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Abstract 23 

Enterococcus faecalis, a member of the human gastrointestinal microbiota, is an 24 

opportunistic pathogen associated with hospital-acquired wound, bloodstream, and 25 

urinary tract infections. E. faecalis can subvert or evade immune-mediated 26 

clearance, although the mechanisms are poorly understood. In this study, we 27 

examined E. faecalis-mediated subversion of macrophage activation. We observed 28 

that E. faecalis actively prevents NF-κB signaling in mouse RAW264.7 macrophages 29 

in the presence of Toll-like receptor agonists and during polymicrobial infection with 30 

Escherichia coli. E. faecalis and E. coli co-infection in a mouse model of catheter-31 

associated urinary tract infection (CAUTI) resulted in a suppressed macrophage 32 

transcriptional response in the bladder compared to E. coli infection alone. Finally, 33 

we demonstrated that co-inoculation of E. faecalis with E. coli into catheterized 34 

bladders significantly augmented E. coli CAUTI. Taken together, these results 35 

support that E. faecalis suppression of NF-κB-driven responses in macrophages 36 

promotes polymicrobial CAUTI pathogenesis.  37 
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Author Summary 38 

Synergistic polymicrobial infections can contribute to both disease severity and 39 

persistence. Enterococcus faecalis and Escherichia coli are frequently co-isolated 40 

from polymicrobial urinary tract infections. Immunomodulation by co-infecting 41 

microbes can result in a more permissive environment for pathogens to establish 42 

infection. Presently, we do not yet understand how these microbes overcome host 43 

immunity to establish polymicrobial infections. To address this, we investigated how 44 

the immunosuppressive function of E. faecalis can contribute to acute infection. We 45 

defined that E. faecalis is able to suppress macrophages in vitro, despite the 46 

presence of E. coli. We also demonstrated E. faecalis’ ability to augment E. coli titers 47 

in vivo to establish kidney infection. Our findings raise the prospect that E. faecalis 48 

can alter host immunity to increase susceptibility to other uropathogens.  49 

  50 
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Introduction 51 

Enterococcus faecalis is an early colonizer in infants and a ubiquitous member of the 52 

human gut microbiome [1]. E. faecalis is also associated with up to 70% of wound 53 

infections, nearly 10% of bloodstream infections, and up to 30% of catheter-54 

associated urinary tract infections (CAUTI) [2-5]. To successfully colonize and persist 55 

in the host, pathogens must withstand, modulate, or evade immune-mediated 56 

clearance mechanisms. E. faecalis invokes multiple strategies to persist within the 57 

host, including the formation of biofilms that prevent phagocytosis by immune cells 58 

[6], and the ability to survive within macrophages and neutrophils for extended 59 

periods of time [7-11]. 60 

 61 

Mammalian cells detect pathogen-associated molecular patterns (PAMPs) via 62 

pattern recognition receptors (PRRs) to trigger nuclear factor-kappa B (NF-κB)-63 

dependent host defenses. NF-κB controls the transcription of inflammatory and 64 

immune-associated genes, including cytokines and chemokines regulating 65 

recruitment and activation of immune cells in response to infection [12]. E. faecalis 66 

infection of macrophages at low multiplicities of infection (MOI = 10) results in the 67 

activation of mitogen activated protein kinases (MAPKs) and NF-κB, leading to the 68 

production of pro-inflammatory cytokines [13]. However, some E. faecalis strains, 69 

isolated from the gastrointestinal tract of healthy human infants, can suppress MAPK 70 

and NF-κB signaling, and IL-8 expression in intestinal epithelial cells in vitro [14, 15].  71 

 72 

In a mouse urinary tract infection (UTI) model, the cellular response to E. faecalis 73 

infection is primarily monocytic and is independent of Toll-like receptor (TLR) 2 [16]. 74 

In a CAUTI model, the presence of a urinary catheter alone elicits a strong pro-75 
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inflammatory response in the bladder composed of neutrophils and monocyte-76 

derived cells [17-19]. Infection of catheterized bladders with E. faecalis results in the 77 

development of high titer catheter-associated biofilms and bladder infection, despite 78 

the presence of the strong inflammatory response induced by catheterization (19). 79 

Moreover, in the course of E. faecalis CAUTI, the number of both non-activated and 80 

activated bladder-associated macrophages was decreased compared to 81 

catheterized, uninfected, animals [17]. Together, these observations suggest that 82 

E. faecalis can subvert immune-mediated killing to persist within the infected bladder.  83 

 84 

During UTI and CAUTI, E. faecalis is often part of a polymicrobial community [20-22]. 85 

E. faecalis can promote polymicrobial infection by increasing the resistance of co-86 

infecting organisms, such as P. aeruginosa and P. mirabilis, to clearance by 87 

antibiotics [23, 24]. Polymicrobial infection by E. faecalis and P. aeruginosa more 88 

often leads to aggravated pyelonephritis, compared to monomicrobial infection [23]. 89 

