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Summary 18 

Percepts and words can be decoded from largely distributed neural activity measures. The 19 

existence of widespread representations might, however, conflict with the fundamental notions 20 

of hierarchical processing and efficient coding. Using fMRI and MEG during syllable 21 

identification, we first show that sensory and decisional activity co-localize to a restricted part 22 

of the posterior superior temporal cortex. Next, using intracortical recordings we demonstrate 23 

that early and focal neural activity in this region distinguishes correct from incorrect decisions 24 

and can be machine-decoded to classify syllables. Crucially, significant machine-decoding was 25 

possible from neuronal activity sampled across widespread regions, despite weak or absent 26 

sensory or decision-related responses. These findings show that a complex behavior like speech 27 

sound categorization relies on an efficient readout of focal neural activity, while distributed 28 

activity, although decodable by machine-learning, reflects collateral processes of sensory 29 

perception and decision. 30 

Introduction 31 

Does all the information that is encoded in our brain contribute to our representations and our 32 

decisions? The discovery of spatially distributed cortical representations, exploitable for “mind 33 

reading” in all domains of cognitive neuroscience during the past decade (1–5) raises 34 

fundamental issues about the nature of neural coding in the human brain. These findings even 35 

led scientists to reconsider the notion of local computational units, such as canonical 36 

microcircuits (6,7). Broadly distributed representations, as recently exemplified with the 37 

extreme scattering of word meaning representations throughout the brain (8), must, however, 38 

be interpreted with caution. Such data-driven results could lead us to conclude that these 39 

representations are useful when performing cognitive operations, when in fact they might only 40 

follow from these operations and reflect associative processes. Spatially-distributed patterns 41 

could be taken to indicate that the information they contain is critical to cognitive operations, 42 

as for instance in simple stimulus categorization (9). Yet, there is no principled a-priori reason 43 

why the sensitivity of techniques probing multidimensional neurophysiological data, e.g., 44 

machine decoding, would reflect the capacity of our brain to use broadly distributed neural 45 
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patterns for specific cognitive operations (10–12).  46 

Interpreting broadly distributed spatial maps for speech sounds can be particularly difficult. 47 

Unlike visual stimuli, whose identity relies heavily on spatial encoding, speech sound identity is 48 

embodied in a temporal form, and mainly relies on temporal encoding (13,14). Despite the 49 

importance of hierarchical temporal processing in speech, large cortex coverage with fMRI and 50 

more recently with ECoG was used to demonstrate 1) that the original acoustic speech signal 51 

can be reliably reconstructed from broadly distributed high frequency neural activity sampled 52 

cross-regionally throughout the superior temporal lobe (15–17), and 2) that local phonemic 53 

identity information in speech is poorly encoded by temporally resolved neural activity (2) but 54 

finely represented by distributed cortical patterns covering a significant portion of the left 55 

temporal lobe (1). Because optimal decoding occurs when redundant information from 56 

contiguous but functionally distinct territories is pooled together, assigning perceptual 57 

relevance to such large-scale representations ultimately conflicts with the notion that speech 58 

sounds are first spectro-temporally encoded in auditory cortex, before being more abstractly 59 

recoded in downstream areas (18). Accordingly, focal lesions of the temporal lobe can 60 

selectively impair different speech perception processes (19), and recent studies in monkey 61 

even show that auditory decision-making causally relies on focal auditory cortex activity (20). 62 

In summary, although multivariate pattern analysis and related decoding techniques have 63 

become popular (and prevalent) in the systems neuroscience literature, they may lead to 64 

misleading interpretations. This is because demonstrating that a particular stimulus attribute or 65 

category can be decoded from regional neuronal activity does not mean that the region is 66 

performing any decoding or categorical processing. In other words, there is an important 67 

conceptual leap between machine and brain decoding of neuronal activity. As an extreme 68 

example, phonemes could be classified using a machine-learning scheme applied to primary 69 

sensory afferents from the ear. However, this does not mean that the brain has yet decoded 70 

these signals – just that there is, by definition, sufficient information in this auditory input to 71 

support subsequent hierarchical decoding. To address this issue, we distinguished between the 72 

ability of a classifier to decode the stimulus category from neuronal responses at various levels 73 

in the auditory hierarchy and the ability of a linear model to estimate from neural responses the 74 

perceptual processes in a speech sound category assignment paradigm. In brief, we found that 75 

speech sound category assignment relied on neural activity present in a circumscribed part of 76 

the auditory hierarchy, at particular peristimulus times. In contrast, multivariate machine 77 

decoding returned positive results from a large brain network including regions where no 78 

evoked activity could be detected. 79 

Results 80 

We first explored explicit phoneme recognition using a simple syllable categorization task and 81 

measured global neural activity with fMRI and MEG in respectively 16 and 31 healthy volunteers 82 

(see methods and S1 Text). The subjects had to decide which syllable they heard in a /ba/ /da/ 83 

continuum, where the onset value of the second formant (F2) and the F2-slope linearly co-84 

varied in six steps (Fig 1A). These two first experiments served to delineate at the whole brain 85 

level those brain regions that were sensitive to 1- linear variations of F2 and 2- perceptual 86 

decisional effort as assessed using behavior-based negative d′ values (Fig 1B, 2A) (see methods 87 

and S1 Text). Critically, because the slope of the 2nd formant is steeper for the /da/ than for the 88 

