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Abstract

Of signal interest in the genetics of traits are estimating the proportion, π1, of causally associated single nucleotide
polymorphisms (SNPs), and their effect size variance, σ2

β , which are components of the mean heritabilities captured
by the causal SNP. Here we present the first model, using detailed linkage disequilibrium structure, to estimate these
quantities from genome-wide association studies (GWAS) summary statistics, assuming a Gaussian distribution of SNP
effect sizes, β. We apply the model to three diverse phenotypes – schizophrenia, putamen volume, and educational
attainment – and validate it with extensive simulations. We find that schizophrenia is highly polygenic, with ≃ 5 × 104

causal SNPs distributed with small effect size variance, σ2
β = 3.5 × 10−5 (in units where the phenotype variance is

normalized to 1), requiring a GWAS study with more than 1/2-million samples in each arm for full discovery. In contrast,
putamen volume involves only ≃ 3 × 102 causal SNPs, but with σ2

β = 1.2 × 10−3, indicating a much larger proportion
of the causal SNPs that are strongly associated. Educational attainment has similar polygenicity to schizophrenia, but
with effects that are substantially weaker, σ2

β = 5 × 10−6, leading to much lower heritability. Thus the model is able to
describe the broad genetic architecture of phenotypes where both polygenicity and effect size variance range over several
orders of magnitude, shows why only small proportions of heritability have been explained for discovered SNPs, and
provides a roadmap for future GWAS discoveries.
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INTRODUCTION

The genetic components of complex traits or diseases arise
from hundreds to likely many thousands of single nucleotide
polymorphisms (SNPs) (Visscher et al., 2012), most of
which have weak effects. As sample sizes increase, more
of the associated SNPs are identifiable (they reach genome-
wide significance), though power for discovery varies widely
across phenotypes. Of particular interest are estimating
the proportion of SNPs (polygenicity) involved in any par-
ticular phenotype; their effective strength of association
(discoverability); the proportion of variation in suscepti-
bility, or phenotypic variation, captured additively by all
common causal SNPs (approximately, the narrow sense
heritability), and the fraction of that captured by genome-
wide significant SNPs – all of which are active areas of re-
search (Stahl et al., 2012; Yang et al., 2015; So et al., 2011;
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Speed et al., 2012; Lee et al., 2011; Yang et al., 2011a; Ku-
mar et al., 2016; Palla and Dudbridge, 2015). However, the
effects of population structure (Price et al., 2010), com-
bined with high polygenicity and linkage disequilibrium
(LD), leading to spurious degrees of SNP association, or
inflation, considerably complicate matters, and are also ar-
eas of much focus (Yang et al., 2011c; Bulik-Sullivan et al.,
2015; Kang et al., 2010). Yet, despite recent significant
advances, it has been difficult to develop a mathematical
model of polygenic architecture based on GWAS that can
be used for power estimated across human phenotypes.

Here, in a unified approach explicitly taking into ac-
count LD, we present a model relying on genome-wide as-
sociation studies (GWAS) summary statistics (z-scores for
SNP associations with a phenotype (Pasaniuc and Price,
2016)) to estimate polygenicity (π1) and discoverability
(σ2

β), as well as any residual inflation of the z-scores aris-
ing from variance distortion induced by cryptic relatedness
(σ2

0), which remains a concern in large-scale studies (Price
et al., 2010). We estimate π1, σ2

β , and σ2
0 , by postulat-

ing a z-score probability distribution function (pdf) that
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explicitly depends on them, and fitting it to the actual
distribution of GWAS z-scores.

Estimates of polygenicity and discoverability allow one
to estimate compound quantities, like narrow-sense heri-
tability captured by the SNPs (Witte et al., 2014); to pre-
dict the power of larger-scale GWAS to discover genome-
wide significant loci; and to understand why some pheno-
types have higher power for SNP discovery and proportion
of heritability explained than other phenotypes.

In previous work (Holland et al., 2016) we presented
a related model that treated the overall effects of LD on
z-scores in an approximate way. Here we take the details
of LD explicitly into consideration, resulting in a concep-
tually more basic model to predict the distribution of z-
scores. We apply the model to multiple phenotypes, in
each case estimating the three model parameters and aux-
iliary quantities, including the overall inflation factor λ,
(traditionally referred to as genomic control (Devlin and
Roeder, 1999)) for pruned SNP sets, and narrow sense
heritability, h2. We also perform extensive simulations on
genotypes with realistic LD structure in order to validate
the interpretation of the model parameters.

METHODS

The Model: Probability Distribution for z-scores

Consistent with the work of others (Yang et al., 2011c), we
assume the causal SNPs are distributed randomly through-
out the genome (an assumption that can be relaxed when
explicitly considering different SNP categories, but that in
the main is consistent with the additive variation explained
by a given part of the genome being proportional to the
length of DNA (Yang et al., 2011b)), and that their β coef-
ficients in the GWAS framework are distributed normally
with variance σ2

β :

β ∼ N (0, σ2
β). (1)

(We use the symbol β to refer to a scalar or vector, with
context indicating which.) Taking into account all SNPs
(the remaining ones are all null by definition), this is equiv-
alent to the two-component Gaussian mixture model

β ∼ π1N (0, σ2
β) + (1 − π1)N (0, 0) (2)

where N (0, 0) is the Dirac delta function, so that consider-
ing all SNPs, the net variance is var(β) = π1σ

2
β . Ignoring

LD, the association z-scores for causal SNPs can be decom-
posed into an effect δ and a residual term ǫ ∼ N (0, σ2

0),
assumed to be independent (Holland et al., 2016):

z = δ + ǫ (3)

with
δ =

√
NHβ (4)

where N is the sample size and H is the SNP’s heterozy-
gosity (frequency of the heterozygous genotype, H = 2p(1−

p) where p is the frequency of either of the SNP’s alleles),
so that

var(z) = var(δ) + var(ǫ)

