGBS, 

which enables investigations of individual-specific SNPs and cisR-mQTLs in addition to those 

correlated with common SNPs.  

In this study, we used WGBS and mRNA-sequencing (mRNA-Seq) to analyze unbiased 

genome-wide DNA methylation and transcriptome patterns of myeloid populations from 3 

individuals collected at 3 developmental stages: bone marrow CD34+ progenitor cells, early 

immature myeloid lineage cells, and late mature myeloid cells.  By using this in vitro myeloid 

differentiation model, we investigated (1) the relative contribution of inter-individual variations 

and developmental stimuli on global DNA methylation patterns in the form of differentially 

methylation regions (DMRs) and (2) the extent of cisR-mQTL in healthy human subjects and (3) 

how various types of DMRs affect gene transcription.  

Results 

In vitro myeloid differentiation model 
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The highly reproducible hematopoietic cell lineages culture and in vitro differentiation 

model(Gupta et al. 2014) was chosen for our study because it allowed the purification of cells at 

distinct developmental stages by flow cytometry.  

Expression profiles of cell surface markers from in vitro myeloid differentiation cultures were 

analyzed by flow cytometry. CD34+ cells in culture gradually differentiated into myeloid lineage 

cells, as seen by increasing CD11b and CD13 expressions and decreasing CD34 expression over 

the 12-day period (Figure 1A). The morphology and immunophenotype of cell populations were 

Figure 1.  In vitro myeloid differentiation experiment. (A) Wright–Giemsa staining of  

cytospin preparations at different time points during in vitro myeloid differentiation. (B) 

Immunophenotype analysis by flow cytometry at different time points during in vitro 

myeloid differentiation. (C) Expression of representative genes ITGAM, CEBPE, and CD34. 

(Error bar represents 1 standard deviation across the 3 individuals.) (D) Hierarchical 

clustering analysis of transcriptome data. (E) Hierarchical clustering analysis of the most 

variable CpGs. FPKM, fragments per kilo base per million. 
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monitored at day 0, 18 h, day 2, day 3, day 4, day 6, day 9, and day 12. The day 0 population 

represented bone marrow CD34+ progenitor cells that did not express specific lineage surface 

antigens, the day 3 population represented early immature myeloid lineage cells that had a 

gradual increase in surface CD13 expression and a decrease in CD34 expression, and the day 12 

population represented mature myeloid cells as they had more than 70% neutrophilic 

granulocytes (Figure 1A and 1B)(Gupta et al. 2014). 

Genome-wide transcriptome and methylome profiles in bone marrow–derived myeloid cells  

WGBS and mRNA-Seq were performed, respectively, on DNA and RNA extracted from 9 

samples obtained from in vitro–differentiated bone marrow cells.  On average, WGBS sequenced 

133.1 billion nucleotides (range 123.2–141.3) per sample, with 111.7 billion nucleotides (range 

99.9–120.7) being uniquely mapped (average depth 33×).  The average genome-wide bisulfite 

conversion rate was 0.995 (range 0.993–0.997), and 80.0% (range 75.4%–85.8%) of CpGs were 

covered at ≥5× (Supplementary Table 1)(Ziller et al. 2015). Further, 9.77 billion nucleotides 

(range 9.16–10.34) were sequenced per RNA-Seq sample, of which 8.86 billion (range 8.28–

9.23) were uniquely mapped.  On average, 49.1% of exonic bases were covered at ≥20× (range 

47.3–50.2, Supplementary Table 2). 

Expressions profiles of selected neutrophil-specific genes such as CD34, ITGAM and the 

myeloid transcriptional regulator CEBPE were studied to verify the in vitro myeloid 

differentiation model.  Notably, a decrease in CD34 expression was accompanied by an increase 

in CEBPE expression throughout differentiation (Figure 1C). In contrast, ITGAM expression was 

largely unchanged from progenitor cells to early myeloid cells, but increased dramatically in late 
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myeloid cells. Therefore, the expression profiles of selected genes confirmed the gradual 

increase in the extent of myeloid maturation(Nakajima and Ihle 2001). 

