
 

Metagenomic binning through low 
density hashing 
 
Yunan Luo1,*, Y. William Yu2,3,*, Jianyang Zeng4, Bonnie Berger2,3,**, Jian Peng1** 
 

1 Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL, 
USA 

2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA 
3 Department of Mathematics, MIT, Cambridge, MA, USA 
4 Tsinghua University, Beijing, China 
 
* These authors contributed equally to this work. 
** Correspondence: bab@mit.edu and jianpeng@illinois.edu 
 

 
Abstract: 

 
Bacterial microbiomes of incredible complexity are found throughout the world, from exotic 
marine locations to the soil in our yards to within our very guts. With recent advances in 
Next-Generation Sequencing (NGS) technologies, we have vastly greater quantities of 
microbial genome data, but the nature of environmental samples is such that DNA from 
different species are mixed together. Here, we present Opal for metagenomic binning, the 
task of identifying the origin species of DNA sequencing reads. Our Opal method 
introduces low-density, even-coverage hashing to bioinformatics applications, enabling 
quick and accurate metagenomic binning. Our tool is up to two orders of magnitude faster 
than leading alignment-based methods at similar or improved accuracy, allowing 
computational tractability on large metagenomic datasets.  Moreover, on public 
benchmarks, Opal is substantially more accurate than both alignment-based and 
alignment-free methods (e.g. on SimHC20.500, Opal achieves 95% F1-score while 
Kraken and CLARK achieve just 91% and 88%, respectively); this improvement is likely 
due to the fact that the latter methods cannot handle computationally-costly long-range 
dependencies, which our even-coverage, low-density fingerprints resolve. Notably, 
capturing these long-range dependencies drastically improves Opal’s ability to detect 
unknown species that share a genus or phylum with known bacteria.  Additionally, the 
family of hash functions Opal uses can be generalized to other sequence analysis tasks 
that rely on k-mer based methods to encode long-range dependencies. 
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Metagenomics is the study of the microbiome— the many genomes (bacterial, fungal, and 

even viral) that make up a particular environment. The microbiome has already been linked to 

human health: soil from a particular region can lead to the discovery of new antibiotics [1]; the 

human gut microbiome has been linked to Crohn's Disease [2], obesity [3] and even Autism 

Spectrum Disorder [4]. Metagenomics fundamentally asks what organisms are present in a 

genomic sample with the goal of gaining insight into function. However, the sequencing datasets 

required to shine any light on these questions are gigantic and vastly more complex than standard 

genomic datasets. This data results in major identification challenges for certain bacterial, as well 

as viral, species, strains, and genera [5, 6].  

We focus on whole-genome metagenomic DNA sequencing, since cheaper Amplicon-

based sequencing methods, which concentrate on the diversity of given marker genes (e.g. the 

16S rRNA gene) and only analyze protein-coding regions, are limited in their ability to provide 

microbial functions from the samples [7, 8, 9]. Unfortunately, metagenomic sequencing data is 

inherently complex; the mixing of DNA from many different, sometimes related organisms in 

varying quantities poses substantial computational and statistical challenges to metagenomic 

binning, the process of grouping reads and assigning them to an origin organism. This important 

first step occurs before downstream data analysis can be applied to elucidate the structure of 

microbial populations and assign functional annotations [7]. Existing sequence alignment tools, 

such as BWA [10], Bowtie 2 [11] or BLAST [8], can readily be used and usually provide high-

resolution alignments and accurate results by simply finding the highest scoring matching 

genome; they have the added advantage of tolerance to small numbers of mismatches or gaps. 

However, the computational cost of alignment-based methods becomes prohibitive as 

metagenomic datasets continue to grow [12, 13]. 

Alternatively, the field has turned to alignment-free metagenomic binning (also known as 

compositional binning) [14], which assigns sequence fragments to their taxonomic origins 

according to specific patterns of their constituent k-mers. State-of-the-art tools Kraken [12] and 
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CLARK [15] use exact occurrences of uniquely discriminating k-mers in reads and are very 

efficient, but are limited in both their sensitivity and ability to detect unknown organisms. Other 

approaches rely on supervised machine learning (ML) classifiers, such as Naive Bayes or support 

vector machines (SVMs), trained on a set of reference genome sequences to classify the origins 

of metagenomic fragments [16, 17, 18, 19] using the relative k-mer frequency vector of a read. 

More recently, latent strain analysis performs covariance analysis of k-mers to partition reads for 

low-abundance strain assembly and detection [20]. All these approaches are often faster than 

alignment-based methods [10]. However, because they require exact matches of k-mers, these 

methods exhibit drawbacks including intolerance to mismatches or gaps; here we develop 

algorithmic tools to address these shortcomings. 