≡ σ2 + σ2
0 (5)

where
σ2 ≡ σ2

βNH. (6)

Now consider the effects of LD on z-scores. Let βeff be
the true effective β-coefficient for a tag SNP arising due to
LD with neighboring causal SNPs. It is given by the sum
of neighboring causal SNP β-coefficients, each weighted by
its correlation with the tag SNP:

βeff =
∑

j

rjβj . (7)

Then, from Eq. 3, the z-score for the tag SNP’s association
with the phenotype is given by:

z =
√

NHβeff + ǫ. (8)

Thus, for example, if the SNP itself were not causal but
were in LD with k known causal SNPs, where its LD with
each of these was the same, given by some value r2 (0 <
r2 ≤ 1), then σ2 will be given by

σ2 = kr2σ2
βNH. (9)

For this idealized case, the marginal distribution, or pdf,
of z-scores for a set of such associated SNPs is

fa(z|N,H,L;σβ , σ0) = φ(z; 0, kr2σ2
βNH + σ2

0) (10)

where φ(·, µ, σ2) is the normal distribution with mean µ
and variance σ2, and L is shorthand for the LD structure
of such SNPs – in this case, denoting LD given by r2 with
exactly k causals. If a proportion a of all tag SNPs are
similarly associated with the phenotype while the remain-
ing proportion are all null (not causal and not in LD with
causal SNPs), then the marginal distribution for all SNP
z-scores is the gaussian mixture

f(z) = (1 − a)φ(z; 0, σ2
0) + afa(z), (11)

dropping the parameters for convenience.
For real genotypes, however, the LD structure is far

more complicated, and of course the causal SNPs are gen-
erally numerous and unknown. As in our previous work,
we incorporate the model parameter π1 for the fraction
of all SNPs that are causal (Holland et al., 2016). Ad-
ditionally, we calculate the actual LD structure for each
SNP. That is, for each SNP we build a histogram of the
numbers of other SNPs in LD with it for w equally-spaced
r2-windows between 0.05 and 1; we use L again as a short-
hand to represent all this. The value r2

min = 0.05 was cho-
sen as a lower-bound for LD above the noise threshold; we
find that w ≃ 10 is sufficient for converged results. For any
given SNP, the set of SNPs thus determined to be in LD
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with it constitute its LD block, with their number given
by n (LD with self is always 1, so n is at least 1). The pdf
for z-scores, given N,H,L and the three model parame-
ters π1, σβ , σ0, will then be given by the sum of gaussians
that are generalizations of Eq. 10 for different combina-
tions of numbers of causals among the w LD windows,
each gaussian scaled by the probability of the correspond-
ing combination of causals among the LD windows, i.e.,
by the appropriate multinomial distribution term.

For w r2-windows, we must consider the possibilities
where the tag SNP is in LD with all possible numbers of
causal SNPs in each of these windows, or any combina-
tion thereof. There are thus w + 1 categories of SNPs:
null SNPs (which r2-windows they are in is irrelevant),
and causal SNPs, where it does matter which r2-windows
they reside in. If window i has ni SNPs (

∑w

i=1 ni =
n), and the overall fraction of SNPs that are causal is
π1, then the probability of having simultaneously k0 null
SNPs, k1 causal SNPs in window 1, and so on through kw

causal SNPs in window w, for a nominal total of K causals
(
∑w

i=1 ki = K and k0 = n−K), is given by the multinomial
distribution, which we denote M(k0, ..., kw;n0, ..., nw;π1).
For an LD block of n SNPs, the prior probability, pi, for
a SNP to be causal and in window i is the product of
the independent prior probabilities of a SNP being causal
and being in window i: pi = π1ni/n. The prior prob-
ability of being null (regardless of r2-window) is simply
p0 = (1 − π1). The probability of a given breakdown
k0, ..., kw of the neighboring SNPs into the w+1 categories
is then given by

M(k0, ..., kw;n0, ..., nw;π1) =
n!

k0!...kw!
pk0

0 ...pkw

w (12)

and the corresponding gaussian is

φ(z; 0, (k1r
2
1 + ... + kwr2

w)σ2
βNH + σ2

0). (13)

For a SNP with heterozygosity H and LD structure L, the
pdf for its z-score, given N and the model parameters, is
then given by summing over all possible numbers of total
causals in LD with the SNP, and all possible distributions
of those causals among the w r2-windows:

pdf(z|N,H,L;π1, σβ , σ0) =

Kmax
∑

K=0

∑

k1,...,kw

n!

k0!...kw!
pk0

0 ...pkw

w ×

φ(z; 0, (k1r
2
1 + ... + kwr2

w)σ2
βNH + σ2

0), (14)

where Kmax in bounded above by n. Note again that L is
shorthand for the linkage-disequilibrium structure of the
SNP, giving the set {ni}, and hence, for a given π1, pi.
Also there is the constraint

∑w

i=1 ki = K on the second
summation, and, for all i, max(ki) = max(K,ni), though
generally – see below – Kmax ≪ ni. The number of ways of
dividing K causal SNPs amongst w LD windows is given
by the binomial coefficient

(

m
a

)

, where m = K + w − 1

and a = w − 1, so the number of terms in the second
summation grows rapidly with K and w. However, be-
cause π1 is small (often ≤10−3), we find that the upper
bound on the first summation over total number of poten-
tial causals K in the LD block for the SNP can be limited
to Kmax < min(10, n), even for large blocks with n ≃ 103.
That is,

Kmax
∑

K=0

∑

k1,...,kw

M(k0, ..., kw;n0, ..., nw;π1) ≃ 1. (15)

Still, the number of terms is large; e.g., for K = 8 and w =
5 there are 495 terms. We approximate the sums in Eq. 14
with the simpler expression involving only sums over terms
where the causal SNPs all reside in the same r2-window,
plus a null term. The probability that any K of the n
SNPs in the block are causal while the remainder n − K
are null is given by the binomial distribution, B(K,n;π1):

B(K;n;π1) = (1 − π1)
n−KπK

1

n!