Overall, 10,308 of 27,807 annotated genes were differentially expressed genes (DEGs), and they 

clustered according to the stage of myeloid developmental (Figure 1D). Consistent with this 

profile, 9120 DEGs (88.5%) showed a significant developmental difference (false discovery rate 

[FDR] q-value ≤ 0.05) (Yuan et al. 2007). In contrast, only 74 (0.1%) transcripts showed 

significant differences among the 3 individuals (i.e., inter-individual variations), suggesting a 

minimal contribution from inter-individual variations at the transcriptome level. The remaining 

DEGs (11.4%) were largely stochastic, without showing a significant developmental or inter-

individual difference. Interestingly, non-coding transcripts (n=21) were significantly enriched in 

genes that had inter-individual variations (P=0.013, odds ratio=1.94, Fisher exact test). This 

result was consistent with that of a recent report showing higher inter-individual expression 

variability in non-coding RNAs than in protein-coding RNAs(Kornienko et al. 2016). For 

example, the expression of lincRNA AC104135.3 was stable across developmental stages but 

had high inter-individual variation (average fragments per kilo base per million [FPKM] in 3 

individuals: 1.51±0.03, 3.11±0.52, and 0.009±0.004, respectively; q-value = 0.0038). The 

miRNA expression followed a similar pattern, because differential expression was largely driven 

by transitions through developmental stages (Supplementary Figure 1). 

Genetic variations contribute to inter-individual variations in methylation profiles  

The 14.3 million CpGs covered at ≥5× in the WGBS analysis(Ziller et al. 2015) were used to 

analyze inter-individual and developmental variations in the methylation profile at each CpG 

site.  The global methylation profile showed a bimodal distribution, with very similar distribution 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132985doi: bioRxiv preprint 

https://doi.org/10.1101/132985
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

patterns among the 3 individuals (Supplementary Figure 2A). There was a trend toward 

hypomethylation in the global profile during the myeloid differentiation process, especially 

between the early myeloid stage (day 3) and the late myeloid stage (day 12) (Supplementary 

Figure 2B).  

Overall, only 181,409 (1.27%) of CpG sites showed significant differential methylation. In 

contrast to gene expression, hierarchical clustering using the 50,000 most variable CpGs was 

grouped by individuals instead of developmental stage (Figure 1E). Specifically, 180,419 CpGs 

(99.5% of all CpGs with differential methylation) showed significant inter-individual differences 

in methylation (q value ≤ 0.05), compared to only 993 CpGs showing significant development-

related differences. To determine the contribution from common SNPs, 2 filtering strategies were 

used: (1) CpGs overlapping with dbSNPs were filtered (2.2% of all CpGs), or (2) CpGs located 

within 10 bp of common dbSNPs were filtered (additional 10.7% of all CpGs). Inter-individual 

differences in clustering patterns persisted in both strategies (Supplementary Data and 

Supplementary Figure 3), suggesting that differential methylation can be affected by private 

genetic variations that are not found in dbSNPs. Indeed, an additional 262,367 private CpG-

SNPs were identified by WGBS analysis. Altogether, CpG-SNPs, which include both dbSNPs 

and private SNPs, strongly correlated with the CpG allele count (average coefficient 0.425, range 

0.413–0.439, P<2.2×10–16, Supplementary Figure 4) and accounted for 68.7% of CpGs 

exhibiting significant inter-individual differences. The removal of CpG-SNPs (Supplementary 

Figure 5A) led to a cluster of samples at the late myeloid stage.  Inter-individual variations 

remained predominant in the progenitor and early myeloid stages.  

Recursive partitioning reveals block structure of methylome architecture 
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Figure 2 Co-methylation blocks and outlier methylation patterns in CpG-SNPs. (A) Positive 

correlation of methylation status in neighboring CpGs. Density was calculated as the frequency 

of CpG pairs that fall in an area in the scatter plot (brighter red at a higher frequency). (B) 

Absence of overall correlation of methylation status between CpG-SNPs and adjacent CpGs.  