/ba/ phoneme, we expected the /da/ stimulus to activate a larger cortical surface than the /ba/ 89 

stimulus, and hence to be associated with a stronger BOLD effect (see S1 Text). Both 90 

experiments converged to show that F2 variation was specifically tracked by neural activity in 91 

the right posterior superior temporal gyrus (pSTG), while perceptual decisional effort involved 92 

several regions of bilateral inferior prefrontal and posterior temporo/parietal cortex, and the 93 
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right anterior temporal pole (Fig 1C, 2B). These activations, in particular the acoustic encoding 94 

of F2 variations, remained focal even at a lenient statistical threshold (S1 Fig). The spatial 95 

selectivity of the acoustic tracking of F2 was confirmed by a second fMRI study in which 96 

participants had to decide whether they heard /da/ or /ta/. In this case the morphed acoustic cue 97 

was no longer spectral (F2) but temporal (voice onset time). We found that this acoustic cue was 98 

encoded in a restricted region of the left STG and superior temporal sulcus (STS)  (S8 Fig and S1 99 

Text). In short, the right pSTG was recruited for encoding the slope of the 2nd formant in the ba-100 

da continuum, and the left STG/STS for encoding the duration of the consonant part in the da-101 

ta continuum, reflecting the hemispheric dominance for temporal vs. spectral acoustic 102 

processing (21). 103 

Fig 1. fMRI results. (A). Spectrograms of the stimulus continuum between syllables /ba/ and /da/, 104 

synthesized with linear increase in F2-parameters (1650:100:2150 Hz). Full spectrograms at the 105 

extremes of the continuum represent /ba/ and /da/ prototype syllables (left and right panels, 106 

respectively). Middle spectrograms are centered on the F2-parameters. (B) Values for F2-107 

parameters (in blue, left panel), average d-prime (in red, middle panel), and percent syllables 108 

identified as /ba/ (in grey, right panel)  (mean ± s.e.m.) (C). Results of the regression analysis. Top 109 

panel: spatial localization of F2-parameters neural encoding (in blue) and d-prime (in red) in fMRI 110 

BOLD signal, expressed as beta coefficients. Significant clusters were found in the right posterior 111 

superior temporal lobe (pSTG) (peak MNI coordinates, x, y, z = 42, –34, 7, T = 3.21) for the F2-112 

tracking, and in left posterior temporo-parietal (x, y, z = –51, –28, 16, T = 4.41) and bilateral inferior 113 

prefrontal (x, y, z = 45, 17, –5, T = 5.26; x, y, z = –48, 8, 22, T = 5.29) cortices for auditory perceptual 114 

decision (d-prime). Images are presented at a whole-brain threshold of P<0.01 (uncorrected). 115 

Bottom panel: percent signal change in the left inferior prefrontal cortex (in red) and in the right 116 

pSTG (in blue). BOLD signal increases with F2-parameters in the right pSTG, and with auditory 117 

perceptual decision load in the left inferior prefrontal region (in red). 118 

We used dynamic source modeling of the MEG data to explore the dynamics of acoustic 119 

encoding and perceptual decision. We found neural correlates of F2 parameters encoding 120 

120ms post stimulus onset in the right pSTG. Auditory perceptual decision-related activity 121 

appeared in this region at 165ms and co-occurred with a second peak of F2 encoding activity at 122 

175ms (Fig 2B). In addition to the spectral response profile within the right pSTG and left 123 

prefrontal cortex, a Granger causality analysis across the two areas showed that neural activity 124 

related to F2 and negative d’ (–d’) corresponded to bottom-up encoding and top-down 125 

decoding activity, respectively. Both analyses were associated with neural activity in the high-126 

gamma band for F2 variation and in the beta band for –d’, confirming the generic implication of 127 

these two frequency ranges in bottom-up and top-down processes (22–24) (Fig 2C). The MEG 128 

findings thus support the straightforward scenario in which auditory decisions arise from a focal 129 

readout of the region that encodes the critical sensory cue (F2) by prefrontal regions (25–27). 130 

Fig 2. MEG results. (A). Values for F2-parameters (in blue, left panel), average d-prime (in red, 131 

middle panel), and percent syllables identified as /ba/ (in grey, right panel)  (mean ± s.e.m.). (B). 132 

Dynamic spatial localization of the neural encoding of F2 (in blue) and d-prime (in red) in MEG 133 

signals, expressed as beta coefficients. Only the bootstrapped P=0.05 significance threshold 134 

(Bonferroni-corrected) activations are represented. The right pSTG (pinpointed with black arrows) 135 

is first activated from 95 to 120ms for F2-parameters encoding, and then reactivated for phonemic 136 

decision around 165ms. (C). Top panel: Spectral profile of beta coefficients from regressions 137 

between F2 values and neural response in the right pSTG (left panel), and between –d′ values and 138 
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neural response in the left inferior prefrontal area (right panel). F2 was dominantly tracked by 139 

gamma and high-gamma activity, whereas decisional activity was expressed in the low beta band. 140 