(n − K)!K!
. (16)

Multiplying this by ni/n approximates the probability of
their being in the i-th r2-window. Multiplying these into
the gaussian corresponding to K causals in window i, sum-
ming over both indices, and incorporating the null term,
leads to the following approximation that is in good nu-
merically agreement with Eq. 14:

pdf(z|N,H,L;π1, σβ , σ0) =

Kmax
∑

K=1

w
∑

i=1

ni

n
B(K;n;π1)φ(z; 0,Kr2

i σ2
βNH + σ2

0)

+ (1 − π1)
nφ(z; 0, σ2

0). (17)

Data Preparation

For real phenotypes, we calculated SNP minor allele fre-
quency (MAF) and LD between SNPs using the 1000 Geno-
mes phase 3 data set for 503 subjects/samples of European
ancestry (Consortium et al., 2015, 2012; Sveinbjornsson
et al., 2016). For simulations, we used HapGen2 (Li and
Stephens, 2003; Spencer et al., 2009; Su et al., 2011) to gen-
erate genotypes; we calculated SNP MAF and LD struc-
ture from 1000 simulated samples. We elected to use the
same intersecting set of SNPs for real data and simula-
tion. For HapGen2, we eliminated SNPs for which more
than 99% of genotypes were identical; for 1000 Genomes,
we eliminated SNPs for which the call rate (percentage of
samples with useful data) was less than 90%. This left
nsnp=11,015,833 SNPs.

Sequentially moving through each chromosome in con-
tiguous blocks of 5,000 SNPs, for each SNP in the block
we calculated its Pearson r2 correlation coefficients with
all SNPs in the central bock itself and with all SNPs in
the pair of flanking blocks of size up to 50,000 each. For
each SNP we calculated its total LD (TLD), given by the
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sum of LD r2’s thresholded such that if r2 < 0.05 we set
that r2 to zero (zeroing out the noise). For each SNP
we also built a histogram giving the numbers of SNPs
in w = 8 equally-spaced r2-windows covering the range
0.05 ≤ r2 ≤ 1. These steps were carried out independently
for both 1000 Genomes phase 3 and for HapGen2.

Employing a similar procedure, we also built binary
(logical) LD matrices identifying all pairs of SNPs for which
LD r2 > 0.8, a liberal threshold for SNPs being “synony-
mous”.

In applying the model to summary statistics, we re-
stricted to SNPs for which TLD ≤ 600, MAF ≥ 0.005,
and LD block size (defined by r2 ≥ 0.05) ≤ 2000.

We analyzed summary statistics for participants with
European ancestry for: (1) schizophrenia from the Psychi-
atric Genomics Consortium (PGC) (Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium, 2014),
with 35,476 cases and 46,839 controls (Neff ≡ 4/(1/Ncases

+1/Ncontrols) = 76, 326) across 52 separate substudies,
with imputation of SNPs using the 1000 Genomes Project
reference panel (1000 Genomes Project Consortium, 2010)
for a total of approximately 5,369,285 genotyped and im-
puted SNPs passing the above restrictions (Schizophre-
nia Working Group of the Psychiatric Genomics Consor-
tium, 2014); (2) putamen volume, normalized by intracra-
nial volume, using data from the Enhancing Neuro Imag-
ing Genetics through Meta-Analysis (ENIGMA) consor-
tium (Hibar et al., 2015), with 12,596 samples and a total
of 4,196,831 SNPs; and (3) educational attainment, mea-
sured as the number of years of schooling completed, with
328,917 samples and a total of 5,361,110 SNPs, available at
https://www.thessgac.org (Okbay et al., 2016). Exam-
ples of SNP histograms for schizophrenia are in Supporting
Material Fig. 5.

Simulations

We generated genotypes for 105 unrelated simulated sam-
ples using HapGen2 (Su et al., 2011). For narrow-sense
heritability h2 equal to 0.1, 0.4, and 0.7, we considered
polygenicity π1 equal to 10−5, 10−4, 10−3, and 10−2. For
each of these 12 combinations, we randomly selected ncausal

= π1×nsnp “causal” SNPs and assigned them β-values
drawn from the standard normal distribution (i.e., inde-
pendent of H), with all other SNPs having β = 0. We
repeated this ten times, giving ten independent instantia-
tions of random vectors of β’s. Defining Yg = Gβ, where
G is the genotype matrix and β here is the vector of coef-
ficients over all SNPs, the total phenotype vector is con-
structed as Y =Yg+ǫ, where the residual random vector ǫ
for each instantiation is drawn from a normal distribution
such that h2 = var(Yg)/var(Y ). For each of the instantia-
tions this implicitly defines the “true” value σ2

β .
The regression slope, β, and the Pearson correlation co-

efficient, r, are assumed to be t-distributed. These quan-
tities have the same t-value: t = β/se(β) = r/se(r) =
r
√

N − 2/
√

1 − r2, with corresponding p-value from Stu-
dent’s t cumulative distribution function (cdf) with N − 2

degrees of freedom: p = 2×tcdf(−|t|, N − 2). Since we are
not here dealing with covariates, we calculated p from cor-
relation, which is slightly faster than from estimating the
regression coefficient. The t-value can be transformed to
a z-value, giving the z-score for this p: z = −Φ−1(p/2) ×
sign(r), where Φ is the normal cdf (z and t have same
p-value).

Parameter Estimation

We randomly pruned SNPs using the threshold r2 > 0.8
to identify “synonymous” SNPs, performing ten such it-
erations. That is, for each of ten iterations, we randomly
selected a SNP (not necessarily the one with largest z-
score) to represent each subset of synonymous SNPs. For
schizophrenia, for example, pruning resulted in approxi-
mately 1.3 million SNPs in each iteration.