(C) Pipeline for regional methylation analysis. (D) Example of recursive partitioning–based 

segmentation of WGBS data. (E) Single-sample segmentation showing a capture of spatial 

distribution of the human methylome. (F) Enrichment of methylation variations in small 

blocks. Regions were defined by pooling segmental boundaries across all samples (see subpart 

C), and the cross-sample variation of segmental methylation levels was calculated. stdev, 

standard deviation; WGBS, whole-genome bisulfite sequencing; DMR, differentially 

methylated region. 
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Our results showed that differentially methylated CpG sites located  within 150 bp were highly 

correlated (Figure 2A), supporting the presence of a block structure that is consistent with a 

previous report(Shoemaker et al. 2010).  However, this structure was not seen when only CpG-

SNPs were used (Figure 2B), suggesting that CpG-SNPs themselves are outliers that cannot be 

used to assess biologically driven methylation changes (Supplementary Figure 6). 

To support the use of methylation blocks for robust analysis, an analytical process that used a 

recursive segmentation approach to define block structures that exhibit co-methylation patterns 

was developed (Figure 2C). Specifically, each sample was first partitioned by using the 

regression-tree approach into a set of blocks on the basis of methylation transition patterns 

(Figure 2D). Breakpoints across all samples were then pooled to derive a unified set of regions to 

reveal differentially methylated regions (DMRs). This analytical approach focuses on co-

methylation block structures and identifies blocks with differential methylation levels among 

samples, whereas outlier methylation patterns from CpG-SNPs are diluted in blocks and less 

likely to affect the analysis.  This approach was used to study the contribution of inter-individual 

variations and developmental stimuli to methylation changes observed in the in vitro myeloid 

differentiation model.  

Results from single-sample segmentation showed that the segmentation approach faithfully 

captured spatial distribution of the human methylome, in which most CpG sites are heavily 

methylated whereas CpG islands remain unmethylated (Figure 2E). There were 2 major clusters 

of blocks: (1) a set of unmethylated blocks approximately 1 kb in length, which is consistent 

with the average length of CpG islands(Deaton and Bird 2011), and (2) a set of fully methylated 

blocks of a larger size (10–100 kb). For example, CpGs in regions surrounding the canonical 

transcription start site (TSS) of MEF2C (NM_002397) as well as an alternative TSS  
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(NM_001193148) were hypomethylated, whereas intergeneic and most of the intronic regions 

were fully methylated with stochastic fluctuations. The segmentation approach accurately 

captured this pattern and was largely robust to intrinsic noises (Figure 2D). An evaluation of 

methylation variations across all samples revealed that large blocks (>10 kb) were absent when 

only blocks that showed differential methylation during in vitro myeloid differentiation were 

considered (Figure 2F), suggesting that changes in the methylome were focal during in vitro 

myeloid differentiation.  Clustering of blocks with the most variable methylation regions 

(Supplementary Figure 5B) revealed a signature nearly identical to that seen in the CpG-SNP 

Figure 3. Differentially methylated regions identified in the in vitro myeloid differentiation 
model. (A) An i-DMR in MUM1. (B) A d-DMR in SYMPK. (C) An id-DMR in FOXK1. (D) 
Pie-chart showing the types of DMRs. DMR, differentially methylated region; NA: data not 
available due to lack of sufficient coverage 
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filtered single CpG analysis (Supplementary Figure 5A). These consistent results confirm that 

the recursive partitioning–based co-methylation analysis is robust to outlier effects from CpG-

SNPs and accurately captures the embedded differential methylation patterns.  

Three types of DMRs were identified: DMRs associated with variations among normal 

individuals (i-DMRs), DMRs associated with developmental stimuli (d-DMRs), and DMRs for 

which methylation responses to developmental stimuli are dependent on inter-individual 

variations (di-DMRs).  An example of i-DMR was a 4-kb region spanning the exon–intron 

junctions with >100 CpG sites in MUM1. The region was hypomethylated in individual 3 

compared with individuals 1 and 2, which correlates with the genotype of rs80117987 

(chr19:1367095, GG genotype in individuals 1 and 2 and AG in individual 3). Methylation levels 

in all 3 individuals remained unchanged through the 3 developmental stages (Figure 3A). An 

example of d-DMR was a 2.8-kb region in SYMPK, which was hypermethylated in all 3 

individuals in the mature myeloid stage (day 12) but not the progenitor (day 0) or the early 

myeloid cell (day 3) stages (Figure 3B). A 2.4-kb intronic region on FOXK1 showed a 

methylation pattern defined by a di-DMR. In this case, hypermethylation occurred in individual 

1 at the progenitor stage (day 0) but not at the early myeloid (day 3) and mature myeloid (day 