E. faecalis and uropathogenic Escherichia coli (UPEC) are also frequently isolated 90 

together during CAUTI [25], however, the relationship between these pathogens and 91 

the impact on pathogenesis is unknown. Given the frequency with which E. faecalis 92 

is found within polymicrobial infections, and that E. faecalis can modulate the host 93 

immune response within the catheterized bladder, we tested the hypothesis that 94 

E. faecalis immune modulation promotes polymicrobial CAUTI. We found that 95 

E. faecalis actively subverts E. coli-mediated NF-κB activation and pro-inflammatory 96 

cytokine production in RAW264.7 macrophages in vitro and macrophage-associated 97 

pro-inflammatory expression profiles in catheterized bladders in vivo, culminating in 98 

higher titer E. coli CAUTI. 99 

 100 
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 101 

Results 102 

Live E. faecalis prevents LPS- or LTA-mediated NF-κB-driven activation in 103 

RAW macrophages 104 

E. faecalis infection during CAUTI induces monocytic infiltration [16]. To determine 105 

whether E. faecalis immunomodulated monocyte-derived cells such as 106 

macrophages, we assessed NF-κB signaling in mouse RAW-264.7 macrophages at 107 

6 hours post-infection (hpi). Both E. faecalis strain OG1RF (Fig 1A) and the 108 

multidrug-resistant strain V583 (S1A Fig) activated NF-κB at low multiplicities of 109 

infection (MOI) as previously reported [13]. By contrast, neither E. faecalis OG1RF 110 

nor V583 activated NF-κB signaling at high MOIs. We simultaneously monitored 111 

lactate dehydrogenase (LDH) release into culture supernatants to ensure that the 112 

absence of NF-κB activation was not a result of cell death at high MOIs, and 113 

observed no increase in LDH release at any of the MOIs used in this study (Fig 1B 114 

and S1B Fig from S1 Fig).  115 

 116 

E. faecalis can attenuate proinflammatory cytokine secretion in intestinal epithelial 117 

cells [15]. To determine whether E. faecalis actively prevented NF-κB-mediated 118 

transcription, or simply failed to induce NF-κB-mediated transcription at high MOIs in 119 

macrophages, we tested whether E. faecalis could prevent NF-κB-driven activation in 120 

the presence of TLR agonists that initiate NF-κB signaling. We exposed 121 

macrophages to lipopolysaccharide (LPS) or lipoteichoic acid (LTA) simultaneously 122 

with E. faecalis for 6 hours, quantified both NF-κB-mediated transcription and LDH 123 

release, and observed a dose-dependent inhibition of LPS- and LTA-induced NF-κB 124 
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activation by E. faecalis (Fig 1C, 1E and S1C Fig from S1 Fig) in the absence of 125 

cytotoxicity (Fig 1D, 1F and S1D Fig from S1 Fig). 126 

 127 

To determine whether the absence of an NF-κB transcriptional response was due to 128 

an E. faecalis secreted factor, we examined the macrophage response to heat-killed 129 

E. faecalis or cell-free bacteria supernatants from MOI equivalents ranging from 100 130 

to 1. We observed that heat-killed E. faecalis activated NF-κB at all MOIs, in an 131 

inverse manner to that of live intact cells (Fig 1G) in the absence of cytotoxicity (Fig 132 

1H). Supernatants from infected macrophages showed similar NF-κB activation to 133 

that of live E. faecalis cells (Fig 1G). To rule out that NF-κB activation was not due to 134 

cytokines secreted by RAW-264.7 macrophages during infection, we also exposed 135 

macrophages to supernatants from bacteria cultures grown in the absence of 136 

macrophages. Supernatants from bacteria cultures weakly activated NF-κB alone 137 

and did not suppress LPS-mediated induction of NF-κB activity, except at MOI 100 138 

(Fig 1G). Together, these data suggest that E. faecalis actively prevented NF-κB 139 

activation via a process requiring a heat-modifiable factor that is secreted into cell 140 

supernatants during co-culture with macrophages, and that is produced in the 141 

absence of macrophages only at very high MOI. 142 

 143 

E. faecalis suppresses NF-κB-dependent cytokine and chemokine production 144 

in RAW macrophages 145 

E. faecalis modulates cytokines such as IL-8, TNFα, and IL-1β in intestinal epithelial 146 

cells [13, 14]. To investigate whether E. faecalis suppresses cytokine production in 147 

infected macrophages, we measured release of a variety of cytokines and 148 

chemokines, whose expression is dependent on NF-κB activation, in the absence of 149 
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LPS. We observed an overall increase of both pro- and anti-inflammatory cytokines 150 

and chemokines at MOI 10 and 1, similar to that observed in LPS-treated cells (Fig 151 

2A,B). Strikingly, at MOI 100, we observed a global decrease in cytokine, 152 

chemokine, and growth factor expression as compared to MOI 10 or LPS exposure 153 

(Fig 2A). Moreover, at MOI 100, we observed that most of the analytes (IFN-�, 154 