Thick black lines indicate significant beta coefficients at P<0.05 (Bonferroni-corrected). Bottom 141 

panel: Granger Causality results between right pSTG and left inferior frontal gyrus (IFG). Thick 142 

black lines indicate significant granger coefficients at P<0.05 (Bonferroni-corrected). Top and 143 

bottom panels: shaded grey areas highlight the correspondence between beta coefficients and 144 

Granger Causality peaks. Left panel: high-gamma band for bottom-up activity from right pSTG to 145 

left IFG. Right panel: beta band for top-down activity from left IFG to right pSTG.  146 

Having established the global representational validity of the regions encoding the sensory 147 

features of interest (F2 variations), we then sought to examine the responses of these regions at 148 

a finer-grained scale using invasive electrophysiology. To maximize signal-to-noise ratio and 149 

spatial specificity in the exploration of coincident neural responses to F2 and auditory 150 

perceptual decision, we acquired intracortical EEG (i-EEG) data in 3 epileptic patients who 151 

together had 14 electrode shafts throughout the right temporal lobe (70 contact electrodes). 152 

Among them, one electrode shaft penetrated the right temporal cortex through Heschl’s gyrus 153 

(see Fig 3B). The deepest contacts of this auditory shaft strictly colocalized with the region that 154 

fMRI detected for F2 variation tracking. The patients performed the same syllable 155 

categorization experiment on a ba/da/ga continuum where the only changing acoustic cue was 156 

the F2 parameters (Fig 3A). Behavioral results show a good detection of ba and da, and a slightly 157 

less frequent detection of ga (Fig 3C). Strong evoked responses to syllables were only present in 158 

the auditory shaft, and were more marked/consistent in its two deepest contacts (Fig 3D, top 159 

row); the responses were weak to inexistent elsewhere (Fig 4A, colored plots). Significant F2 160 

tracking was consistently detected in all auditory contacts (see Methods), with strong and 161 

structured effects in the two deepest ones (Fig 4D, middle row). Fully consistent with the MEG 162 

results, F2 values were encoded by broadband gamma activity (40-110 Hz) from about 150ms 163 

post-stimulus onset onward, i.e. 50ms after F2 appeared in the acoustic signal. Structured and 164 

strong neural activity related to F2 tracking was not observed in any of the other contacts of the 165 

same patient (Patient 1, S2 Fig). These data confirm the extreme spatial selectivity of F2 166 

parameters encoding, and show that the encoding parameters of the discriminant acoustic cue 167 

are available in the pSTG for syllable recognition.  168 

Fig 3. i-EEG results in Patient 1. (A). Spectrograms of /ba/, /da/ and /ga/ prototype stimuli, 169 

synthesized with linear parametric F2-parameters. (B). Locations of i-EEG contacts in Patient 1. 170 

The auditory shaft labeled shaft 1 penetrated the right pSTG and Heschl’s gyrus. The patient had 5 171 

other shafts distributed in the right temporal lobe. Bipolar montages from adjacent contacts are 172 

shown in the bottom right figure. (C). Percentage of syllable identification for each category for the 173 

three patients. The shaded zone indicates SEM. The first 20 stimuli are categorized as /ba/, the next 174 

13 stimuli are categorized as /da/, and the last 11 stimuli are categorized as /ga/. (D). Top panel: 175 

evoked activity, averaged across stimuli, on each bipolar montage from the deepest (number 1) to 176 

the external-most (number 5) contact in the auditory shaft (shaft 1). Middle panel: time-frequency 177 

representations of beta coefficients from regression of F2 values against evoked activity on each 178 

contact of the auditory shaft. Significant F2 tracking was found in all contacts of the auditory 179 

shaft, with stronger effects in the two deepest contacts. Bottom panel: time-frequency 180 

representations of beta coefficients from regression of d-prime values against evoked activity on 181 

each contact of the auditory shaft. Decisional effects were significant on the third auditory contact 182 

about 200ms post-stimulus onset in the beta band. Middle and bottom panels: The vertical dashed 183 

lines indicate stimulus onset. The horizontal dashed lines indicate a change in the scaling of the 184 
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oscillatory power for each time point and each frequency, with a 0.5 Hz resolution below 20 Hz and 185 

a 1 Hz resolution above. Black contours indicate significant t-tests at q<0.05 (FDR correction). 186 

Decisional effects were globally weak in i-EEG signals, yet significant in the third auditory 187 

contact about 200ms post-stimulus onset in the beta band, in agreement with the MEG results, 188 

and in the deepest auditory contact about 350ms post-stimulus onset in the gamma band (Fig 189 

3D, bottom row). Because both fMRI and MEG showed correlates of decisional effort at several 190 

other locations in the frontal and temporal lobe, we broadened the analysis in this patient to all 191 

contacts of each shaft (S3 Fig). Perceptual decision-related effects were weak, sporadic and 192 

inconsistent. They were significant before 500ms post-stimulus at only two other locations 193 

outside Heschl’s gyrus: in the right inferior prefrontal cortex (shaft 6, contact 1; consistent with 194 

fMRI, Fig 1C) and in the anterior temporal lobe (shaft 4, contact 4; consistent with MEG, Fig 2B). 195 