12) stages. Methylation was not observed in individuals 2 and 3 at any developmental stage 

(Figure 3C). Overall, 34,502 DMRs were identified: 17,483 i-DMRs, 10,710 d-DMRs, and 6309 

di-DMRs (Figure 3D). Intergentic regions were significantly enriched in i-DMRs compared to d-

DMRs and di-DMRs (p < 2.2 x 10-16, OR = 1.36 and p = 2.3 x 10-13, OR = 1.37 by Fisher’s exact 

test, respectively). 
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A joint analysis of the methylation level of i-DMRs and di-DMRs with adjacent SNPs showed 

82% of the i-DMRs and di-DMRs were  associated with the genotype of adjacent SNPs, which 

forms the cisR-mQTL pattern.  

Inter-individual variations affect developmental responses  

Because DNA methylation is a common mammalian epigenetic mechanism regulating chromatin 

accessibility and gene transcription,(Bird 2002) we investigated the correlation pattern between 

Figure 4. di-DMRs correlate with differential gene expression.(A) Structure of the ACSL1 gene 
and di-DMR (a cisR-mQTL associated with rs116679280). (B) ACSL1 expression is correlated 
with the methylation level of id-DMR. (C) ASE score of ACSL1 was consistently identified in 
individual 1. FPKM, fragments per kilo base per million; DMR, differentially methylated 
region; ASE, allele-specific expression. 
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gene expression levels and regional methylation levels (from 10 kb upstream of the TSS to the 

transcription end site [TES]). A total of 227 DMRs were significantly correlated with the 

expression of 212 cis-genes. Tracking with the transcriptomic pattern, 96% of DMRs regulating 

cis-gene expression were d-DMRs (n=162) or di-DMRs (n=57).  

Figure 4 shows an example of a di-DMR (chr4:185734543-185735006) in the first intron of 

ACSL1. This region harbors many potential active transcription factor binding sites in the human 

myeloid leukemia cell line K562 (Figure 4A). The di-DMR was hypomethylated during 

differentiation, which correlates with the upregulation of ACSL1 expression (Figure 4B). This 

region also exhibited differential methylation levels, with a higher methylation seen in individual 

1 on days 3 and days 12 than for individuals 2 and 3. Interestingly, at rs116679280, individual 1 

had a heterozygous A/G genotype whereas individuals 2 and 3 had a homozygous G/G genotype. 

Consequently, although the baseline expression level of ACSL1 in progenitor cells (day 0) was 

similar among all 3 individuals, its expression level at the mature myeloid stage (day 12) in 

individual 1 was 36%–42% lower than that in individuals 2 and 3 (Figure 4B). The allelic 

expression pattern of ACSL1 in each individual was also evaluated, using heterozygous 

variations inferred from WGBS data. Specifically, the allelic-specific expression (ASE) score 

was calculated for the samples. The ASE score was high in only individual 1 (Figure 4C), further 

suggesting that the inter-individual differences in methylation caused by genetic variations may 

result in differential gene expression in response to developmental stimuli. Overall, inter-

individual variations modified methylation signatures in 26% of the functional DMRs regulated 

by differentiation stimuli in our in vitro myeloid differentiation model. 

Discussion 
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The epigenome, which describes the set of complex chemical modifications associated with 

DNA and histones, instructs gene expression and determines the developmental identity of each 

cell. It is characterized by a dynamic response to developmental stimuli such as 

cytokines(Deverman and Patterson 2009), growth factors,(Lovicu et al. 2011) and 

hormones(Dohler and Wuttke 1976). The genomic and epigenomic signatures of individuals 

jointly determine their responses to developmental changes. 

Although epigenetic responses to various developmental and environmental changes have been 

systematically studied throughout the human lifespan(Kanherkar et al. 2014) and in various 

disease states(Lopez-Serra and Esteller 2012; Stricker et al. 2013; Schoofs et al. 2014), the extent 

to which genetic profiles contribute to shaping an individual’s epigenome remains unclear. To 

investigate this important yet understudied mechanism, we designed an in vitro myeloid 

differentiation model and a recursive partitioning–based segmentation approach to investigate 

the joint contribution of developmental stage and genetic variations to the methylation dynamics. 