CCL11, CSF2, IL-4, IL-17, IL-12p40, IL-12p70, IL-2, IL-1β, CCL2, CXCL1, and IL-5) 155 

were present at levels similar to the media control (Fig 2A,B and S2A Fig from S2 156 

Fig). Principal component analysis of analytes revealed that the profile of MOI 100 157 

overlapped with the profile of uninfected macrophages, suggesting that analytes 158 

were not expressed despite greater numbers of E. faecalis (S2B Fig from S2 Fig). 159 

Therefore, these data suggest that E. faecalis suppression of NF-κB activation at 160 

high MOI led to an overall suppression of cytokines and chemokine expression (Fig 161 

2). 162 

 163 

E. faecalis limits E. coli-mediated immune activation during polymicrobial RAW 164 

macrophage infection  165 

To investigate whether E. faecalis-mediated immune suppression contributed to 166 

polymicrobial UTI, we first tested its ability to suppress NF-κB activity in the presence 167 

of E. coli in vitro. We determined that RAW macrophages infected with E. coli K12 168 

strain MG1655 at an MOI of 1 or E. coli UTI89 at an MOI of 0.125 induced NF-κB 169 

activation (S3A and S3C Fig from S3 Fig) in the absence of cytotoxicity (S3B and 170 

S3D Fig from S3 Fig), whereas higher MOIs were toxic to the mammalian cells 171 

(S3B and S3D Fig from S3 Fig). We simultaneously infected macrophages with 172 

E. faecalis and E. coli at these pre-determined MOIs and observed that, while both 173 

E. coli strains MG1655 and UTI89 mono-infection induced NF-κB reporter activity 174 
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equal to LPS alone, E. faecalis prevented E. coli-induced NF-κB activity in a dose-175 

dependent manner (Fig 3). From this observation, we hypothesized that E. faecalis 176 

could similarly suppress the host immune response in vivo. 177 

 178 

E. faecalis limits E. coli-mediated immune activation during mixed species 179 

infection 180 

To investigate whether E. faecalis impacts immune-related signaling in vivo, we 181 

performed RNA expression profiling on whole bladders 24 hours post catheterization 182 

and infection. We compared E. coli UTI89 mono-species infection to E. coli UTI89 183 

and E. faecalis OG1RF co-infection at a 1:1 inoculum ratio. Of the 15,501 detectable 184 

genes (Padj<0.05), 2 genes (0.013%) demonstrated increased mRNA levels, while 53 185 

genes (0.34%) demonstrated decreased mRNA levels between co-infected mice and 186 

the mono-infected mice. Of these differentially expressed genes, we observed that 187 

31 genes mapped to Gene Ontology (GO) terms: response to external biotic stimulus 188 

(GO:0043207), response to other organism (GO:0051707), innate immune response 189 

(GO:0045087), response to cytokine (GO:0034097), response to biotic stimulus 190 

(GO:0009607), immune effector response (GO:0002252) and regulation of immune 191 

response (GO:0050776), that were significantly enriched (Padj<0.01; Fisher’s Exact 192 

Test, corrected the 218 terms tested; see Methods section) (Fig 4A and Fig 4B, 193 

Table from S1 Table).  194 

 195 

The enrichment of GO terms associated with immune function within down-regulated 196 

genes during co-infection in the presence E. faecalis suggested that we might also 197 

observe differential gene expression specifically in genes associated with the cell 198 

populations responding to CAUTI [19]. To test this, we examined the Immunological 199 
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Genome Project (ImmGen) database, which comprises publicly available data from a 200 

collection of immune cell types in C57BL/6J mice [13, 26]. We found that within the 201 

top 50 differentially regulated genes between the mono-infected and co-infected 202 

groups, genes specific for dendritic cells (DC), macrophages (MF), and monocytes 203 

(MO) were over-represented and showed decreased mRNA levels in co-infected 204 

animals, suggesting a reduced infiltration or activation of these cells in the bladder 205 

following-co-infection as compared to mono-infection (Fig 4C, Table from S2 206 

Table). 207 

 208 

E. faecalis limits E. coli-mediated immune activation and promotes E. coli 209 

virulence during mixed species CAUTI 210 

Based on downregulation of transcripts associated with interferon regulation (oas 211 

and ifi) and monocytic chemotaxis (CCL12) during E. faecalis-mediated immune 212 

suppression in vivo, we hypothesized that suppression allows UPEC to better 213 

colonize the bladder in the presence of E. faecalis. To test this in a CAUTI model, we 214 

co-infected catheterized mice with 107 CFU of E. faecalis OG1RF and 107 CFU of 215 

E. coli UTI89, and observed no significant differences in E. coli titers compared to 216 

monomicrobial E. coli infection (Fig 5A and 5B). By contrast, E. faecalis titers during 217 

co-infection were significantly lower in the bladders but not in kidneys, which could 218 

be a result of tissue tropism of E. faecalis to the kidneys or enhanced clearance as a 219 

result of the E. coli–driven immune activation as previously described for E. coli-220 