We then sought to address whether focal neural activity could afford syllable categorization. 196 

Contrary to previous findings based on ECoG signals (1,2), local evoked activity from one 197 

contact was sufficiently discriminable to permit syllable categorization using a machine-198 

learning algorithm (maximum correlation coefficient classifier, see methods). Decoding was 199 

possible from all individual auditory contacts, but worked best from the deepest one (Fig 4A, 200 

bar plots, S6A Fig). Within the other electrode shafts, univariate decoding based on single 201 

contact information was never possible. However, significant multivariate decoding from 202 

pooling all contacts in each shaft was significant for shafts 1, 2, 3, 4 and 6, even though it 203 

included non-responsive contacts. Reciprocally, multivariate decoding was not possible in the 204 

temporal pole shaft (shaft 5), even though we detected significant perceptual decision-related 205 

neural activity in this region with fMRI and MEG. 206 

We subsequently addressed the key question whether the information used by the classifier 207 

corresponded to that used in the human decisional process. We examined whether there was a 208 

temporal correspondence between the dynamics of decoding, as assessed by time-resolved 209 

classification (28,29), and the presence of time-frequency neural cues that informed the 210 

subject’s perceptual decision. For this analysis, to ensure the independence of the analyzed 211 

dataset (S1 text), we no longer probed the decisional effort (search for information, –d’), but the 212 

decisional outcome. We approximated the neural cues that were critical to the decisional 213 

outcome by the difference in the time-frequency response between correctly and incorrectly 214 

recognized prototype syllables. The correct-incorrect contrast indicates the parts of the neural 215 

signal, which, if missing, are associated with an erroneous perceptual decision. Note that this 216 

contrast matches, as closely as possible, the output of the maximum-correlation coefficient 217 

classifier, which tests the extent to which a linear association can correctly predict syllables 218 

from neural activity. 219 

Fig 4. Decoding in Patient 1. (A). Top graphs: time-frequency representation of evoked activity on 220 

each shaft. A strong evoked response to syllables is only present in the auditory shaft. Bottom 221 

graphs: neural decoding through univariate and multivariate classifiers. Histogram bars numbered 222 

from 1 to 5 show the univariate classifier results based on the activity from each contact of each 223 

shaft; the right bar (“all”) shows the multivariate classifier results based on multidimensional 224 

information from all contacts of each shaft. Stars above the black bars signal significant 225 

classification accuracy for specific contacts within each electrode shaft (q<.05, FDR-corrected). 226 

Univariate classification was possible from all auditory contacts (shaft 1) overlapping fMRI F2-227 

parameters activation (blue shaded area), but worked best in the deepest one. Univariate 228 
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classification failed everywhere except for these auditory contacts, whereas syllable decoding 229 

worked above chance using the multivariate approach in shafts 1, 2, 3, 4 and 6. (B). Top panel: 230 

Temporal relationship between the time-course of machine-decoding from the deepest auditory 231 

contact (upper panel, black line), mean univariate classification from all auditory contacts (upper 232 

panel, grey line) and the time-frequency cues used by the subject to make a correct perceptual 233 

decision (difference in the time-frequency response between correctly and incorrectly recognized 234 

syllables, lower panel). The grey thick lines show significant results for each time point (significant 235 

decoding accuracy, q<.05, FDR-corrected). Middle panel: cross-correlation coefficients between 236 

univariate decoding accuracy and significant correct-incorrect time/frequency clusters. Significant 237 

effects were found in the 60-80 Hz high-gamma band. The horizontal black line indicates 238 

significant cross-correlation coefficients at P<0.05 (Bonferroni-corrected). Bottom panel: Time-239 

frequency differences between correct minus incorrect classification computed on contact 1 of shaft 240 

1. Black borders indicate significant differences in neural activity between correct and incorrect 241 

classification scores, in comparison to a zero-mean normal distribution at q < .05, FDR-corrected. 242 

Significant time-frequency correlates of correct classification were only found in the three 243 

deepest contacts of the auditory cortical shaft (S4 Fig); they were sporadic and inconsistent 244 

elsewhere (red frames in Figure S4 show significant activity for t<500ms). In the deepest 245 

auditory contact (contact 1 on shaft 1) where both F2 tracking and univariate classification were 246 

maximal (Fig 3 and S5 Fig), cues associated with correct perceptual decisions were present as 247 

early as 150ms, i.e. before the first significant decoding peak (200ms) (Fig 4B, S4 Fig and S6B 248 