Our results show that genetic background is a major contributor to shaping an individual’s 

methylome architecture for a single cell in differentiation. In our model, 51% of all DMRs were 

attributed to inter-individual variations alone (i-DMRs), and an additional 18% of DMRs were 

attributed to joint effects from inter-individual variations and developmental stimuli (di-DMRs). 

Consistent with previous reports based on single CpG probes(Zhi et al. 2013), our analysis also 

revealed that 82% of i-DMRs and di-DMRs formed cisR-mQTLs, and the remaining DMRs 

might be associated with other genetic variations (e.g., small insertions and deletions or 

microsatellites) not evaluated in this study. Nevertheless, the high percentage of cisR-mQLTS in 

i-DMRs and di-DMRs emphasizes the important role of genetic background in defining an 

individual’s methylome. The abundance of di-DMRs further indicates that the genetic 
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background of individuals plays important roles in fine tuning their developmental responses at 

the level of DNA methylation.  Moreover, 26% of developmentally regulated DMRs with roles 

in cis-gene regulation were di-DMRs, suggesting that DNA methylation is the major mechanism 

by which the genetic background modulates an individual’s transcriptomic response to external 

stimuli. 

WGBS methylome analysis can be generally grouped into single CpG-based analyses and co-

methylation–based regional analyses. Compared with other methylation platforms, WGBS is 

relatively inefficient because approximately 80% of the total reads are non-informative for 

analyzing CpG methylation(Ziller et al. 2013). Thus, a recent analysis suggested that 

methylomes generated at a 30× coverage are not adequate for single CpG-based differential 

methylation analysis, but co-methylation analysis based on regional approaches can partially 

recover the lost information(Libertini et al. 2016). The recursive partitioning technique is an 

efficient nonparametric statistical learning method with a wide range of applications in 

bioinformatics, such as classification of gene expression, analysis of protein–protein interactions, 

discovery of biomarkers, and statistical genomics(Chen et al. 2011; Qi 2012). The technique is 

also powerful in identifying genome-wide regional segmentation patterns(Olshen et al. 2004; 

Chen et al. 2015). Here, we adapted and improved the recursive partitioning algorithm to analyze 

regional co-methylation patterns. The approach uses the segmentation algorithm13 to derive 

blocks of co-methylation structures in methylomes and then combine these regions across 

different samples in the dataset. The segmentation-based regional methylation approach is 

advantageous for methylome analysis because (1) it is adaptive to the segmental length or 

number of CpGs in the segments (i.e., no fixed window size), and (2) unlike hidden Markov 

model–based approaches(Stadler et al. 2011), it does not require prior knowledge of the potential 
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number of methylation states. The application of our recursive partitioning–based segmentation 

approach to analyze data from our in vitro myeloid differentiation model suggested that the 

algorithm identifies the characteristic features of human methylomes (e.g., short blocks of 

unmethylated CpG islands dispersed among long stretches of fully methylated regions). 

Although the breakpoints pooling across multiple samples resulted in a reduced block length, a 

large fraction of long blocks was retained. Our analysis suggests that our model is not only 

robust to methylation outliers caused by CpG-SNPs but also powerful for detecting DMRs. 

Our study design used an in vitro model to control development stimuli, which are critical to 

evaluate analytical approaches for investigating methylation changes driven by genetic and 

developmental transitions. The sample size of this study was small, and additional DMRs might 

be discovered in larger cohorts. For example, some large blocks with partial methylation can be 

broken into smaller regions for larger sample sizes. Nevertheless, our study presents a novel 

approach to determine the contribution of individual genetic variations during development. 

From a clinical standpoint, our study offers new insights for analyzing large-scale WGBS data in 

ongoing cancer studies(Kulis et al. 2015).  

Methods 

Bone marrow–derived myeloid cell cultures 

Human bone marrow–derived CD34+ progenitor cells were obtained through the Lonza Research 

Bone Marrow Program (1M-101C, Lonza). Cells were isolated from 3 healthy female African 

American individuals (age 22–25 years) to reduce potential confounding effects. Bone marrow–

derived CD34+ cells were isolated by positive immunomagnetic selection from the mononuclear 

fraction, and a cell purity of  ≥90% was confirmed by flow cytometry. Bone marrow CD34+ cells 
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for each culture experiment were isolated from a single individual, and the experiment was 

independently repeated 3 times.  