Group B Streptococcus coinfection in the bladder (Fig 5A and 5B) [16, 27]. We 221 

postulated that the immunomodulatory capability of UPEC strain UTI89 may be 222 

sufficient to cause high titer CAUTI such that E. faecalis cannot further augment 223 

infection [28]. Therefore, we hypothesized that colonization by a non-pathogenic, 224 
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commensal-like E. coli strain such as K12 strain MG1655, deficient for LPS O-225 

antigen expression, may be enhanced by E. faecalis-mediated immune modulation 226 

[29]. To test this, we infected catheterized mice with 107 E. coli K12 strain MG1655 227 

alone, or 107 each of E. coli together with E. faecalis at equal ratios. Similarly to 228 

infection with UTI89, E. coli CFU were not different following co-infection with 229 

E. faecalis in the bladder at 24 hpi compared to E. coli mono-species infection, and 230 

E. faecalis CFU were significantly decreased (Fig 5C). By contrast, E. coli CFU were 231 

significantly increased in the kidneys following co-infection with E. faecalis, while 232 

E. faecalis CFU were unchanged (Fig 5D). Collectively, these infection studies show 233 

that the presence of immune-modulatory organisms such as E. faecalis, in the 234 

context of a polymicrobial CAUTI, can increase the pathogenicity of otherwise non-235 

virulent infectious organism and increase host vulnerability to infection by otherwise 236 

commensal organisms. 237 

 238 

Discussion 239 

Bacterial immunomodulatory functions can alter infection sites leading to increased 240 

susceptibility to colonization and persistence [30, 31]. E. faecalis can augment the 241 

immune response in a variety of cell types, including intestinal epithelial and mouse 242 

macrophage cell lines [14, 15, 30]. Recently, it was shown that E. faecalis strains 243 

V583 and E99 suppress NF-κB activation of intestinal epithelial cells and RAW264.7 244 

macrophages at MOI 100 [30]. In contrast to reports of high MOI immune 245 

suppression, infection of RAW264.7 macrophages and bone marrow-derived 246 

macrophages with E. faecalis strain E99 at MOI 10 results in NF-κB activation [30]. 247 

These discrepant reports of NF-κB activation and suppression by E. faecalis 248 

underscore the need for further investigation into E. faecalis immunomodulatory 249 
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activities within macrophages. Here, we resolve previous conflicting reports and 250 

show that both E. faecalis strains V583 and OG1RF prevent NF-κB activity in 251 

RAW264.7 macrophages in a dose-dependent manner.  252 

 253 

Several E. faecalis virulence factors modulate immunity during infection, including 254 

aggregation substance (AS), gelatinase, and TcpF [30, 32, 33]. AS promotes 255 

phagocytosis and internalization into macrophages via interaction with complement 256 

receptor type 3. After internalization AS can resist superoxide killing leading to 257 

increased survival in macrophages [34]. In addition, gelatinase facilitates innate 258 

immune evasion by interacting with the complement system to reduce opsonization 259 

and to decrease neutrophil recruitment [32, 33, 35]. TcpF is a TIR domain-containing 260 

protein and interferes with Toll-like receptor (TLR)-MyD88 interactions, which also 261 

depend on MyD88 TIR domain-mediated interactions. As a result, E. faecalis TcpF 262 

expression results in decreased NF-κB p65 translocation in RAW macrophages [30, 263 

36]. TcpF is present in E. faecalis V583 and is enriched in UTI isolates, but is absent 264 

in OG1RF [30, 36]. Since we observed NF-κB modulation by both E. faecalis OG1RF 265 

and V583, TcpF is unlikely to be the factor mediating high-level NF-κB suppression 266 

in macrophages. Instead, our data suggests that the E. faecalis factor, which 267 

prevents NF-κB activity, is a heat-modifiable molecule. Other Gram-positive 268 

pathogens secrete heat-modifiable immune-modulatory molecules. For example, 269 

Staphylococcus aureus superantigen-like proteins (SSLs) have immune modulatory 270 

functions, such as inhibiting IgA-mediated immune responses and by targeting 271 

neutrophils to limit the attachment to endothelial cells [37-42]. SSL3 can 272 

downregulate TLR2-mediated production of IL-8 by binding competitively with PAMP 273 

ligands of TLR2 [43]. Our work indicates that E. faecalis may possess similar 274 
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secreted factors that modulate NF-κB activation and prevent bacterial clearance by 275 

host immune cells. 276 

 277 

A large proportion of E. faecalis infections are polymicrobial and E. faecalis is 278 

frequently co-isolated with E. coli from urinary tract and wound infections [25, 31, 44-279 

46]. Given the prevalence of E. faecalis in polymicrobial interactions, we performed 280 

in vitro and in vivo experiments to study the contribution of E. faecalis to co-infection 281 

outcomes. We found that E. faecalis prevented NF-κB activity during co-infection 282 

with live E. coli K12 strain MG1655 and UPEC strain UTI89 in vitro and augmented 283 