As large k-mer sizes incur high memory usage and computing requirements (the space of 

k-mers grows exponentially in k), existing metagenomic binning methods generally work with a 

low fixed dimensionality (k): PhyloPythia [21] uses an ensemble of SVM models trained on 

contiguous 6-mers and its successor, PhyloPythiaS [17], further improves the binning accuracy 

by tweaking the SVM model and simultaneously including k-mers of multiple sizes (k = 3, 4, 5, 6) 

as compositional features. Some existing methods use mid-size k-mers (e.g. k=31), but primarily 

for fast indexing and nearest exact search [15, 22, 23, 12] and not in a supervised manner. Longer 

k-mers have the potential to capture compositional dependency within larger contexts because 

they span a larger section of the read. They can lead to higher binning accuracy but are also more 

prone to noise and errors if used in the supervised setting. To address this problem, locality-

sensitive hashing (LSH) techniques, such as minHash [24] and randomly spaced k-mer 

construction have been developed for representing long k-mers sparsely [25], but as they are 

currently used in the high-density regime [22], they still run into the same exponential space 

problem of large k-mer sizes (Online Methods). However, to the best of our knowledge low-density 

hashing has not previously been used for metagenomic analysis. 
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Here we newly overcome these bottlenecks in handling long k-mers by developing a novel 

compositional metagenomic binning algorithm, Opal, which efficiently encodes long k-mers using 

low-dimensional profiles generated using even-coverage, low-density hashing. We take 

inspiration from low-density parity-check (LDPC) error correcting codes (also known as Gallager 

codes) to generate evenly-covering sets of random positions of a k-mer [26, 27], which we then 

apply to the machine learning pipeline introduced by Vervier, et al. [18] for metagenomic 

sequence classification. This innovation overcomes the limitations of uniformly random LSH 

functions, which despite their many nice theoretical properties, are typically not efficient for the 

task of constructing metagenomic fingerprints because of uneven coverage (Figure 1). 

Remarkably, when tested on a large dataset with 50 microbial species, Opal achieves 

both improved accuracy and up to two orders of magnitude improvement in binning speed on 

large datasets as compared to BWA-MEM [10], a state-of-the-art alignment-based method 

(Supplementary Fig S1-2); we can additionally use Opal as a first-pass coarse search [13, 28] 

before applying BWA-MEM for nearly 20 times speedup for the aligner (Supplementary Fig S2). 

As other compositional classifiers have similar speed gains over alignment-based methods, we 

shall henceforth focus on comparisons against compositional methods. 

We offer two major conceptual advances in this work. First, although low-density LSH with 

uneven coverage has previously been used for fast sequence alignment and assembly [29, 9], it 

is the first time that it has been used for compositional metagenomic binning. Second, we have 

developed LSH functions based on the Gallager design for even coverage of very long k-mers 

(e.g. k = 64, 128), making the use of long k-mers practically possible. Of note, high density LSH 

(otherwise known as spaced-seeds) has been applied to metagenomic binning [2], but lowering 

the density is problematic without our second innovation to ensure even coverage of locations 

within a k-mer, as uneven coverage significantly decreases accuracy (Fig. 2). In this figure, we 

first importantly observe that low-density random long k-mer LSH provides better training 

accuracy than contiguous short k-mers [18], even when the feature space for the short k-mers is 
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larger. Second, even coverage using Gallager codes provides another substantial decrease in 

the classification error; as substitution error rate increases, Opal’s advantages become ever more 

apparent. 

Opal outperforms the Kraken [12] and Clark [15] classifiers at assigning reads to both 

known species and to higher phylogenetic levels for unknown species (Figure 3).  On three 

published benchmarks of real and simulated data with either 10 or 20 species used in previous 

testing of Kraken and Clark [12, 15], Opal outperforms both methods when trained on 24-mers 

with 2 hashes of row-weight 12 (Fig 3a). We also compared Opal to MetaPhlAn2 [30] for 

metagenomic profiling; even using their (MetaPhlAn2’s) marker genes, Opal performs better on 

the species and genus levels (Supplementary Table S3). Opal thus achieves better accuracy than 

both alignment-based and existing compositional k-mer methods for classifying known species, 

at improved or similar runtimes. 

Notably, Opal’s performance increase is especially pronounced at higher phylogenetic 

levels (Fig 3b). When tested on a large benchmark of 193 species [18], Opal demonstrates 

greater sensitivity to novel lineages, where the source genomes of the sequenced reads share 

either a genus or phylum but are dissimilar at lower phylogenetic levels (Fig 3c). By detecting the 

genus or phylum of reads originating from unidentified species, Opal enables scientists to perform 

further analyses on reads by starting with information on the phylogenetic histories of those 

unknown species. 

Additionally, Opal is effective at the subspecies level. When trained on subspecies 

references, even for seven closely related subspecies of E. coli, Opal disambiguates error-free 

synthetic reads with <15% classification error, while Kraken and CLARK both had over 30% 

classification error (Supplemental Fig S3). For subspecies classification, we found it necessary 

to train at a much higher depth of simulated read coverage than higher-order classification to 

increase accuracy to acceptable levels, likely due to the fact that related subspecies share many 

substrings of nucleotides in their genomes. 
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Not only is Opal a drop-in tool for metagenomic analysis pipelines (e.g. Vervier, et al. [18]), 

but the ideas that went into its construction can also potentially be applied to improve the 

discriminative power of other methods. The Opal Gallager LSH functions can immediately be 

used in lieu of contiguous k-mers in other metagenomic tools, such as Latent Strain Analysis [20]. 