Primary CD34+ bone marrow progenitor cells were cultured with a combination of cytokines and 

monitored for myeloid differentiation in vitro to obtain representative and homogeneous 

populations of early and late myeloid cells. Briefly, freshly harvested cells shipped at an ambient 

temperature overnight from the vendor were designated as the day 0 sample. Immediately after 

the cells were received, a small aliquot was used for cytospin slide preparations and Wright–

Giemsa staining of cells for flow cytometry analysis. Approximately 0.3 million CD34+ cells 

were collected for RNA or DNA extraction (day 0 sample). All remaining cells were cultured in 

Iscove's Modified Dulbecco's Medium (IMDM) supplemented with 10% fetal calf serum 

(Thermo Fisher Scientific), 100 ng/mL recombinant human stem cell factor, and 100 ng/mL 

recombinant human interleukin-3 (PeproTech), with a density of 0.1 million cells per milliliter of 

medium. On the third day, cells were harvested for phenotype analysis, and 0.3 million cells (day 

3 sample) were collected for RNA and DNA extraction. The remaining cells were washed and 

resuspended in IMDM with 100 ng/mL IL-3, 100 ng/mL stem cell factor, and 10 ng/mL 

granulocyte colony-stimulating factor (PeproTech). The medium was changed every 2 days, and 

cells were harvested on day 12 for phenotypic analysis and RNA and DNA extraction (day 12 

sample).  

Harvested cells were stained with fluorescence-conjugated anti-human CD34, CD13, and CD11b 

monoclonal antibodies (BD Biosciences Pharmingen, 560941, 557454, and 561685) and 

analyzed by flow cytometry on a BD LSRII or BD FACSAriaII (BD Biosciences). Data were 

analyzed using the FlowJo software (Tree Star, Inc.).  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132985doi: bioRxiv preprint 

https://doi.org/10.1101/132985
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

miRNA array, RNA sequencing, and WGBS data generation 

In vitro–cultured bone marrow cells at different time points were collected, cryopreserved, and 

thawed for DNA and RNA isolation by using RNeasy and DNeasy, respectively (QIAGEN). 

DNA and RNA were quantitated by the Qubit fluorometer and stored at –80°C for further 

processing.  

To construct RNA-Seq libraries, 2–5 µg of total RNA was extracted from samples by using the 

RNeasy Mini Kit (QIAGEN) according to the manufacturer's instructions. RNA integrity was 

measured by using an 2100 Bioanalyzer Lab-on-a-Chip platform (Agilent Technologies). Total 

RNA was treated with DNase I (Invitrogen) and enriched for poly A–containing mRNA by using 

Dynabeads Oligo (Invitrogen). cDNA synthesis was performed by using random hexamers and 

the Superscript Double-Stranded cDNA Synthesis Kit (Invitrogen).  

Total RNAs were labeled by using the miRNA Complete Labeling and Hyb Kit (Agilent 

Technologies), followed by hybridizing to the Human miRNA v19 Microarray (Agilent 

Technologies, 046064), which contains 4774 unique biologic featured probes targeting 2006 

mature miRNAs according to human miRBase, version 19.0 (www.mirbase.org, August 2012). 

Microarrays were scanned by using an G2565CA Array Scanner System (Agilent Technologies) 

at a  resolution of 3 µm, and data were extracted by the Feature Extraction software (v10.5.1.1) 

(Agilent Technologies), using the miRNA_107_Sep09 protocol. Data were processed by the 

Partek Genomics Suite 6.5 (Partek Inc). After quantile normalization among arrays, each probe 

was summarized with a single log intensity value. 