Fig). This important finding shows that within 150ms, the right pSTG had encoded enough 249 

information about F2 onset frequency and slope to inform human correct syllable recognition, 250 

and that this information could be exploited by the classifier to distinguish across syllables (see 251 

discussion). 252 

Fig 5. Decoding in all patients. Time-course of the decoding accuracy from multivariate pattern 253 

classification with all shafts (upper panel), and without the auditory shaft of Patient 1 (lower 254 

panel). Early classification dropped below statistical significance, while the latest classification 255 

peak at 600ms remained unaffected. Location of shafts (n = 14) from which neural activity was 256 

recorded during syllable identification (3 patients, fixed-effects model). Colored dots show cluster-257 

level significance from q>0.10 to q<0.01 (q-FDR corrected) multivariate classification (dot size 258 

proportional to q) performed on all shafts. Significant classification was observed at 250, 300 and 259 

600ms, showing that syllables could be decoded from broadly distributed activity.  260 

Critically, the temporal coincidence between neural correlates of response correctness and 261 

machine-decoding (Fig 4B) was only partial. It was fairly good for the first two significant 262 

decoding peaks (<200ms) of both single auditory contact decoding and mean univariate 263 

decoding across all auditory contacts, but poor for the latest (and strongest) peak. The first two 264 

decoding peaks precisely coincided with transient high-gamma activity on the 60-80 Hz range 265 

(significant zero-lag cross-correlation, Fig 4B), in line with the observation made with MEG (Fig 266 

2) that F2 was specifically encoded by neural activity in this frequency range, and that 60-80 Hz 267 

activity preceded decisional activity in the left IFG. However, the third decoding peak had no 268 

matching time-frequency event in the correct vs. incorrect activity profile (Fig 4B). These 269 

observations indicate that the classifier did not systematically capture those neural cues that 270 

informed the subject’s decision. Thus, machine-classification and human subjects did not 271 

exploit the same cues locally. Presumably the outcome of the mean univariate classifier 272 

reflected distributed information that was no longer relevant for – or assimilated into – neuronal 273 

decision variables. The strongest local decoding peak occurred at 370ms, i.e., more than 250ms 274 
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later than the first correctness effect, about 100ms after the last one, and likely reflected post-275 

decisional choice-correlated neural activity. 276 

So far, the results indicate that phonemic decision was informed by focal early neural activity 277 

(<200ms) that encodes F2 in sustained multi-frequency oscillatory activity (Fig 2). Yet, 278 

distributed subthreshold neural activity, not detected by conventional (univariate) analyses of 279 

fMRI, MEG and intracortical EEG data, might also contribute to syllable identity encoding. We 280 

therefore addressed whether decoding was possible, even from contacts where there was no 281 

detectable F2 and from perceptual decision-related activity (S2 Fig, S3 Fig). We broadened the 282 

analysis to the 14 shafts of the 3 patients, including two more patients who had electrode shafts 283 

over the right temporal lobes (n=14), and performed time-resolved multivariate decoding from 284 

all cortical contacts (n=36). Significant decoding was found at 250, 300 and 600ms showing that 285 

syllables could be decoded from broadly distributed activity (Fig 5). To address whether 286 

distributed activity was driven by local auditory activity, we performed the same analysis 287 

without the contribution of the auditory shaft of Patient 1. Early classification (<300ms) dropped 288 

below statistical significance, but the latest classification peak at 600ms remained unaffected 289 

(Fig 5). This result demonstrates that decoding remained possible from cortical contacts that 290 

showed neither F2 nor auditory perceptual decision-related activity. We even obtained 291 

significant late decoding when deep structures, such as the amygdala and the hippocampus, 292 

were included in the multivariate analysis (n=70 contacts). As each penetrating shaft, except the 293 

auditory one, spanned functionally different territories, from the cortex to deeper structures, 294 

these findings show that the possibility of decoding neural activity in a multivariate approach 295 

does not allow one to conclude that the regions sampled for decoding amount to a meaningful 296 

neuronal representation, defined operationally in terms of a correct perceptual categorization. 297 

Overall, classification analyses from the i-EEG data confirmed the spatial selectivity of the early 298 

critical information involved in ba/da/ga syllable categorization. They also showed that syllable 299 

classification was possible from distributed activity (Fig 4 and Fig 5) that occurred later than the 300 

perceptual decision-related effects, as detected with both MEG and i-EEG. 301 

Since the decoding of i-EEG returned positive results when pooling together contacts where no 302 

significant neural activity could be detected, we sought to explore the spatial distribution of /ba/ 303 

and /da/ category decoding using the MEG dataset. The idea was to determine whether whole 304 

brain decoding would be restricted to regions that showed statistically significant activation 305 

with all three approaches (MEG, Fig 2; fMRI, Fig 1; and i-EEG, S2 Fig and S3 Fig), or also to 306 

regions that did not critically participate in the task. This analysis was expected to provide time-307 

resolved information to appraise whether decoding reflects non-critical processes downstream 308 

to sensory encoding and early decisional steps. Such a finding would concur with the i-EEG to 309 

suggest that decoding is possible from brain regions that are only collaterally involved in the 310 

cognitive process at stake. 311 

Using a whole-brain sensor-based time-resolved multivariate learning algorithm (maximum 312 

correlation coefficient classifier, see Methods) (30), we found that speech sound categories 313 

could be decoded from very early brain responses in a focal region of the right pSTG (Fig 6). 314 