Our method can also be seen as a new dimensionality reduction approach for genomic sequence 

data, extending the ordinary k-mer profile-based methods with compressed signatures, or 

fingerprints, of the reads. 

With improvements in metagenomic sequencing technologies producing ever larger 

amounts of raw data, fast and accurate classifiers will become essential for handling the data 

deluge. Here we show that with a straightforward modification to the choice of hash functions, we 

can substantially improve feature selection and thus accuracy over other state-of-the-art 

classifiers. This improved accuracy manifests itself most strongly at higher phylogenetic levels, 

allowing Opal to better classify reads originating from unknown species. We expect Opal to be an 

essential component in the arsenal of metagenomic analysis toolkits. 

 

The Opal software (available at http://opal.csail.mit.edu and 

https://github.com/yunwilliamyu/opal) will greatly benefit any researchers who are producing and 

analyzing large amounts of environmental metagenomic sequencing data. 
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Figure 1. Low-density hashing with even coverage. (a) Random projections onto subspaces 
(left) cover all positions evenly only in expectation, and for small numbers of hash functions, will 
give uneven coverage. Using Gallager-inspired low density parity check (LDPC) codes allows us 
to guarantee even coverage of all positions in the k-mer (right) with a small number of hash 
functions. (b) Intuitively, one can think of a (k, t)-hash function as a 0/1 vector of length k with t 
1's specifying the locations in the k-mer that are selected. Given any (k, t)-hash function h (e.g. 
the vector with t 1's followed by k-t 0's), one can uniformly randomly construct another (k, t)-hash 
function by permuting the entries of h. The key to the Opal's Gallager-inspired LSH design is that 
instead of starting with a single hash function and permuting it repeatedly, we start with a hash 
function matrix H which is a low-density parity check matrix. H is designed such that in the first 

row ℎ1, the first t entries are 1, in the second row ℎ2, the second t entries are 1, and so on, until 
each column of H has exactly one 1. Permuting the columns of H repeatedly generates random 
LSH functions that together cover all positions evenly, ensuring that we do not waste coding 
capacity on any particular position in the k-mer. Additionally, for very long k-mers, we can 
construct the Gallager LSH functions in a hierarchical way to further capture compositional 
dependencies from both local and global contexts (See Online Methods). (c) The rows of H are 
then used as hash functions.  
 

C 
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Figure 2. Comparison of Opal against compositional SVM-based approaches. On a synthetic dataset 
of fragments of length 200 drawn from an in-house dataset of 50 bacterial species, using Opal hash 
functions as features outperforms uniformly random locality sensitive hash (LSH) functions, as well as using 
contiguous 16-mers and 12-mers, with (a) substitution errors and (b) indels. We note particularly good 
robustness against substitution errors. 
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Figure 3. Comparison of Opal against Kraken and CLARK. (a) Opal achieves higher classification 
accuracies on three public benchmark data sets than two other state-of-the-art compositional classifiers.  
(b) Opal’s performance increase is especially pronounced at higher phylogenetic levels on a benchmark 
set of 193 species from the literature [18]; for the genus-level study, we trained Opal using the genus as 
the class label instead of the species, and similarly for the phylum-level study. (c) This increase allows Opal 
to have greater sensitivity to novel lineages, where the source genomes of the sequenced reads share 
either a genus or phylum, but not lower phylogenetic levels, with the training data Opal is given. That is, for 
the genus-level comparison, we removed a species from the dataset, and then trained at the genus-level 
on the remaining species, finally testing if we could correctly identify the genus of the removed species from 
its reads. 
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Compositional read classification with 𝑘-mer profiles 
We assume that a sequence fragment 𝑠 ∈ 𝛴𝐿, where 𝛴 = {𝐴, 𝑇, 𝐺, 𝐶}, contains 𝐿 nucleotides. A 𝑘-

mer, with 𝑘 < 𝐿, is a short word of 𝑘 contiguous nucleotides. We define the 𝑘-mer profile of 𝑠 in a 

vector representation 𝑓𝑘(𝑠) ∈ 𝑅4𝑘
 . If we index each 𝑘-mer as a binary string with length 2𝑘, then 

we have a one-to-one mapping between any 𝑘-mer and an integer from 0 to 22𝑘 . In the rest of 

the paper, we will not distinguish the 𝑘-mer string with its integer presentation 𝑖 for notational 
simplicity. Each coordinate in the 𝑘-mer profile 𝑓𝑘(𝑠, 𝑖) stores the frequency of 𝑘-mer 𝑖  in the 

sequence fragment 𝑠. For instance, for a fragment 𝑠 = 𝐴𝐴𝑇𝑇𝐴𝑇, its 2-mer profile 𝑓2(𝑠) has 4 non-
zero entries: 𝑓2(𝑠, 𝐴𝐴)  =  1/5, 𝑓2(𝑠, 𝑇𝑇) = 1/5, 𝑓2(𝑠, 𝐴𝑇) = 2/5 and 𝑓2(𝑠, 𝑇𝐴) = 1/5. In this way, 

instead of representing a 𝐿-nucleotide fragment in 𝑂(4𝐿), we can use 𝑘-mer profile to represent it 

in 𝑂(4𝑘) . Similarly, we can construct 𝑘 -mer profiles given hash functions that specify other 

positional subsequences of the 𝑘-mer, rather than only contiguous subsequences. 
 