The postulated pdf for a SNP’s z-score depends on the
SNP’s heterozygosity, H, and detailed LD structure, i.e.,
its LD histogram, L. Given the data – the set of z-scores
for all SNPs, as well as their heterozygosities and LD-
structures – and the H- and L-dependent pdf for z-scores,
the objective is to find the model parameters that best
predict the distribution of all z-scores. H ranges between
0.05 and 0.5, and the amplitudes of L will vary over a wide
range. A useful one-dimensional proxy for L is TLD, which
ranges from 1 to 600. Since the model pdf explicitly pre-
dicts z-score distributions for particular values of H and L,
instead of taking all the SNPs at once, we bin the SNPs
with respect to a grid of these quantities; for any given
(H,TLD) bin there will be a range of z-scores whose dis-
tribution the model it intended to predict. We find that a
5×5-grid of equally spaced bins is adequate for converged
results. In lieu of or in addition to TLD binning, one can
bin SNPs with respect to their total LD block size (total
number of SNPs in LD, ranging from 1 to 2,000).

To find the model parameters that best fit the data,
for a given (H,TLD) bin we binned the selected SNPs z-
scores into equally-spaced bins of width dz=0.4 (between
zmin=−38 and zmax=38, allowing for p-values near the
numerical limit of 10−315), and from Eq. 17 calculated the
probability for z-scores to be in each of those z-score bins
(the prior probability for “success” in each z-score bin).
Then, knowing the actual numbers of z-scores (numbers of
“successes”) in each z-score bin, we calculated the multino-
mial probability, pm, for this outcome. The optimal model
prameter values will be those that maximize the accrual
of this probability over all (H,TLD) bins. We constructed
a cost function by calculating, for a givem (H,TLD) bin,
−ln(pm) and averaging over prunings, and then accumu-
lating this over all (H,TLD) bins. Model parameters min-
imizing the cost were obtained from Nelder-Mead multi-
dimensional unconstrained nonlinear minimization of the
cost function, using the Matlab function fminsearch().
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Figure 1: QQ plots of z-scores for (A) schizophrenia, (B) educational attainment, and (C) putamen volume, (dark blue, 95% confidence interval
in light blue) with model prediction (yellow). The dashed line is the expected QQ plot under null (no SNPs associated with the phenotype).

λ and λ̂ are the overall nominal genomic control factors calculated from the data and model plots, respectively. The three estimated model
parameters are: polygenicity, π̂1; discoverability, σ̂2

β
; and SNP association χ2-statistic inflation factor, σ̂2

0
. ĥ2 is the estimated narrow-sense

chip heritability (reexpressed as h2

l
on the liability scale for schizophrenia assuming a prevalence of 1% in adult populations), and n̂causal

is the estimated number of causal SNPs. nsnp = 11, 015, 833 is the total number of SNPs, whose LD and MAF underlie the model; the
GWAS z-scores are for subsets of these SNPs. Though the phenotypes are diverse (examples of a categorical mental disorder, a behavioural
phenotype, and a cerebral subregional tissue volume), the model nevertheless provides good fits, even though estimated polygenicities differ
by two orders of magnitude and discoverabilities differ by almost three orders of magnitude. Nsamp is the sample size, expressed as Neff

for schizophrenia – see text. Reading the plots: on the vertical axis, choose a p-value threshold (more extreme values are further from the
origin), then the horizontal axis gives the proportion of SNPs exceeding that threshold (higher proportions are closer to the origin).

Posterior Effect Sizes

Model posterior effect sizes were calculated using numeri-
cal integration over the random variable δ:

δexpected ≡ E(δ|z) =

∫

P (δ|z)δdδ

=
1

P (z)

∫

P (z|δ)P (δ)δdδ. (18)

Here, since z|δ ∼ N (δ, σ2
0), the posterior probability of z

given δ is simply

P (z|δ) = φ(z; δ, σ2
0). (19)

P (z) is shorthand for pdf(z|N,H,L;π1, σβ , σ0), given by
Eq. 17, and, also from Eq. 17, P (δ) is

P (δ) ≡ pdf(δ|N,H,L;π1, σβ)

=

Kmax
∑

K=1

w
∑

i=1

ni

n
B(K;n;π1)φ(δ; 0,Kr2

i σ2
βNH). (20)

Similarly,

δ2
expected ≡ E(δ2|z) =

∫

P (δ|z)δ2dδ

=
1

P (z)

∫

P (z|δ)P (δ)δ2dδ, (21)

which is used in power calculations.

GWAS Power

It is of interest to estimate the proportion of additive phe-
notypic variance arising from the nsnp SNPs under study
(the chip heritability (Witte et al., 2014)) that can be

explained by SNPs that reach genome-wide significance,
p≤5×10−8 (i.e., for which |z|>zt=5.33) at a given sample
size (Pe’er et al., 2008; McCarthy et al., 2008). For a SNP
with genotype vector g (over N samples) and heterozygos-
ity H, one has var(Y |g)=var(βg)=2β2H and δ=

√
NHβ.

Using Eq. 21, let C≡E(δ2|z,N)P (z,N), emphasizing de-
pendence on sample size, N . Then the proportion of chip
heritability captured additively by genome-wide significant
SNPs is

S(N ; zt) =

∑

z:|z|>zt

C(z,N)
∑

all z C(z,N)
. (22)

The ratio in Eq. 22 should be accurate if the average effects
of LD in the numerator and denominator cancel – which
will always be true as the ratio approaches 1 for large N .
Plotting S(N ; zt) gives an indication of the power of future
GWAS to capture chip heritability.