E. coli K12 strain MG1655 titers in the kidneys. Similar to our findings in this study, 284 

Gram-positive uropathogens Staphylococcus saprophyticus and Group B 285 

Streptococcus induce minimal pro-inflammatory responses in the urinary tract, and 286 

the latter limits UPEC pathogenesis in mice [27, 31, 47-49]. Taken together, our 287 

findings suggest that E. faecalis modulation of the immune response may promote 288 

the survival of co-infecting pathogens resulting in more severe infection. 289 

 290 

Synergistic polymicrobial infections are increasingly recognized for their contribution 291 

to both disease severity and persistence [21, 31]. Here we show that E. faecalis 292 

modulated the host response and promoted infection by a co-infecting E. coli strain, 293 

which is otherwise non-virulent. Importantly, E. faecalis presence in the urinary tract, 294 

especially when titers are low, has historically been considered a commensal 295 

contaminant of questionable pathogenic significance [50]. Our findings call into 296 

question that supposition and raise the prospect that E. faecalis not only augments 297 

E. coli infections, but may also promote infection by a larger spectrum of 298 

uropathogens. Continued efforts are needed to dissect these polymicrobial molecular 299 
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interactions to allow for better diagnostics and precision treatment, especially as UTI 300 

pathogens are increasingly resistant to antibiotics of last resort [51]. 301 

 302 

Materials and Methods 303 

Bacterial strains and growth conditions  304 

Uropathogenic E. coli (UPEC) strain UTI89 [52, 53] and E. coli K12 strain MG1655 305 

[54] were grown overnight in Luria-Bertani (LB) broth or agar at 37°C under static 306 

conditions. E. faecalis strain OG1RF [55] or V583 [56] were grown statically in brain 307 

heart infusion (BHI) broth or agar at 37°C overnight. Overnight cultures of bacteria 308 

were centrifuged at 6,000 g for 5 minutes and resuspended in PBS at OD600 0.7 (2 x 309 

108 CFU/ml) for E. faecalis and at OD600 0.4 (2 x 108 CFU/ml) for E. coli.  310 

 311 

Cell culture  312 

RAW-Blue cells derived from RAW 264.7 macrophages (Invivogen), containing a 313 

plasmid encoding a secreted embryonic alkaline phosphatase (SEAP) reporter under 314 

transcriptional control of an NF-κB-inducible promoter, were cultivated in Dulbecco 315 

Modified Eagle medium containing 4500 mg/L high glucose (1X) with 4.0 nM L-316 

glutamine, without sodium pyruvate (Gibco) and supplemented with 10% fetal bovine 317 

serum (FBS; PAA) supplemented with 200 µg/ml Zeocin at 37°C in 5% CO2.  318 

 319 

RAW-Blue macrophage infection  320 

RAW-Blue cells were seeded in a 96 well plate at 100,000 cells/well in 200 µl of 321 

antibiotic-free cell culture media. Following overnight incubation, the cells were 322 

washed once with PBS and fresh media was added. The SEAP reporter assay was 323 

established by empirically defining the minimal agonist (lipopolysaccharide (LPS) or 324 
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lipoteichoic acid [57]) concentration that induced the maximum SEAP activity in the 325 

absence of cell death. Cells were stimulated using LPS EB ultrapure purified from 326 

E. coli O111:B4 (Invivogen) (100 ng/ml) or LTA derived/purified from Staphylococcus 327 

aureus (Invivogen) (100 ng/ml) as positive controls, or media alone as a negative 328 

control. RAW-Blue cells were infected with E. faecalis (at MOI of 100:1, 50:1, 25:1, 329 

10:1 and 1:1) for 6 hours with or without TLR agonists. Overnight bacterial cultures 330 

were centrifuged and resuspended in cell culture media. For infection experiments, 331 

live bacterial cultures were diluted to achieve the desired multiplicity of infection with 332 

macrophages (MOI). Alternatively, bacteria were heat-killed (80°C for 1 hour) prior to 333 

addition to macrophage cultures. For co-infection experiments, RAW-Blue cells were 334 

simultaneously infected with E. coli K12 strain MG 1655 (1:1 MOI) or E. coli UTI89 335 

(MOI of 0.125:1) and E. faecalis OG1RF (MOIs of 100:1, 50:1, 25:1, 10:1 and 1:1). 336 

Heat-killed bacteria were verified by the absence of viable bacteria when plated on 337 

BHI agar.  338 

 339 

Collection of bacteria cell-free culture supernatants 340 

Bacteria were grown in cell culture media for 6 hours, and bacteria-free culture 341 

supernatants were collected after centrifugation (6,000 g) followed by filtration (using 342 

a 0.2 µm syringe filter). Alternatively, supernatants were collected after infecting 343 

macrophages with bacteria at various MOIs and then filtered by using a 0.2 µm 344 

syringe filter. Sterility of bacteria-free culture supernatants were verified by the 345 

absence of viable bacteria when plated on BHI agar.  346 

 347 

NF-κB reporter assay  348 
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Post-infection, 20 µl of supernatant was added to 180 μl of QUANTI-Blue reagent 349 