After the 𝑘 -mer profile has been constructed, we can use supervised machine learning 
classification algorithms, such as logistic regression, naive Bayes classifier and support vector 
machines, to train a binning model. The training data can be generated by sampling 𝐿-nucleotide 
fragments from the reference genomes with taxonomic annotations. In particular, in this paper, 
we used one-against-all support vector machines, implemented using Vowpal Wabbit. Further 
details are given for specific experiments. 

Locality sensitive hashing 
LSH is a family of hash functions that have the property that two similar objects are mapped to 
the same hash value [31]. For the metagenomic binning problem, we are only interested in strings 

of length 𝑘.Then a family of LSH functions can be defined as functions ℎ: 𝛴𝑘 → 𝑅𝑑 which map 𝑘-

mers into a 𝑑 -dimensional Euclidean space. Assume that we consider Hamming distances 

between 𝑘-mers, if we choose ℎ randomly and for two 𝑘-mers 𝑠1 and 𝑠2 with at most 𝑟 different 
positions, ℎ(𝑠1)  =  ℎ(𝑠2) holds with probability at least 𝑃1. For two 𝑘-mers 𝑠3 and 𝑠4 with more 

than 𝑅 different positions, ℎ(𝑠3) ≠ ℎ(𝑠4) holds with probability at least 𝑃2. With the construction of 

a LSH family, we can amplify 𝑃1  or 𝑃2  by sampling multiple hash functions from the family. 
Compared with the straightforward k-mer indexing representation, the LSH scheme can be more 
compact and more robust. For example, we can construct LSH functions such that 𝑑 ≪  4𝑘 . 
Moreover, when a small number of sequencing errors or mutations appear in the 𝑘-mer, LSH can 

still map the noisy 𝑘-mer into a feature representation that is very similar to original 𝑘-mer. This 
observation is highly significant since mutations or sequencing errors are generally inevitable in 
the data, and we hope to develop compositional-based methods less sensitive to such noises. 
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One way to construct LSH functions on strings under Hamming distance is to construct index 
functions by uniformly sampling a subset of positions from the k-mer. Specifically, given a string 
𝑠  of length 𝑘  over 𝛴 , we choose 𝑡  indices 𝑖1, … , 𝑖𝑡  uniformly at random from {1, … , 𝑘}  without 

replacement. Then, the spaced (𝑘, 𝑡)-mer can be generated according to 𝑠 and these indices. 

More formally, we can define a random hash function ℎ: Σ𝑘 → 𝛴𝑡 to generate a spaced (𝑘, 𝑡)-mer 
explicitly: 

ℎ(𝑠)  = 〈𝑠[𝑖1], 𝑠[𝑖2], … , 𝑠[𝑖𝑡]〉. 
 
The hash value ℎ(𝑠) can also be seen as a 4𝑡 dimensional binary vector with only the string ℎ(𝑠)’s 

corresponding coordinate set to 1 and otherwise 0. It is not hard to see that such LSH function ℎ 
has the property that it maps two similar 𝑘-mers to the same hash value with high probability. For 
example, consider two similar 𝑘-mers 𝑠1 and 𝑠2 that differ by at most 𝑟 nucleotides, then the 
probability that they are mapped to the same value is given by 

𝑃𝑟[ℎ(𝑠1)  =  ℎ(𝑠2)] ≥ (
𝑘 − 𝑟

𝑡
) (

𝑘

𝑡
)⁄  

 
For two k-mers 𝑠3 and 𝑠4 that differ at least 𝑅 nucleotides, the probability that they are mapped to 
different value is given by 

𝑃𝑟[ℎ(𝑠3) ≠  ℎ(𝑠4)]  ≥  1 −  ∑ (
𝑘 − 𝑗

𝑡
) (

𝑘

𝑡
)⁄

𝑗≥𝑅

 

With the family of LSH functions, we randomly sample a set of 𝑚 LSH functions and concatenate 

them together as the feature vector for a long 𝑘-mer. Note that the complexity of the LSH-based 

feature vector is only 𝑂(𝑚4𝑡), much smaller compared to 𝑂(4𝑘) that is the complexity of the 

complete 𝑘-mer profile, so long as 𝑡 is much smaller than 𝑘. As an aside, this is the reason that 

high-density hashing still runs into the exponential space blow-up problem. When 𝑡 = 𝑐𝑘, for some 

constant 𝑐 > 0, 𝑂(4𝑐𝑘) is still exponential in 𝑘. It is for this reason that we turn to low-density 

hashing, where 𝑡 is a small constant, in the next section. 
 