To construct WGBS libraries, DNAs were sheared by sonication with a E220 Focused- 

ultrasonicator (Covaris), and DNA fragments were enriched to a fragment size of approximately 
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300 bp by using AMPure XP beads (Agencourt Bioscience Corp.). After end repair and 

adenylation, the methylation adaptors (Illumina, Part 100-0010) were ligated by using DNA T4 

ligase (NEB, M0202L) for 1 h at 16°C.   Bisulfite conversion of genomic DNA was performed 

by using the EZ DNA Methylation Kit (Zymo Research) according to the manufacturer's 

protocol. Briefly, 0.8–1.2 µg of DNA was denatured at 95°C for 30 sec and bisulfite conversion 

was carried out at 64°C for 2.5 h, followed by another cycle of denaturation at 95°C for 30 sec 

and bisulfite conversion at 55°C for 15 min. After conversion, samples were desulphonated and 

eluted by using a column preparation. Adaptor-ligated DNA was enriched through 8 cycles of 

PCR by using the KAPA HiFi Hotstart Uracil+ kit (KAPA Biosystems).  PCR products were 

purified by AMPure XP beads, and the final fragment size was enriched to 400–450 bp before 

loading on to a flow cell for clustering and for sequencing (Illumina HiSeq 2500). 

RNA-seq data analysis 

Paired-end reads from mRNA-Seq were aligned to the following 4 database files by using a 

Burrows–Wheeler Aligner (0.5.5): (i) human NCBI Build 37 reference sequence, (ii) RefSeq, 

(iii) a sequence file representing all possible combinations of non-sequential pairs in RefSeq 

exons, and (iv) AceView flat file downloaded from UCSC, representing transcripts constructed 

from a human expressed sequence tag. The final BAM (compressed binary version of the 

Sequence Alignment/Map [SAM] format) file was constructed by selecting the best alignment in 

the 4 databases. 

Contributions of inter-individual differences and developmental differentiation to gene 

expression variations (FPKM ≥ 1 in the sample with highest expression,  ≥2-fold difference 

between the samples with the highest and lowest expressions) were evaluated in a linear 
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regression model (categorical variables for both subject identifiers (IDs) and developmental 

stages): 

log�����	~��
����_�� + �������������_�����. 

Stepwise backward model selection was performed by using the step() function in R (version 

3.0.1). 

Hierarchical clustering was performed by using the Spearman rank correlation distance for RNA-

Seq and microRNA array expression data. 

To calculate the ASE score for ACSL1, heterozygous SNPs in the coding region of ACSL1 gene 

were identified for each individual (3–6 SNPs per sample). The ASE score of an mRNA-Seq 

sample was calculated as the average value of absolute differences between the fraction of the 

reference allele and the fraction of the alternative allele for all heterozygous SNPs with at least a 

10× coverage.  

WGBS data analysis 

Paired-end reads from WGBS were aligned to the GRCh37-lite reference genome by using 

BSMAP (version 2.74), with the following parameters (-z 33 -f 5 -g 3 -r 0 -m 17 -x 600 -u). The 

average genome-wide bisulfite conversion rate was measured as the genome-wide CpH 

conversion rate. Raw methylation values  including β-values ( =
##$%&'()%$*	,

##$%&'()%$*	,-#./0$%&'()%$*	,
) 

and m-values (� = log1
##$%&'()%$*	,-2.3

#./0$%&'()%$*	,-2.3
) at individual CpG sites and SNPs were called by 

Bis-SNP (version 0.82.2)(Liu et al. 2012).  Only CpGs with a coverage ≥5× were included for 

further analysis(Ziller et al. 2015). Because of the expected coverage differences between males 
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and females as well as the DNA methylation changes during the X-inactivation process in 

females, we only analyzed autosome CpGs in this study. 

Differential single CpG analysis was performed for CpGs surveyed in all samples, using a linear 

model with stepwise backward selection: 

�,45~��
����_�� + �������������_����� 

CpGs not showing strong inter-individual variations (i.e., difference between average β values of 

any 2 individuals <0.1) were excluded from inter-individual analysis. CpGs showing no strong 

developmental variations (i.e., difference between average β values of any 2 stages <0.1) were 

excluded from developmental analysis. 

The sample-level methylation block pattern was established by regression tree–based 

segmentation(Chen et al. 2015) on m-values. Briefly, we assumed that m-values of CpGs in a 

segment are derived from a normal distribution that with a mean at its average m-value. The 

segment boundaries were defined by recursive partitioning–based regression-tree algorithms. We 

selected the optimal model that minimizes the Bayesian information criterion(Schwarz 1978): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nkn
n

MD
nnnkLMBIC log1log2loglog1log2 +++







+=++−= π , 

where M is a model of  k segments from n observed CpGs. L and D(M) are the likelihood and  

deviance of the model, respectively. Neighboring segments with an average β difference ≤0.1 or 

P > 1 × 10-6 were recursively merged. Unique breakpoints between adjacent segments were 

collected from all samples, and the collection of regions included in the DMR analysis was 
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defined across samples.  The preprocessing and segmentation codes are available at 

http://ftp.stjude.org/pub/software/methylation-analysis-code.tar. 