Quantile-Quantile Plots and Genomic Control

One of the advantages of quantile-quantile (QQ) plots (also
known as PP plots) is that on a logarithmic scale they em-
phasize behavior in the tails of a distribution, and provide
a valuable visual aid in assessing the independent effects
of polygenicity, strength of association, and cryptic relat-
edness – the roles played by the three model parameters –
as well as showing how well a model fits data. QQ plots
for the model were constructed using Eq. 17, replacing
the normal pdf with the normal cdf, and replacing z with
an equally-spaced vector ~znom of length 10,000 covering
a wide range of nominal |z| values (0 through 38). SNPs
were divided into a 5×5 grid of H×TLD bins, and the
cdf vector (with elements corresponding to the z-values in
~znom) accumulated for each such bin (using mean values
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Figure 2: Proportion of narrow-sense chip heritability captured by
genome-wide significant SNPs as a function of sample size, N . Left-
to-right plot order is determined by decreasing σ2

β
. For current sam-

ple sizes, the proportions are: putamen volume, 0.064; schizophrenia,
0.096; educational attainment, 0.109.

of H and TLD for SNPs in a given bin).
For a given set of samples and SNPs, the genomic

control factor, λ, for the z-scores is defined as the me-
dian z2 divided by the median for the null distribution,
0.455 (Devlin and Roeder, 1999). This can also be cal-
culated from the QQ plot. In the plots we present here,
the abscissa gives the -log10 of the proportion, q, of SNPs
whose z-scores exceed the two-tailed significance threshold
p, transformed in the ordinate as -log10(p). The median
is at qmed = 0.5, or −log10(qmed) ≃ 0.3; the correspond-
ing empirical and model p-value thresholds (pmed) for the
z-scores – and equivalently for the z-scores-squared – can
be read off from the plots. The genomic inflation factor
is then given by λ = [Φ−1(pmed/2)]2/0.455. Note that the
values of λ reported here are for pruned SNP sets; these
values will be lower than for the total GWAS SNP sets.

Knowing the total number, ntot, of p-values involved in
a QQ plot (number of GWAS z-scores from pruned SNPs),
any point (q, p) (log-transformed) on the plot gives the
number, np = qntot, of p-values that are as extreme as
or more extreme than the chosen p-value. This can be
thought of as np “successes” out of ntot independent tri-
als (thus ignoring LD) from a binomial distribution with
prior probability q. To approximate the effects of LD,
we estimate the number of independent SNPs as ntot/f
where f ≃ 10. The 95% binomial confidence interval for
q is calculated as the exact Clopper-Pearson 95% inter-
val (Clopper and Pearson, 1934), which is similar to the
normal approximation interval, q± 1.96

√

q(1 − q)/ntot/f .

Narrow-sense Chip Heritability

Since we are treating the β coefficients as fixed effects in

the simple linear regression GWAS formalism, with the
phenotype vector standardized with mean zero and unit
variance, the proportion of phenotypic variance explained
by a particular causal SNP, q2=var(y|g), is given by q2 =
β2H. The proportion of phenotypic variance explained
additively by all causal SNPs is, by definition, the narrow
sense chip heritability, h2. Since E(β2)=σ2

β and ncausal =
π1nsnp, and taking the mean heterozygosity over causal
SNPs to be approximately equal to the mean over all
SNPs, H, the chip heritability can be estimated as

h2 = π1nsnpHσ2
β . (23)

For all-or-none traits like disease status, the estimated
h2 from Eq. 23 for an ascertained case-control study is on
the observed scale and is a function of the prevalence in
the adult population, K, and the proportion of cases in the
study, P . The heritability on the underlying continuous
liability scale (Falconer, 1965), h2

l , is obtained by adjusting
for ascertainment (multiplying by K(1 − K)/(P (1 − P )),
the ratio of phenotypic variances in the population and in
the study) and rescaling based on prevalence (Dempster
and Lerner, 1950; Lee et al., 2011):

h2
l = h2 K(1 − K)

P (1 − P )
× K(1 − K)

a2
, (24)

where a is the height of the standard normal pdf at the
truncation point zK defined such that the area under the
curve in the region to the right of zK is K.

RESULTS

Phenotypes

Figure 1 shows QQ plots for the z-scores for schizophre-
nia, educational attainment, and putamen volume, along
with model estimates. In all cases, the model fit (yellow)
closely tracks the data (dark blue). Figure 6 in Supporting
Material shows QQ subplots for a 5 × 5 grid of H × TLD
ranges for schizophrenia.

The estimated number of causal SNPs is given by the
polygenicity, π1, times the total number of SNPs, nsnp; the
latter is given by the total number of SNPs that went into
building the LD structure, L in Eq. 17, i.e., the approxi-
mately 11 million SNPs selected from the 1000 Genomes
Phase 3 reference panel, not the number of SNPs in the
particular GWAS. Thus, for schizophrenia, π1 = 5.0 ×
10−3, so that n̂causal = 5.5 × 104, not all of which are in
linkage equilibrium. Educational attainment has slightly
greater polygenicity than schizophrenia, π1 = 7.7 × 10−3.
In contrast, for putamen volume π1 = 2.6 × 10−5, so that
n̂causal = 285.

The effective strength of SNP association with the phe-
notype (mean β2 for causals, the effective SNP “discover-
ability”) is σ̂2

β = 3.5 × 10−5 for schizophrenia (in units
where the variance of the phenotype is normalized to 1).
It is an order of magnitude smaller for educational attain-
ment, σ̂2

β = 5 × 10−6, but two orders of magnitude bigger

for putamen volume: σ̂2
β = 1.2 × 10−3.
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h2 ĥ2 π1 π̂1 σ2
β σ̂2

β σ̂2
0 ncausal n̂causal

0.1 0.11 (0.01) 1E-5 1.2E-5 (2E-6) 4.3E-3 (7E-4) 3.8E-3 (8E-4) 1.01 (0.002) 110 136 (18)
0.1 0.08 (0.01) 1E-4 9.9E-5 (1E-5) 4.2E-4 (2E-5) 3.5E-4 (4E-5) 1.01 (0.002) 1101 1089 (160)
0.1 0.08 (0.01) 1E-3 1.2E-3 (2E-4) 4.2E-5 (5E-7) 3.1E-5 (5E-6) 1.02 (0.002) 11015 12846 (2543)
0.1 0.08 (0.01) 1E-2 1.3E-2 (2E-3) 4.2E-6 (4E-8) 2.8E-6 (5E-7) 1.02 (0.002) 110158 141095 (24296)