More importantly, the LSH-based feature vector is not sensitive to substitution errors or mutations 

in the 𝑘-mer if 𝑚 and 𝑡 are well chosen, but for the traditional k-mer profile, even one nucleotide 
change can change the feature vector completely. To compute the feature vector for a 
metagenomic fragment with length 𝐿, we first extract all 𝑘-mers by sliding a window of length 𝑘 

over the sequence, and then apply ℎ on each 𝑘-mer to generate LSH based feature vectors and 
then normalize the sum of the feature vectors by 𝐿 − 𝑘 + 1. In this way, one can easily show that 
similar fragments can also be mapped to similar LSH-based feature vectors. After the feature 
vectors are generated for fragments with taxonomic annotations, we train a linear classifier for 
metagenomic binning. It is also fairly straightforward to show that similar fragments have similar 
classification responses if the coefficients of the linear classification function are bounded. One 
may expect that the complexity of linear classification with k-mer profiles would be lower since 

there are at most 𝐿 − 𝑘 + 1 different 𝑘-mers in a fragment and can be computed easily using 
sparse vector multiplications, but we find that the LSH based feature vector is also sparse in 
practice and the indexing overhead is much smaller when constructing the feature vectors, since 
the LSH-based method can have much smaller dimensionality. In practice, the LSH-based 

methods can sometimes be even faster if 𝑚 and 𝑡 are not too large. 
 

Gallager low-density locality-sensitive hashing 
Despite that the random LSH function family described above has a lot of nice theoretical 
properties, uniformly sampled LSH functions are usually not optimal in practice. Theoretical 
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properties of LSH functions hold probabilistically, which means that we need to sample a large 
number of random LSH functions to make sure the bounds are tight. However, practically, we 
simply cannot use a very large number of random LSH functions to build feature vectors for 
metagenomic fragments, given the limited computational resources. Thus it would be ideal if we 
could construct a small number of random LSH functions that are sufficiently discriminative and 
informative to represent long 𝑘-mers. Here we take inspiration from the Gallager code or low-
density parity-check code that has been widely used for noisy communication. The idea behind 
the Gallager code is similar to our LSH family but with a different purpose, namely error correction. 
The goal of the LDPC code is to generate a small number of extra bits when transmitting a binary 
string via a noisy channel [26, 27]. These extra bits are constructed to capture the long-range 
dependency in the binary string before the transmission. After the message string and these extra 
bits have been received, a decoder can perform error correction by performing probabilistic 
inference to compare the differences between the message string and these code bits to infer the 
correct message string. In the same spirit, we here adopt the idea behind the design of the LDPC 
code to construct a compact set of LSH functions for metagenomic binning. 
 
To construct compact LSH functions, we hope to not waste coding capacity on any particular 
position in the 𝑘-mer. While, under expectation, uniformly sampled spaced (𝑘, 𝑡)-mers on average 
cover each position equally, with a small number of random LSH functions, it is likely that we will 
see imbalanced coverage among positions since the probability of a position being chosen is 
binomially distributed. The Gallager’s design of LDPC, on the other hand, generates a subset of 
positions not uniformly random but make sure to equally cover each position [26]. So we can use 
the Gallager’s design to generate spaced (𝑘, 𝑡)-mers. The Gallager’s LDPC matrix 𝐻 is a binary 

matrix with dimension 𝑚 ×  𝑘, and has exactly 𝑡 1’s in each rows and 𝑤 1’s in each column. The 
matrix 𝐻 can be divided into 𝑤 blocks with 𝑚/𝑤 rows in each block. We first define the first block 

of rows as an (
𝑚

𝑤
) × 𝑘 matrix 𝑄: 

𝑄 = [

1 1 1 ⋯ 1 1
1 1 1 ⋯ 1 1

⋱
1 1 1 ⋯ 1 1

], 

where each row of matrix Q has exactly t consecutive 1’s from left to right across the columns. 
Every other block of rows is a random column permutation of the first set, and the LDPC matrix 
H is given by: 

𝐻 = [𝑄; 𝑄𝑃1; … ; 𝑄𝑃𝑤−1]𝑇, 
where 𝑃𝑖  is a uniform random 𝑛 ×  𝑛 permutation matrix for 𝑖 =  1, … , 𝑤 − 1. An example with 
𝑘 =  9, 𝑡 =  3, 𝑚 =  6, 𝑤 =  2  is shown in Figure 1. An equivalent bipartite graph with the 
Gallager design matrix as the adjacency matrix also is shown. The algorithm for constructing the 
LDPC design matrix is as follows: 
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We use each row of 𝐻 to extract a spaced (𝑘, 𝑡)-mer to construct an LSH function. Note that the 
first set of 𝐻 gives contiguous 𝑡-mers. With 𝑚 Gallager LSH functions, we can see that each 

position in a 𝑘-mer is equally covered 𝑤 times, while the same 𝑚 uniformly sampled LSH function 
is very likely to have very imbalanced coverage times for different positions because of the high 

variance (= 𝑚
𝑡(𝑘−𝑡)

𝑘2  ). To further improve the efficiency, we construct random LSH functions with 

minimal overlap using a modified Gallager design algorithm. The idea is to avoid the “4-cycles” in 
the bipartite graph representation, as we hope not to encode two positions together in two 
“redundant” LSH functions [27]. An algorithm which finds “4-cycles” and removes them is shown 
here: 

 
 
For very long 𝑘-mers, we can use a hierarchical approach to generate low-dimensional LSH 

functions for very long-range compositional dependency in 𝑘-mers. We first generate a number 
of intermediate spaced (𝑘, 𝑙)-mers using the Gallager’s design matrix. Then from these (𝑘, 𝑙)-mers, 
we again apply the Gallager’s design to generate (𝑙, 𝑡)-mers to construct the (𝑘, 𝑙, 𝑡) hierarchical 
LSH functions. 