The i-DMRs and d-DMRs (range of β values ≥0.1) were identified in a linear regression model 

between regional average m-values and both subject IDs and developmental stages, followed by 

a stepwise backward model selection: 

�6$789/~��
����_�� + �������������_����� 

Regions with significant inter-individual or developmental differences (q-value ≤ 0.05) were 

classified as i-DMRS or d-DMRs, respectively. 

Hierarchical clustering was performed by using the Spearman rank correlation distance on β-

values from the 50,000 most variable CpGs or regions. 

Correlation between blocks with variable methylation (range of β-values ≥0.3) and adjacent 

genes with variable expression (methylation region overlapping 10-kb upstream of the TSS to 

the TES (at least a 2-fold difference between highest and lowest FPKM, with highest FPKM 

being ≥1) were calculated. To reduce potential over-segmentation from pooling breakpoints from 

all samples, gene or block pairs with q-value ≤ 0.5 were retained for merging, where adjacent 

blocks (no more than 500-bp apart) for the same gene with the same orientation (positive or 

negative) of correlation were merged. Correlations were re-evaluated, and pairs with final q-

value ≤ 0.1 were considered differentially methylated regions significantly correlated with gene 

expression. 
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The cisR-mQTLs were detected by evaluating the association between m-values of the CpGs in 

the block and the genotype of SNPs within the region or up to 1000 bp away by using a linear 

model followed by stepwise model selection: 

�~:�;<= + ;����>��?@A + �������������_����� 

Adjacent blocks were merged by using the approaches described earlier. Regions with CpGs 

significantly associated with SNP genotype (q-value ≤ 0.05) were classified as cisR-mQTLs. 
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Figure legends 

Figure 1.  In vitro myeloid differentiation experiment. (A) Wright–Giemsa staining of  cytospin 

preparations at different time points during in vitro myeloid differentiation. (B) 

Immunophenotype analysis by flow cytometry at different time points during in vitro myeloid 

differentiation. (C) Expression of representative genes ITGAM, CEBPE, and CD34. (Error bar 

represents 1 standard deviation across the 3 individuals.) (D) Hierarchical clustering analysis of 

transcriptome data. (E) Hierarchical clustering analysis of the most variable CpGs. FPKM, 

fragments per kilo base per million. 

Figure 2. Co-methylation blocks and outlier methylation patterns in CpG-SNPs. (A) Positive 

correlation of methylation status in neighboring CpGs. Density was calculated as the frequency 

of CpG pairs that fall in an area in the scatter plot (brighter red at a higher frequency). (B) 

Absence of overall correlation of methylation status between CpG-SNPs and adjacent CpGs.  (C) 

Pipeline for regional methylation analysis. (D) Example of recursive partitioning–based 

segmentation of WGBS data. (E) Single-sample segmentation showing a capture of spatial 

distribution of the human methylome. (F) Enrichment of methylation variations in small blocks. 

Regions were defined by pooling segmental boundaries across all samples (see subpart C), and 

the cross-sample variation of segmental methylation levels was calculated. stdev, standard 

deviation; WGBS, whole-genome bisulfite sequencing; DMR, differentially methylated region. 

Figure 3. Differentially methylated regions identified in the in vitro myeloid differentiation 

model. (A) An i-DMR in MUM1. (B) A d-DMR in SYMPK. (C) An id-DMR in FOXK1. (D) Pie-

chart showing the types of DMRs. DMR, differentially methylated region; NA: data not 

available due to lack of sufficient coverage 
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Figure 4. di-DMRs correlate with differential gene expression.(A) Structure of the ACSL1 gene 

and di-DMR (a cisR-mQTL associated with rs116679280). (B) ACSL1 expression is correlated 

with the methylation level of id-DMR. (C) ASE score of ACSL1 was consistently identified in 

individual 1. FPKM, fragments per kilo base per million; DMR, differentially methylated region; 

ASE, allele-specific expression. 
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