0.4 0.57 (0.05) 1E-5 1.9E-5 (2E-6) 1.7E-2 (3E-3) 1.3E-2 (2E-3) 1.01 (0.001) 110 209 (21)
0.4 0.38 (0.01) 1E-4 1.1E-4 (8E-6) 1.7E-3 (7E-5) 1.4E-3 (1E-4) 1.03 (0.003) 1101 1226 (92)
0.4 0.32 (0.01) 1E-3 9.8E-4 (6E-5) 1.7E-4 (2E-6) 1.4E-4 (9E-6) 1.05 (0.003) 11015 10753 (705)
0.4 0.31 (0.01) 1E-2 1.3E-2 (5E-4) 1.7E-5 (2E-7) 9.7E-6 (4E-7) 1.06 (0.003) 110158 145964 (5959)

0.7 1.07 (0.09) 1E-5 2.3E-5 (2E-6) 3.0E-2 (5E-3) 2.0E-2 (3E-3) 1.02 (0.002) 110 257 (23)
0.7 0.71 (0.03) 1E-4 1.2E-4 (8E-6) 2.9E-3 (1E-4) 2.4E-3 (2E-4) 1.05 (0.003) 1101 1349 (93)
0.7 0.58 (0.02) 1E-3 9.6E-4 (5E-5) 2.9E-4 (4E-6) 2.6E-4 (1E-5) 1.08 (0.006) 11015 10524 (526)
0.7 0.52 (0.01) 1E-2 1.3E-2 (4E-4) 2.9E-5 (3E-7) 1.6E-5 (4E-7) 1.09 (0.005) 110158 145692 (4605)

Table 1: Simulation results: comparison of mean (std) true and estimated (ˆ) model parameters and derived quantities. Results for each
line, for specified heritability h2 and fraction π1 of causal SNPs, are from 10 independent instantiations with random selection of the ncausal

causal SNPs that are assigned a β-value from the standard normal distribution. Defining Yg = Gβ, where G is the genotype matrix, the total
phenotype vector is constructed as Y =Yg+ǫ, where the residual random vector ǫ for each instantiation is drawn from a normal distribution
such that var(Y ) = var(Yg)/h2 for predefined h2. For each of the instantiations, i, this implicitly defines the true value σ2

βi
, and σ2

β
is their

mean.

Note that for logistic linear regression coefficient β, the
odds ratio for disease is OR = eβ ; for a rare disease, this is
approximately equal to the genotypic relative risk: GRR ≃
OR. Since E

[

β2
]

= σ2
β , the mean relative risk E [GRR] ≃

1 + σ2
β/2. Thus, for schizophrenia, the mean relative risk

is ≃ 1.0000175.
The narrow sense heritability from the ascertained case-

control schizophrenia GWAS is estimated as h2=0.41 (with
mean heterozygosity from the ∼11 million SNPs, H =
0.2165). Taking adult population prevalence of schizophre-
nia to be K=0.01 (Purcell et al., 2009; Whiteford et al.,
2013), and given that there are 35,476 cases and 46,839
controls in the study, so that P=0.43, the heritability on
the liability scale for schizophrenia from Eq. 24 is h2

l =0.23;
for K=0.005 (Kinney et al., 2009), h2

l =0.20. For the quan-
titative endophenotype putamen volume, the heritability
is estimated to be 7%, while for educational attainment
the heritability is estimated to be 10%.

Figure 2 shows the sample size required to reach a given
proportion of chip heritability for the phenotypes (assum-
ing equal numbers of cases and controls for schizophre-
nia: Neff = 4/(1/Ncases + 1/Ncontrols), so that when
Ncases = Ncontrols, Neff = Ncases+Ncontrols = N , the to-
tal sample size). At current sample sizes, only 10%, 10%,
and 7% of narrow-sense chip heritability is captured for
schizophrenia, educational attainment, and putamen vol-
ume, respectively. And to capture the preponderance of
chip heritability for schizophrenia, for example, a sample
with approximately half a million each of cases and con-
trols would be needed.

The estimated total inflation factor for the pruned data,
λ, is almost exactly predicted by the model. E.g., for
schizophrenia, λ = λ̂ = 1.38, whereas for educational at-
tainment the values are λ = 1.16 and λ̂ = 1.17. Higher

polygenicity, π1, mean strength of association, σ2
β , and

sample size, N , will all contribute to higher λ. Resid-
ual population structure in the form of cryptic relatedness
will also contribute to genomic inflation. For schizophre-
nia, inflation from population structure is estimated to
be σ̂2

0 = 1.179. In contrast, for educational attainment
σ̂2

0 = 1.01, indicating essentially no residual inflation due
to population structure.

Simulations

Table 1 shows the simulation results, comparing true and
estimated values for the model parameters, heritability,
and the number of causal SNPs. In supporting material,
Figure 3 shows QQ plots for a randomly chosen β-vector
and phenotype instantiation for each of the twelve (π1,
h2) scenarios. Most of the π̂1 estimated are in reason-
able agreement with the true values, though for π1 = 10−5

they are larger by about a factor of two for h2 equal to
0.4 and 0.7. The number of estimated causals are in cor-
respondingly good agreement with the true values, rang-
ing in increasing powers of 10 from 110 through 110,158.
While the estimated polygenicities tend to be slight over-
estimates, the estimated discoverabilities, σ̂2

β ’s, tend to be
under-estimates. From Supporting Material Figure 3, the
tails of the QQ plots for the true parameters (dashed dark
blue curves), particularly for the larger π1’s, deviate from
the simulated data plots (solid dark blue curves), consis-
tently over-estimating the proportion of SNPs with more
extreme z-scores. The model fit, however, bends these
curves down toward the data curves. Note that steeper
tails have larger σ2

β ’s, and larger π1’s lead to earlier de-

parture from the null line. In all cases, σ2
0 is close to 1,

indicating no cryptic relatedness. Estimates of heritabil-
ity, ĥ2, show a tendency to decrease with increasing π1.
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In all cases, however, the value for genomic control, λ, es-
timated from the model is in very good agreement with
the value estimated from the simulated data; these values
increase both as π1 and σ2

β (or h2, for fixed π1) increase.