(Invivogen) and incubated overnight at 37°C. SEAP levels were determined at 350 

640 nm using a TECAN M200 microplate reader. All experiments were performed in 351 

triplicate. 352 

 353 

Cell viability assay  354 

Simultaneously with supernatant collection for SEAP determination, culture 355 

supernatants were collected from each well to measure lactate dehydrogenase 356 

(LDH) release, using an LDH cytotoxicity assay (Clontech) according to 357 

manufacturer’s instructions. Background LDH activity was determined using mock 358 

(PBS) treated RAW-Blue cells. Maximal LDH activity was determined by lysing cells 359 

with 0.2% Triton-X. Each condition was carried out in triplicate. Percentage 360 

cytotoxicity was calculated as follows: (sample absorbance-background 361 

absorbance)/(maximal absorbance-background absorbance) x 100. 362 

 363 

Luminex MAP analysis  364 

Supernatants were collected from RAW-Blue cells 6 hours post-infection and stored 365 

at -80°C until assessment by the Bio-Plex Pro mouse cytokine 23-plex assay kit (Bio-366 

Rad Laboratories), according to manufacturer’s recommendations [58]. All samples 367 

were assessed using the same kit lot and at the same time to avoid inter-assay 368 

variability. 369 

 370 

Catheterization and bacterial infections  371 

Mouse experiments were performed with ethical approval by the ARF-SBS/NIE 372 

Nanyang Technological University Institutional Animal Care and Use Committee 373 
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under protocol ARF-SBS/NIE-A0247. Catheters were implanted into bladders of 374 

mice followed by bacterial inoculation via a transurethral catheter as previously 375 

described [18, 59]. Briefly, 6-8 week old female C57BL/6NTac mice (InVivos Pte Ltd, 376 

Singapore) were anesthetized with isoflurane (4%). Inoculum volumes of 50 µl, 377 

containing a bacterial suspension of either single or polymicrobial species prepared 378 

in PBS: (i) 107 CFU of E. coli K12 strain MG1655 with 107 CFU E. faecalis OG1RF, 379 

and (ii) 107 CFU of E. coli UTI89 with 107 CFU E. faecalis OG1RF. Single species 380 

controls (107 CFU of E. coli K12 strain MG1655, 107 CFU of E. faecalis OG1RF, or 381 

107 CFU of E. coli UTI89) were performed alongside polymicrobial infections. 382 

Animals were euthanized by carbon dioxide inhalation and cervical dislocation and 383 

bladders and kidneys were aseptically removed and homogenized in 1 ml PBS for 384 

CFU enumeration by serial dilution on MacConkey agar or BHI agar supplemented 385 

with 10 µg/ml colistin and 10 µg/ml nalidixic acid to isolate E. coli or E. faecalis, 386 

respectively. To identify bacterial species other than the inoculated E. coli or 387 

E. faecalis, serial dilutions were also plated on LB and BHI. Data are combined from 388 

2 independent experiments (5-7 mice per group). Animals without catheters at the 389 

time of sacrifice were not included in the analyses. 390 

 391 

RNA-sequencing of infected bladders 392 

Catheterized mice were infected as described above with 107 E. coli UTI89, or mixed 393 

at a 1:1 ratio with 107 E. faecalis OG1RF, in 50 µl PBS. After 24 hours, whole 394 

bladders were removed and incubated overnight in RNAlater (Qiagen) to allow 395 

complete tissue penetration by the protectant prior to storage at -80oC. RNA was 396 

extracted as described [60]. For each sample condition, a total of three sequencing 397 

libraries were constructed from 50-200 ng of rRNA-depleted RNA. 2 nM of each 398 
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library was pooled at equal volumes and sequenced using an Illumina Hiseq®2500 399 

v.2 (Illumina),150 bp paired-end. 400 

 401 

Analysis of RNA-sequencing  402 

Sequencing data are available at NCBI’s BioProject (accession no. PRJ-NA335539). 403 

RNA sequencing results were analyzed as described in [19]. Briefly, reads were 404 

quality checked and adapters trimmed with cutadapt-1.4.1 using default parameters. 405 

The mm10 mouse genome was used as reference for tophat-2.0.11.Linux_x86_64 406 

[61] and transcriptional read counts obtained using HTSeq-0.6.1 [62] with default 407 

parameters with a non-stranded analysis. Uness otherwise stated, all further 408 

analyses were performed in the R statistical computing environment (version 3.3.3)  409 

[63]. Differential analysis of E. coli mono-species infected animals to E. coli and 410 

E. faecalis OG1RF co-infected animals was performed using the R/Bioconductor 411 

package DESeq2, (version 1.40.1) [64]; using default settings from that package. 412 