Benchmarks 
Comparisons against Vervier, et al. SVM approaches (Figure 2) 
For the synthetic benchmark we used in measuring the robustness of using Opal’s evenly spaced 
hashes for SVM features (Figure 2), we started with 50 full bacterial genomes in Fasta format 
downloaded from NCBI database. 

Algorithm 1: Gallager’s LDPC Matrix: 
1. Input: 𝑘, 𝑡, 𝑚 

2. 𝑄 ← all zero (
𝑚

𝑤
) × 𝑘 matrix 

3. for 𝑖 ← 1 to 
𝑚

𝑤
 do 

4.      for 𝑗 ← (𝑖 − 1) × 𝑡 + 1 to 𝑖 × 𝑡 do 

5.           𝑄[𝑖, 𝑗] ← 1 
6.      end for 
7. end for 

8. choose 𝑤 − 1 uniform random 𝑛 × 𝑛 permutation matrix 𝑃𝑖, for 𝑖 = 1, … , 𝑤 − 1. 

9. 𝐻 = [𝑄; 𝑄𝑃1;  … ; 𝑄𝑃𝑤−1]𝑇 
10. Output: Gallager’s LDPC Matrix 𝐻 

Algorithm 2: Removing 4-cycles: 
11. Input: Gallager’s LDPC Matrix 𝐻 
12. repeat 
13.      for 𝑖 ← 1 to 𝑘 − 1 do 

14.           for 𝑗 ← 𝑖 + 1 to 𝑘 do 
15.                if |[𝐻[: , 𝑖] ∪ 𝐻[: , 𝑗]| ≥ 2 (check if 4-cycle exists) then 

16.                     𝑟𝑖𝑑𝑥 ← row index of the first same element in 𝐻[: , 𝑖] and 𝐻[: , 𝑗]. 

17.                     𝑏 ← ⌈
𝑟𝑖𝑑𝑥

𝑚

𝑤

⌉   

18.                     swap the elements of 𝐻[: , 𝑖] and 𝐻[: , 𝑗] that belong to the 𝑏-th block. 
19.                end if 
20.           end for 
21.      end for 
22. until no 4-cycle 

23. Output: 4-cycle-free Gallager’s LDPC Matrix 𝐻 
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Acetobacter pasteurianus Acinetobacter baumannii 

Bacillus amyloliquefaciens Bacillus anthracis 

Bacillus subtilis Bacillus thuringiensis 

Bifidobacterium bifidum Bifidobacterium longum 

Borrelia burgdorferi Brucella abortus 

Brucella melitensis Buchnera aphidicola 

Burkholderia mallei Burkholderia pseudomallei 

Campylobacter jejuni Corynebacterium pseudotuberculosis 

Corynebacterium ulcerans Coxiella burnetii 

Desulfovibrio vulgaris Enterobacter cloacae 

Escherichia coli Francisella tularensis 

Helicobacter pylori Legionella pneumophila 

Leptospira interrogans Listeria monocytogenes 

Methylobacterium extorquens Mycobacterium tuberculosis 

Mycoplasma fermentans Mycoplasma genitalium 

Mycoplasma mycoides Mycoplasma pneumoniae 

Neisseria gonorrhoeae Propionibacterium acnes 

Pseudomonas aeruginosa Pseudomonas stutzeri 

Ralstonia solanacearum Rickettsia rickettsii 

Shigella flexneri Staphylococcus aureus 

Streptococcus agalactiae Streptococcus equi 

Streptococcus mutans Streptococcus pneumoniae 

Streptococcus thermophilus Thermus thermophilus 

Treponema pallidum Yersinia enterocolitica 

Yersinia pestis Yersinia pseudotuberculosis 

For training the SVM methods, synthetic reads of length 200 bp were randomly drawn from the 
bacterial genomes such that average depth of coverage was 5x; features from these reads were 
passed to Vowpal Wabbit 8.1.1 following the method of Vervier, et al. 
 
Matching the behavior of Vervier, et al., we trained on 12-mer and 16-mer features. Additionally, 
Opal and random LSH features were chosen by taking 12 locations in k-mers of size 48. For the 
substitution error experiments, Opal and random LSH used 8 hash functions in addition to a 
contiguous 12-mer as features. For the indel error experiments, Opal and random LSH used 16 
hash functions in addition to a contiguous 12-mer as features. 
 
For testing, synthetic reads of of length 200 bp were again randomly drawn, but with average 
depth of coverage only 1x. For substitution error benchmarks, for each location in a read, with 
probability 0.05, 0.10, or 0.15, we replaced it uniformly randomly with one of the four nucleotides 
(i.e. one quarter of the time, despite a location being selected for a substitution error, it remained 
unchanged). For indel error benchmarks with indel error rates of 0.01 or 0.02, for each read, [read-
length=200] * [indel rate] locations were selected to be indels. With equal probability, either that 
location is deleted, or a random base is inserted. 
 
Classification error by species was computed by getting the classification error of reads from each 
species separately, and then averaging over all 50 species. 
 