When we focused our analysis to those sensors that contained significant information about 315 

syllable identity (see Material and Methods), we found that activity recorded by the sensor MAG 316 

1331 could be categorized as early as 100ms, with up to 78% accuracy (t = 13.01, q < .001, 317 

Cohen’s d = 4.7). Critically, syllable identity could also be decoded at a later time point, 220ms, 318 

on MAG 2011 first, and then at 350ms on MAG 0211 with scores reaching respectively 63% 319 

accuracy (t = 7.17, q < .001, Cohen’s d = 2.5) and 58% accuracy (t = 6.37, p < .001, Cohen’s d = 320 

2.2). Corresponding source analyses then revealed that the decoding at 220ms post-stimulus 321 
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onset arose from left STG and STS, two regions that were not primarily responsive to acoustic 322 

cue tracking and perceptual decision (Fig 2). Source analysis further showed that the decoding 323 

at 350ms arose from the left IFG, thus corresponded to late decisional effects. Together, these 324 

results show that, while decoding is most accurate in the region that critically encodes the 325 

acoustic information (the right pSTG), it is also subsequently possible from noisier activity in a 326 

broad left-lateralized network that contains associative information about the selected syllable. 327 

Interestingly, significant decoding was seen again in the right pSTG, 500ms post-stimulus onset 328 

with very high accuracy (89%, t = 15.10, q < .001, Cohen’s d = 5.5). This suggests that 329 

information propagation occurring across the whole language network between 100 and 500ms 330 

contributed to improve the quality of the categorical representations at a post-decisional stage. 331 

Fig 6. Decoding of MEG data reveals bilateral tempo-frontal cortex involvement in speech 332 

sound categorization. (A). Percentage of correct decoding over time, for each of the 333 

magnetometers (MAG 1331, MAG 2011 and MAG 0211) showing significant decoding activity. X-334 

axis: zero corresponds to stimulus onset; y-axis: 50% indicates chance performance. Horizontal 335 

dark and light grey lines indicate significant decoding (q < .05, FDR-corrected). (B). Sensor 336 

topographies depicting the average decoding response in magnetometers averaged within each of 337 

the five windows of interest. Black dots indicate the position of the 3 magnetometers showing 338 

significant decoding activity. (C). Source localization at key decoding times. Source localization for 339 

MEG signals displayed on a standard cortex at 100ms, 220ms, 300ms, 360ms and 500ms post-340 

stimulus onset. Right color bars indicate t-values. 341 

Discussion 342 

In this series of studies, we addressed whether human listeners’ perceptual decisions about the 343 

identity of speech sounds were grounded on a parallel readout of distributed representations 344 

(31), or whether, following more closely the principles of hierarchical processing, syllable 345 

identification in a categorical choice was informed by the efficient readout of a restricted brain 346 

area that contains limited but key neural information, as recently shown in monkeys (20). The 347 

current data converge to show that correct decisions about speech sound identity were 348 

informed by local and time-limited information (<300ms) present exclusively in the right pSTG.  349 

Even though phonemic contrasts are most often associated with activations of the left STG (32), 350 

the right STG performs low-level spectral-based acoustic processing that is relevant for speech 351 

decoding (33,34) and categorization (35,36). Note that the right specificity of speech-related 352 

operations is easily missed when acoustic processing is not explicitly orthogonalized from 353 

decision-related neural activity (37). Our findings confirm that spectral- and time-based 354 

analyses of speech sounds involve the right and the left STG, respectively (see Fig 1 and S8 Fig). 355 

Our findings also confirm that in acoustically challenging situations such as those used in the 356 

current experimental design, the left IFG is mobilized (38) and interacts with the temporal 357 

cortex in sequential loops of bottom-up and top-down processes (37,39-41). Importantly, our 358 

fMRI and MEG results conjointly show that the focal readout of sensory encoding regions by 359 

prefrontal regions accounts for the decision variability relative to the perceptual state, and that 360 

the magnitude of neural activity associated with sensory processes depends on the discrepancy 361 

between heard and expected signals (42,43) (see Fig1C and Fig 2C). 362 

Whether stimulus identity is retrieved from focal neural activity or from distributed information 363 

is a fundamental issue in neural coding theory. Our MEG and iEEG decoding results both show 364 

that the right pSTG is critical for perceptual decisions while distributed activations across frontal 365 

and temporal cortices reflect the reuse of sensory information for higher-level operations, such 366 

as meaning extraction, audio-visual integration, etc.. It has repeatedly been observed that 367 
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behavior is as well explained by taking the activity of one or a limited set of neurons as it is by 368 

considering a large-scale population (44,45). This puzzling observation is backed-up by 369 

computational models showing that pooling together information from more neurons does not 370 

improve behavioral sensitivity. This could reflect the fact that neuronal responses are strongly 371 

correlated both intrinsically by neural noise and by stimuli, so that the information contained in 372 

a neural population saturates as the number of neurons increases (46,47). Recently, a 373 

combination of experimental and theoretical data suggests that in most cases, behavior is best 374 

explained by optimal readout of a limited set of neurons (48). The authors then conclude that 375 

the neural code is redundant, and that some areas are decoded near-optimally, while others are 376 

not efficiently read out. They propose that deactivating these regions should not impact 377 

behavior.  378 

Reciprocally, as we tested in a brain-damaged patient carefully selected with respect to the 379 

lesion extend and localization (S1 Text, S7 Fig), deactivating regions that are optimally decoded 380 

would be expected to impair behavior. The lesion of one of the two focal regions that we 381 

identified as key for F2-based syllable categorization dramatically disrupted performance. The 382 

impairment was selective to the type of stimulus but not to the type of task, as categorization of 383 

similar syllables (da/ta) based on temporal cues, i.e. VOT, was spared. This also was expected as 384 

syllable categorization based on VOT specifically involved the left middle temporal cortex (S8 385 