E.g., for π1 = 10−5 and h2 = 0.1, λ = 1.01 and λ̂ = 1.01,
while for π1 = 10−2 and h2 = 0.7, λ = 1.26 and λ̂ = 1.25.

DISCUSSION

Building on our previous work and the work of others,
here we present the first unified method based on GWAS
summary statistics, incorporating detailed LD structure
from a reference panel, for directly estimating phenotypic
polygenicity, π1, “SNP discoverability” or strength of asso-
ciation (specifically, the variance of the underlying causal
effects), σ2

β , and residual inflation of the association statis-
tics due to variance distortion induced by cryptic related-
ness, σ2

0 .
We apply the model to three diverse phenotypes, one

qualitative and two quantitative: schizophrenia, educa-
tional attainment, putamen volume. In each case, we es-
timate the polygenicity, discoverability, and residual in-
flation due to variance distortion; we also estimate the
number of causal SNPs, ncausal, and the SNP heritability,
h2 (for schizophrenia, we reexpress this as the proportion
of population variance in disease liability, h2

l , under a li-
ability threshold model, adjusted for ascertainment). In
addition, we estimate the proportion of SNP heritability
captured by genome-wide significant SNPs at current sam-
ple sizes, and predict future sample sizes needed to explain
the preponderance of SNP heritability.

We find that schizophrenia is highly polygenic, with
π1 = 5 × 10−3. This leads to an estimate of ncausal ≃
55, 000, which is in scale-agreement with a recent estimate
that the number of causals is >20,000 (Loh et al., 2015).
The SNP associations, however, are characterized by a nar-
row distribution, σ2

β = 3.5×10−5, indicating that most as-
sociations are of week effect, i.e., have low discoverability.

For educational attainment (Rietveld et al., 2013; Ok-
bay et al., 2016; Cesarini and Visscher, 2017), the poly-
genicity is somewhat greater, π1 = 7.7 × 10−3, leading to
an estimate of ncausal ≃ 85, 000, which also is in scale-
agreement with a recent estimate of the number of loci
contributing to heritability of ≃ 70, 000 (Rietveld et al.,
2013). The variance of the distribution for causal effect
sizes is an order of magnitude smaller than for schizophre-
nia, σ2

β = 5 × 10−6, indicating lower discoverability.
In marked contrast is putamen volume, which has very

low polygenicity: π1 = 2.6 × 10−5, so that only 285 SNPs
(out of ∼11 million) are estimated to be causal. However,
these SNPs are characterized by high discoverability, two-
orders of magnitude larger than for schizophrenia: σ2

β =

1.2 × 10−3.
The QQ plots (which are sample size dependent) reflect

these differences in genetic architecture. For example, the
early departure of the schizophrenia QQ plot from the null

line indicates its high polygenicity, while the steep rise for
putamen volume after its departure corresponds to its high
SNP discoverability.

Despite the much stronger effects in putamen volume,
the very high polygenicity for schizophrenia leads to its be-
ing more than three times as heritable. Our point estimate
for liability-scale heritability of schizophrenia is h2

l = 0.23
(assuming a population risk of 0.01), and that 10% of this
(i.e., 2.3% of overall disease liability) is explainable based
on common SNPs reaching genome-wide significance at the
current sample size. This h2

l estimate is in good agreement
with a recent result, h2

l = 0.27 (Loh et al., 2015; Golan
et al., 2014), also calculated from the PGC2 data set but
using raw genotype data for 472,178 markers for a subset
of 22,177 schizophrenia cases and 27,629 controls of Eu-
ropean ancestry; and with an earlier result of h2

l = 0.23
from PGC1 raw genotype data for 915,354 markers for
9,087 schizophrenia cases and 12,171 controls (Lee et al.,
2012; Yang et al., 2011a). Our estimate of 2.3% of overall
variation on the liability scale for schizophrenia explain-
able by genome-wide significant loci is a little lower than
the corresponding estimate of 3.4% based on risk profile
scores (RPS) (Schizophrenia Working Group of the Psy-
chiatric Genomics Consortium, 2014). Nevertheless, these
results show that current sample sizes need to increase sub-
stantially in order for RPSs to have predictive utility, as
the vast majority of associated SNPs remain undiscovered.
Our power estimates indicate that ∼500,000 cases and an
equal number of controls would be needed to identify these
SNPs (note thst there is a total of approximately 3 million
cases in the US alone). The identified SNPs then need to
be mapped to genes and their modality (e.g., regulatory
or functional effects) determined, so that targeted thera-
peutics can be developed (Schubert et al., 2015). Greater
power for discovery is achievable by using prior informa-
tion involving SNP functional categories (Schork et al.,
2013; Andreassen et al., 2013; Sveinbjornsson et al., 2016).
However, it is not yet clear how significant a role genomics
can play in psychiatric precision medicine (Breen et al.,
2016). Noteworthy in this respect is that estimates of
broad-sense heritability of schizophrenia from twin and
family studies are in the range 0.6-0.8 (Sullivan et al.,
2003; Lichtenstein et al., 2009), considerably higher than
the narrow-sense chip heritability estimates from GWAS.
Additionally, schizophrenia is considered a spectrum disor-
der with multiple phenotypic dimensions and diverse clin-
ical presentation (MacDonald and Schulz, 2009; Peralta
and Cuesta, 2001); GWAS might therefore benefit from
considering continuous phenotypes rather than dichoto-
mous variables in such situations (Edwards et al., 2016).
More specifically in the context of the present model, if a
nominally categorical phenotype can be decomposed into
more than one subcategory, there is potential for enhanced
power for discovery. The heritability estimated in a binary
case-control design would be an average over heritabilities
for the case subcategories. If those heritabilities are simi-
lar, then, since the union of the subcategory polygenicities