Comparisons against Kraken and CLARK (Figure 3) 
We compared the performance of Opal against Kraken and CLARK on the public benchmark 
datasets SimHC20.500, A1.10.1000, and B1.20.500 of 20, 10, and 20 species respectively. 
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The SimHC20.500 synthetic read dataset was previously used as a benchmark in the paper 
introducing CLARK [15], containing the following species: 

Alkaliphilus metalliredigens Bradyrhizobium sp. BTAi1 

Burkholderia ambifaria Chelativorans sp. BNC1 

Clostridium thermocellum Dechloromonas aromatic 

Desulfitobacterium hafniense Frankia sp. CcI3 

Geobacter metallireducens Marinobacter aquaeolei 

Methanosarcina barkeri Nitrobacter hamburgensis 

Nocardioides sp. JS614 Polaromonas sp. JS666 

Pseudoalteromonas atlantica Pseudomonas fluorescens 

Rhodobacter sphaeroides Rhodopseudomonas palustris 

Shewanella sp. MR-7 Syntrophobacter fumaroxidans 

 
The A1.10.1000 dataset of real sequencing was previously used as a benchmark in [32], 
containing the following species: 

Solibacter usitatus Acidobacterium capsulatum 

Fluviicola taffensis Dehalococcoides mccartyi 

Cyanobacterium aponinum Acinetobacter baumannii 

Escherichia coli Yersinia pestis 

Rhizobium leguminosarum Methylacidiphilum infernorum 

 
The B1.20.500 dataset of real sequencing reads was previously used as a benchmark in [32], 
containing the following species: 

Terriglobus saanensis Propionibacterium avidum 

Prevotella melaninogenica Cyclobacterium marinum 

Roseiflexus sp. RS-1 Desulfurococcus kamchatkensis 

Geitlerinema sp. PCC 7407 Stanieria cyanosphaera 

Thermococcus onnurineus Bacillus licheniformis 

Geobacillus sp. Y4.1MC1 Roseburia hominis 

Rickettsia Canadensis Yersinia pestis 

Ehrlichia ruminantium Pantoea annatis 

Zymomonas mobilis Streptococcus dysgalactiae 

Rhizobium leguminosarum Akkermansia muciniphila 

 
Kraken was run with default options. CLARK was run with default options with k=31. Opal was 
run with L=100, depth-of-coverage=5, k=24, t=12, and 2 hashes (one contiguous and one spaced). 
 
We additionally compared the performance of all three tools on a large 193 species benchmark 
used in [18] (the “medium” dataset in the referenced paper), containing the following species 
(listed here only by NCBI taxonomic ID for the sake of brevity): 

24, 139, 154, 160, 172, 173, 174, 195, 196, 197, 210, 213, 235, 263, 274, 287, 294, 300, 
303, 316, 339, 346, 347, 380, 382, 384, 408, 470, 485, 487, 518, 519, 520, 548, 550, 552, 
553, 554, 571, 573, 615, 621, 622, 623, 624, 630, 632, 633, 636, 644, 666, 670, 672, 715, 
727, 738, 770, 779, 782, 783, 785, 788, 803, 813, 817, 876, 881, 920, 948, 1085, 1096, 
1245, 1280, 1282, 1304, 1307, 1308, 1309, 1311, 1313, 1314, 1318, 1328, 1334, 1336, 
1338, 1351, 1352, 1390, 1392, 1396, 1398, 1402, 1404, 1406, 1423, 1428, 1488, 1491, 
1502, 1513, 1515, 1534, 1579, 1580, 1581, 1582, 1584, 1587, 1590, 1598, 1604, 1613, 
1624, 1639, 1681, 1685, 1717, 1718, 1719, 1747, 1764, 1765, 1767, 1769, 1772, 1773, 
1804, 1833, 1912, 2096, 2102, 2105, 2115, 2209, 2261, 2285, 2287, 2743, 13373, 28025, 
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28035, 28197, 28450, 29449, 29459, 29461, 29501, 32046, 33959, 33990, 34021, 35554, 
35791, 35794, 36809, 36855, 39152, 39491, 39492, 43080, 43771, 47715, 49338, 52584, 
53399, 55601, 57975, 61624, 62322, 65058, 76759, 76860, 77038, 78331, 79967, 82996, 
83554, 83558, 85991, 95486, 106590, 120577, 138563, 152480, 155892, 161493, 
191026, 216816, 283734, 315405, 380021, 657445 

Opal was trained at three different taxonomic levels of species, genus, and phylum, separately, 
with the same options as above. Kraken and CLARK are taxonomically aware, and automatically 
also attempt to give genus and phylum information. 
 
For novel lineage classification, we removed a species/genus from the training data, but kept it in 
the test set, and then measured the sensitivity of classifying those reads at the higher 
genus/phylum level. 
 

Data Availability 
All data used in this paper has been previously published and can be accessed through the 
references given above. 