Fig). The selectivity of the impairment with respect to the acoustic material shows that for this 386 

type of task there was no distributed rescue system. These behavioral data in a single patient 387 

remain of course non generalizable and further lesion data will be necessary to confirm our 388 

results. Moreover, a full demonstration that, even though phoneme categories are represented 389 

in a distributed fashion, focal/early sensory information is predominantly used to categorize 390 

speech sounds, would strictly speaking require showing that distributed lesions do not impair 391 

task performance. This demonstration, however, is impossible to make because at the extreme, 392 

if the whole language system is injured, no linguistic operation can be achieved at all. Although 393 

using a variety of approaches we tried to collect as many arguments as possible to address how 394 

information is used for making perceptual decisions about speech sounds, we acknowledge that 395 

the present study can only be partly conclusive. 396 

Critically, however, our results show that there is a fundamental distinction to be made between 397 

the decoding of neuronal activity by machine-learning and neuronal decoding made by the 398 

brain to achieve a specific cognitive goal. We found that distributed noise-level neural 399 

information, which did not carry reproducible and statistically detectable information about the 400 

sensory cue (F2-parameters) or about the categorical decision process (49), was nonetheless 401 

sufficient to inform a classifier. While this confirms previous observations that phonemic 402 

information is present in a distributed manner (1,2), the fact that classification was possible only 403 

on late responses once the region encoding the critical acoustic cue (F2 slope) was removed 404 

from the multivariate analysis, suggests that distributed phonemic representations reflect the 405 

diffusion of the information throughout the language system. While distributed information 406 

might be useful for late association-type linguistic processes, it did not appear necessary for the 407 

categorization task, as correctness effects occurred focally and early in time. These findings 408 

show that neuronal activity containing information about speech sound categories is not 409 

uniformly useful for categorizing these sounds. More generally, our findings highlight the fact 410 

that decoding algorithms, even if they can make use of distributed information that might 411 

reflect a brain state context (45) or mental association, do not indicate which regions are 412 

necessary or causal for the cognitive process at stake – here perceptual decision-making. These 413 

results hence suggest that distributed information about categories might reflect the 414 

redundancy of noise-level information in the brain, i.e. associative neural activity, rather than a 415 
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spatial neural code that is accessed in parallel when making a speech category perceptual 416 

decision. 417 

Categorizing auditory syllables is a relatively low-level process, which could in theory be 418 

underpinned by distributed representations, and yet in our data this appears not to be the case. 419 

What then might be denoted by previously observed broadly distributed representation maps 420 

(8)? In particular phonemic maps organized along articulatory features (50)? Most of these 421 

important findings (1,40,51) were obtained in natural listening conditions. In Mesgarani et al. (1), 422 

for instance, maps were drawn from cortical surface neural activity measured 150ms after each 423 

phoneme in connected speech, implying that activity at each time-point integrated distributed 424 

activity of several preceding phonemes and reflected co-articulation and contextual 425 

associations from the preceding words. When passively listening to connected speech there was 426 

likely no explicit serial phoneme decoding, but rather a global readout of sentences, which likely 427 

required accessing several phonemic representations at once. In the same way as a computer 428 

keyboard spaces letters to minimize interference when typing them, our brain might organize 429 

the phonemic space as a function of how we need to retrieve them for production (42), i.e. 430 

following a feature-based logic. That this organization exists does not imply that it is “optimal“ 431 

for perception, just as reading words through a keyboard spatial organization would largely be 432 

sub-optimal. The present findings confirm the existence of distributed phonemic 433 

representations, but also question the use our brain makes of them in an explicit speech 434 

perception context, as phoneme recognition does not seem to rely on distributed activity. 435 

Importantly however, it might be the case that during natural speech perception, cross-436 

hierarchical readout of redundant/correlated neural activity is genuinely exploited as a form of 437 

trade-off between accuracy of single phoneme identification (focal) and joint access to multiple 438 

representations (distributed). It will be essential in the future to address whether sub-optimal 439 

decoding of large neuronal populations could be an optimal way to handle access to multiple 440 

representations.  441 
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Materials and Methods 442 

Experimental Procedures 443 

Subjects. Thirty-one healthy subjects participated in the MEG study (16 females – age range: 444 

22–31 years), and 16 in the fMRI study (9 females – age range: 22–29 years). Intracortical EEG (i-445 