The NCBI file gene2refseq (downloaded 03/03/2016) was used to convert Refseq to 413 

Entrez identifiers for further analysis of Gene Otology annotations and 414 

Immunological Genome Project (ImmGen) data for functional analysis. 415 

 416 

Functional analysis of bladder transcriptome  417 

Processing of ImmGen expression data was  performed in R 3.2.2  [63]. Briefly, all 418 

681 CEL files [65] were processed using the RMA method with the R/Bioconductor 419 

package oligo (version 1.34.0). Annotation was done using the R/Bioconductor 420 

package mogene10sttranscriptcluster.db (version 8.4.0), with expression profiles for 421 

each immune cells referenced from Jojic et al. Enrichment score was calculated for 422 

each immune cell type [66], and examined differentially expressed genes in the top 423 
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1% of the score distribution for each cell type, and compared these to equal sized 424 

cohorts of randomly selected genes (S3 Table). This analysis was conducted 425 

separately in up- and down-regulated gene sets in the two–group comparison. 426 

Ontology analysis was performed using the R/Bioconductor package GO.db (version 427 

3.4.0) and the gene2go file from the NCBI Gene database (downloaded 03/03/2016) 428 

using modified code from the R/Bioconductor package ontoTools (version 1.28.0) 429 

[67]. To test if differentially expressed genes associate with specific gene sets, we 430 

constructed 2-by-2 contingency tables and categorized genes based on whether 431 

they are differentially expressed or not for each included Gene Ontology Biological 432 

Process term. Random assignment was tested using Fisher’s Exact Test [68], and 433 

corrected for the number of terms using the Benjamini-Hochberg correction [69]. We 434 

filtered terms using their information content (IC), [70], based on their frequency of 435 

occurrence between 3 and 4, resulting in a set of 157 included terms that represent 436 

an appropriate trade-off between the total number of included terms and specificity of 437 

functional insight. The entire R workflow and input data files are available online 438 

(https://github.com/rbhwilliams/Kline-polymicrobial-infection-paper). 439 

 440 

Statistical Analysis  441 

Statistical analyses were performed using GraphPad Prism software (Version 6.05 442 

for Windows, California, United States). SEAP assays were analyzed using one-way 443 

ANOVA with Tukey’s multiple comparison. Cytokine readings for Luminex MAP 444 

analysis were analyzed using Kruskal Wallis test. CFU titers were compared using 445 

the non-parametric Mann-Whitney U test. P-values less than 0.05 were deemed 446 

significant. Cytokine comparisons were performed using the Mann-Whitney U test 447 

and further comparison done using principal component analysis in R (version 3.3.2) 448 
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with packages factoextra (Version 1.0.4) and FactoMineR (version 1.34). Heatmap 449 

data reflect log2 transformation of the raw data and are plotted in R (version 3.3.2) 450 

using the R package, pheatmap (version 1.0.8). 451 

452 
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Fig 1. E. faecalis prevents NF-κB-driven macrophage activation.  681 

Mouse RAW 267.4 macrophages were infected with live E. faecalis OG1RF alone, or 682 

treated concurrently with either LPS (100 ng/ml) or LTA (100 ng/ml) at the specified 683 

MOI for 6 hours prior to measurement of NF-κB-driven SEAP reporter activity and 684 

cytotoxicity (LDH activity). (A) NF-κB-driven SEAP reporter activity and (B) LDH 685 

activity of RAW 264.7 macrophages infected by E. faecalis alone. (C) NF-κB-driven 686 

SEAP reporter activity and (D) LDH activity in the presence of E. faecalis and LPS. 687 

(E) NF-κB-driven SEAP reporter activity and (F) LDH activity in the presence of 688 

E. faecalis and LTA. (G) NF-κB-driven SEAP reporter activity and (H) LDH activity 689 

upon stimulation with heat-killed E. faecalis at the indicated MOI, infection 690 

supernatant, or bacterial culture supernatants with and without LPS. Culture 691 

supernatants post infection period were collected for SEAP reporter assays and LDH 692 

assays. NF-κB-driven SEAP reporter assays: exposure to media alone (-) represents 693 

background NF-κB reporter activity and stimulation with LPS or LTA represents 694 

positive controls for reporter activity. LDH assays: Triton-X treatment served as a 695 

positive control (+) for cell death. Data are combined from 3 independent 696 

experiments; mean values are graphed and error bars represent standard error of 697 

the mean (SEM). Statistical analysis was performed by the one-way ANOVA test 698 

with Tukey’s multiple comparison test where *P<0.05, ***P<0.001, ****P<0.0001 as 699 

compared to media alone (-) controls; and where #P<0.05, ##P<0.01, ###P<0.001, 700 

####P<0.0001 among all of the MOIs as compared to MOI 100. 701 

  702 
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Fig 2. E. faecalis suppresses NF-κB-dependent cytokine and chemokine 703 

production in RAW macrophages.  704 

Mouse RAW 267.4 macrophages were infected with live E. faecalis at the indicated 705 