Code Availability 
Source code for Opal can be found online at http://opal.csail.mit.edu, and through the linked 
Github repository. All code has been published under the GNU General Public License. 
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Supplementary Information 
 

   
Figure S1. Opal is more accurate than BWA-MEM for classification. On the same synthetic 
benchmark used in Figure 2 of fragments of length 200 drawn from an in-house dataset of 50 
bacterial species, using Opal hash functions as features outperforms BWA-MEM for classification. 
Again, we not particular robustness against substitution errors. 
 

 
Figure S2.  Opal run alone with parameters (64,32,8) achieves two orders of magnitude speedup 
over a state-of-the-part alignment-based method, BWA-MEM, on fragments of length (L) 200 and 
400 at varying mutation/sequencing error rates (lower is better). We observe that compositional-
based binning as “coarse search” for alignment-based methods can significantly speed up 
alignment time (Opal + BWA-MEM). In particular, Opal applied as a “coarse-search” procedure 
reduces the taxonomic space for a subsequent alignment-based BWA-MEM “fine search” to 
achieve nearly 20 times speedup. 
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Figure S3. Subspecies benchmark. We compared Opal, Kraken, CLARK, and using contiguous 
12-mers on a synthetic benchmark of 7 closely related bacterial substrains with FASTA files from 
bacteria.ensembl.org: 

Escherichia_coli_o127_h6_str_e2348_69.ASM2654v1.dna.toplevel.fa 

Escherichia_coli_o139_h28_str_e24377a.ASM1774v1.dna.toplevel.fa 

Escherichia_coli_o146_h21_str_2010c_3325.Ec2010C-3325.dna.toplevel.fa 

Escherichia_coli_o157_h7.ASM97884v1.dna.toplevel.fa 

Escherichia_coli_o7_k1_str_ce10.ASM22762v1.dna.toplevel.fa 

Escherichia_coli_str_k_12_substr_w3110.ASM1024v1.dna.toplevel.fa 

Shigella_dysenteriae_1617_gca_000497505.ASM49750v1.dna.toplevel.fa 

Opal was trained with 32 hashes, depth of coverage 820 (4096 batches of 0.2x coverage). The 
contiguous 12-mer model was trained with depth of coverage 410 (2048 batches of 0.2x 
coverage). Kraken 0.10.b-beta was run with default options. CLARK v1.2.3 was run with k=31 in 
full mode. For substitution error rates, as before, Opal performs much better than its competitors. 
Indel error rate, on the other hand, posed a significant challenge, though Opal still performs 
comparably at the indel error rates we examined. NB: where Kraken and CLARK chose not to 
classify a read as one of the 7 substrains given, we count it as randomly guessing, and give 1/7th 
of a correct classification to its score; this only improves the performance of Kraken and CLARK, 
providing a more apples-to-apples comparison. 
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Table S1. Comparison of Opal against Kraken and CLARK on three benchmarks previously used 
in the literature. Raw precision and recall numbers for Figure 3A in paper. 

 SimHC20.500 A1.10.1000 B1.20.500 

 Precision Recall Precision Recall Precision Recall 

Opal 95.14 94.86 91.5 90.71 93.85 93.56 

Kraken 95.47 86.64 90 87.26 94.98 90.89 

CLARK 94.06 82.54 90 86.68 95 90.12 

 
Table S2. Comparison of Opal against Kraken and CLARK at three different phylogenetic levels 
on a 193-species database previously used in [18]. Raw precision and recall numbers for Figure 
3B in paper. Raw sensitivity numbers for novel lineage detection in Figure 3C in paper. 

Binning (193-species large dataset) Novel Lineage 

 Species Genus Phylum Sensitivity 

 Precision Recall Precision Recall Precision Recall Genus Phylum 

Opal 86.22 76.63 90.16 89.02 95.72 95.65 31.71 22.75 

Kraken 86.1 70.31 88.33 86.08 92.29 89.83 25.35 4.85 

CLARK 85.82 77.8 88.09 84.05 95.92 88.39 25.38 4.63 

 
 Table S3. Comparison of Opal against Kraken, CLARK, and MetaPhlAn2 at three different 
phylogenetic levels, measured using Pearson correlation and root mean square error. We 
calculated Pearson correlation and normalized RMSE between the binning percentages and the 
actual fractions of reads assigned to their taxonomic origins. Opal clearly outperformed both 
Kraken and Clark at all levels, likely because Kraken and Clark are based on exact k-mer matches 
but Opal’s fingerprints can account for mutations or sequencing errors. We also compared Opal 
against MetaPhlAn2 [30] for metagenomics profiling; even using their (MetaPhlAn2’s) marker 
genes, Opal performed better on the species and genus level. 

Profiling with all reads 

 Species Genus Phylum 

Pearson RMSE Pearson RMSE Pearson RMSE 

Opal 0.8154 0.6584 0.9824 0.2262 0.9999 0.0213 

Kraken 0.8063 0.6681 0.9612 0.2845 0.9987 0.052 

CLARK 0.7504 0.7701 0.949 0.3266 0.9996 0.0317 

Profiling with all marker genes 

 Species Genus Phylum 

 Pearson RMSE Pearson RMSE Pearson RMSE 

Opal 0.9695 0.2682 0.988 0.1128 0.9999 0.0291 

MetaPhlAn2 0.9541 0.3684 0.9922 0.1622 0.9998 0.0259 

 
 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint 

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