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/133132doi: bioRxiv preprint 

https://doi.org/10.1101/133132
http://creativecommons.org/licenses/by/4.0/


gives the total polygenicity over all cases, the σ2
β for any

subcategory will be larger by a factor equal to the ratio of
overall polygenicity to the subcategory polygenicity, and
the corresponding power curve (as in Figure 2) will shift
to the left.

For educational attainment, we estimate SNP heritabil-
ity h2 = 0.10, in good agreement with the estimate of
11.5% given in (Okbay et al., 2016). As with schziophre-
nia, this is substantially less than the estimate of heri-
tability from twin and family studies of ≃ 40% of the
variance in educational attainment explained by genetic
factors (Branigan et al., 2013; Rietveld et al., 2013).

For putamen volume, we estimate the SNP heritability
h2 = 0.07, in reasonable agreement with an earlier esti-
mate of 0.1 for the same overall data set (Hibar et al.,
2015; So et al., 2011).

To assess the validity of the model, we conduct exten-
sive simulations over a wide range of polygenicities and
heritabilities for simulated quantitative traits, using the
full set of SNPs used in the phenotype analyses with real-
istic LD structure. The simulations in general validate the
model: with the true number of causals ranging over three
orders of magnitude, 102-105 (while heritabilities range
from 0.1 to 0.7), the estimated number of causals in each
case is in reasonable agreement with the corresponding
true value. Similarly, the true σ2

β ’s range over four or-
ders of magnitued, and the estimated values are generally
well within a factor of two of the corresponding true value.
It should be noted that for all simulations, σ2

0 is close to
1.0 (indicating no variance distortion, and hence no infla-
tion due to cryptic relatedness, as expected in HapGen),
though there is a trend toward larger values for higer heri-
tability and polygenicity. Thus, the higher inflation found
for schizophrenia is unlikely to be an artifact of the model.
The simulation QQ model plots in general agree with the
simulation QQ data plots, though there is an overestima-
tion of the proportion of more extreme z-scores, particu-
larly at very high polygenicities. This might be an artifact
of using the computationally simpler but less accurate Eq.
17 instead of Eq. 14, which is currently a limitation in the
implementation of the model. A Monte Carlo approach to
calculating the pdf in Eq. 14 might lead to more accurate
QQ model plots.

CONCLUSION

The SNP-level causal effects model we have presented is
based on GWAS summary statistics and detailed LD struc-
ture, and assumes a Gaussian distribution of effect sizes at
a fraction of SNPs randomly distributed across the auto-
somal genome. We have shown that it captures the broad
genetic architecture of diverse complex traits, where poly-
genicities and the variance of the effect sizes range over
orders of magnitude. In addition, the model provides a
roadmap for discovery in future GWAS. The model was not
designed to handle situations where the reversal of short

sections of DNA underlies SNP association, as appears to
be the case for some phenotypes, e.g, in chromosome 8p
for neuroticism (Lo et al., 2016). Future extensions and
refinements include modeling specific polygenicities and ef-
fect size variances for different SNP functional annotation
categories (Schork et al., 2013; Andreassen et al., 2013;
Sveinbjornsson et al., 2016), possible modified pdf for non-
Gauassian distribution of effects at the tails of the z-score
distributions, examining individual chromosomes and pos-
sible allele frequency dependencies in different phenotypes,
and extension to pleiotropic analyses. Higher accuracy
in characterizing causal alleles in turn will enable greater
power for SNP discovery.
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Figure 3: Quantile-quantile plots for simulations. True polygenicity is specified for each row, and true heritability is specified for each column.
QQ-plots for simulated data in dark blue, with 95% confidence interval in light blue; model prediction in yellow. The dashed blue curve is
the QQ plot corresponding to the true parameters. λ ≡ λ̂data and λ̂model are the overall nominal genomic control factors calculated from the
plots. The three estimated model parameters are: polygenicity, π̂1; discoverability, σ̂2

β
; and SNP association χ2-statistic inflation factor, σ̂2

0
.

ĥ2 is the estimated narrow-sense chip heritability, and n̂causal is the estimated number of causal SNPs. The dotted black line is the expected
plot under null. ĥ2

c is the same as ĥ2 but with H calculated from the known causal SNPs (instead of from all SNPs). Reading the plots: on
the vertical axis, choose a p-value threshold (more extreme values are further from the origin), then the horizontal axis gives the proportion
of SNPs exceeding that threshold (higher proportions are closer to the origin).
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Figure 4: (A) Mean value of heterozygosity for given total LD (SNPs were binned based on TLD and the mean TLD for each bin plotted on
the x-axis; the corresponding mean heterozygosity for SNPs in each bin was then plotted on the y-axis). (B) Mean value of total LD for given
heterozygosity. Plots made for SNPs in the PGC2 schizophrenia GWAS; TLD and H calculated from 1000 Genomes phase 3 reference panel.
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Figure 5: Histograms of SNPs in schizophrenia GWAS, by (A) total LD, and (B) heterozygosity.
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Figure 6: QQ plots for schizophrenia, for a 5X5 grid of total LD X heterozygosity. n is the number of SNPs in each plot. H and TLD are
the mean values in each plot. λ̂data and λ̂model are the genomic control values calculated from the QQ plots for the data and the model,
respectively.
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