MOI. (A) Spider plot showing the fold-change of cytokines, chemokines and growth 706 

factors detected in filtered supernatants collected 6 hpi at depicted conditions 707 

compared to media control. Data were normalized against the media control, 708 

represented in pink, to obtain fold-change. (B) Heat map depicting the log2 709 

transformation of absolute values measured in pg/ml of the indicated cytokines, 710 

chemokines, and growth factors.  711 
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Fig 3. E. faecalis suppresses E. coli induced immune activation in vitro. 712 

Mouse RAW 267.4 macrophages were stimulated simultaneously with E. faecalis 713 

OG1RF and E. coli MG1655 prior to measurement of (A) NF-κB-driven SEAP 714 

reporter activity and (B) LDH activity. Mouse RAW 267.4 macrophages were co-715 

infected with E. faecalis OG1RF and E. coli UTI89 before measuring (C) NF-κB-716 

driven SEAP reporter activity and (D) LDH activity. NF-κB-driven SEAP reporter 717 

assays: exposure to media alone (-) represents background NF-κB reporter activity 718 

and stimulation with LPS represents positive controls for reporter activity. LDH 719 

assays: Triton-X treatment served as a positive control (+) for cell death. Data are 720 

combined from 3 independent experiments. Statistical analysis was performed using 721 

the one-way ANOVA test with Tukey’s multiple comparison test where ***P<0.001, 722 

****P<0.0001 as compared to media alone (-) controls; and where #P<0.05, 723 

###P<0.001, ####P<0.0001 among all of the MOIs as compared to MOI 100.  724 
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Fig 4. E. faecalis suppresses E. coli-driven inflammation in catheterized mouse 725 

bladders.  726 

Female C57BL/6NTac mice were implanted with catheters in the bladder and 727 

infected with 107 CFU of E. coli UTI89 or 107 CFU each of E. coli and E. faecalis in a 728 

1:1 mixture. After 24 hours, bladders were removed and RNA extracted. (A) Binary 729 

matrix showing association between differentially expressed genes (rows) and those 730 

Gene Ontology Biological Process (GOBP) terms (columns) enriched in the 731 

differential expression analysis between E. coli-infected and polymicrobial-infected 732 

animals. Differentially expressed genes that did not map to an enriched GOBP term 733 

are not shown. Dark cells indicate genes that are annotated to a GOBP term and 734 

light cells indicate that it is not. (B) Summary of differential expression in set of 31 735 

genes shown in (A). Differential expression in each gene is summarized by mean 736 

(black dots) log2 ratio of expression between E. coli-infected and polymicrobial-737 

infected animals; where the line indicates estimated standard error of mean. (C) To 738 

examine whether observed differential gene expression may be associated with a 739 

given ImmGen defined cell type, we calculated the percentage of the top  740 

differentially genes (up-regulated in E. coli infected compared to polymicrobial 741 

infection) that are placed within the top 1% of the distribution of the cell-type-specific 742 

enrichment score [66] (purple dots) compared to 100 sets of 50 genes drawn at 743 

random (summarized in violin plots in yellow; the bar shows the median). SP, stem 744 

and progenitor cells; B, B cells; DC, dendritic cells; MF, macrophages; MO, 745 

monocytes; GN, granulocytes; T4, CD4+ cells; T8, CD8+ cells; NKT, natural killer T 746 

cells; GDT, γδ T cells; SC, stromal cells; NK, natural killer cells. See Tables S1, S2 747 

for related analyses. The experiment was performed twice (n=3 mice per 748 

group/experiment). Representative data are shown from one experiment. 749 
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Fig 5. E. faecalis promotes E. coli MG1655 infection during mixed species 750 

CAUTI in vivo. 751 

Female C57BL/6NTac mice were implanted with 5 mm silicon catheters in the 752 

bladder and infected with 107 CFU of E. coli UTI89 or MG1655 alone, 107 CFU of 753 

E. faecalis OG1RF alone, or a 1:1 mixture of 107 CFU of E. coli and107 CFU of 754 

E. faecalis. (A) Bladder and (B) kidney titers from E. coli UTI89 and E. faecalis mono- 755 

and co-infection. (C) Bladder and (D) kidney titers from E. coli MG1655 and 756 

E. faecalis mono- and co-infection. After 24 hours, bladders and kidneys were 757 

removed and CFU enumerated. Data were combined from 2 independent 758 

experiments (5-7 mice per group). Boxes represent the 25th and 75th percentile with 759 

the middle line indicating the median. Whiskers represent the minimum and 760 

maximum values of the dataset. Significance was determined by the non-parametric 761 

Mann-Whitney test. *P<0.05, **P<0.01. The dashed horizontal line represents the 762 

limit of detection (LOD) of the assay. Titers below the LOD were assigned a value of 763 

the LOD for visualization on the log scale and 0 for statistical analyses. 764 
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