EEG) was recorded in 3 epileptic patients (1 female – ages: 44, 25 and 65 years) who underwent 446 

surgery for clinical monitoring, and 1 patient (female – age: 77 years) was tested behaviorally 8 447 

months after an ischemic stroke. All participants were right-handed, French-native speakers, 448 

and had no history of auditory or language disorders. The experimental protocols were 449 

approved of by the Inserm ethics committee in France (biomedical protocol C07-28) for the 450 

participation in the MEG and fMRI experiments, and by the University Hospital of Geneva in 451 

Switzerland (13-224) for studies in epileptic and stroke patients. All participants provided 452 

written informed consent prior to the experiment. 453 

Stimulus synthesis and behavioral testing. High-quality speech stimuli were synthesized using 454 

STRAIGHT (52) together with an original morphing method, based on a modified LPC (Linear 455 

Predictive Coding) analysis-synthesis scheme (53). The second formant transition, was morphed 456 

in order to build a linear speech sound continuum between /ba/, /da/ and /ga/ (54,55). Through 457 

the continuum, we kept constant a low-pass filtered pulse train for the voiced part, a filtered 458 

noise throughout all the stimulus, an additional white noise for the burst, the global amplitude 459 

of the stimulus, and the first and third formant transitions. We also kept the same time 460 

dependency f0 = f(t) for all stimuli, as extracted from the original ‘ba’. A 6 item /ba/ /da/ 461 

continuum was presented to healthy subjects and to the stroke patient. A longer 48 item 462 

continuum /ba/ /da/ /ga/ was used for testing epileptic patients in order to obtain more 463 

responses around syllable boundaries to compare correct and incorrect categorization. Note 464 

that /ba/ and /da/ categories only differed on the F2 dimensions, and hence processing this 465 

single cue was sufficient for correct perception. Another 6 stimuli /da/ /ta/ continuum was used 466 

for both the behavioral and second fMRI control experiments. In that continuum, we varied the 467 

length of the voice onset time (VOT) by deleting or adding one or several voiced periods in the 468 

signal, before or after the burst. 469 

Tasks design. Auditory stimuli were presented using Psychophysics-3 Toolbox and additional 470 

custom scripts written for Matlab (The Mathworks, Natick, Massachussetts, version 8.2.0.701). 471 

Sounds were presented binaurally at a sampling rate of 44100 Hz and at a comfortable hearing 472 

level individually set before the experiment via earphones. Prior to the experiment, each 473 

participant undertook a short session during which the minimum amplitude level leading to 474 

100% categorization accuracy was estimated using an adaptive staircase procedure. This 475 

threshold was used to transmit the stimuli (mean 30 dB sensation level). Each continuum was 476 

delivered to participants in two independent sessions of 240 trials each for fMRI recording and 477 

of 270 trials each for MEG recording. 144 trials constituted the experiment used for epileptic 478 

patients. 479 

Participants were asked to perform an identification task. Each trial comprised one sound 480 

(randomly chosen among the 6 or 48 stimuli of the continuum), followed by a 1s silence gap; 481 

then, a response screen with ‘ba’ and ‘da’ written syllables (in MEG, fMRI, and behavioral 482 

sessions) or ‘ba’, ‘da’ and ‘ga’ syllables (in i-EEG sessions) was displayed. Syllables were 483 

randomly displayed from right to left on the screen to prevent motor preparation and 484 

perseverative responses. During fMRI recording, the appearance of the response screen was 485 

randomly jittered 100, 300 or 500ms after the silence gap. Participants indicated their response 486 

on the syllable by pressing the corresponding left or right button response as quickly as 487 
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possible. Subject’s responses were purposely delayed, and response times hence do not 488 

constitute relevant data. To prevent eye movements, subjects were asked to fixate the central 489 

cross and blink only after giving their motor response. After the response, a jittered delay 490 

varying from 3 to 5 s led to the next trial.  491 

MEG recording and preprocessing. Continuous cerebral activity was recorded using an Elekta 492 

Systems MEG device, with 102 triple-sensor elements each composed of 2 planar gradiometers 493 

and 1 magnetometer. MEG signals were recorded at a sampling rate of 1 kHz and online band-494 

pass filtered between 0.1 Hz and 300 Hz. A vertical electro-oculogram (EOG) was 495 

simultaneously recorded. Before MEG recording, headshape was acquired for each participant 496 

using Polhemus. After the MEG session, an individual anatomical MRI was recorded (Tim-Trio, 497 

Siemens; 9 min anatomical T1-weighted MP-RAGE, 176 slices, field of view = 256, voxel size = 1 498 

x 1 x 1 mm3). MEG data were preprocessed, analyzed and visualized using dataHandler software 499 

(wiki.cenir.org/doku.php), the Brainstorm toolbox (56) and custom Matlab scripts. A Principal 500 

Component Analysis (PCA) was performed through singular-value decomposition function of 501 

numerical recipes, to correct artifacts (low derivation). The first two components from the PCA 502 

were zeroed and signal matrix was recomputed. PCA rotated the original data to new 503 

coordinates, making the data as flat as possible. The data were then epoched from 1s before 504 

syllable onset to 1s after syllable offset. Another PCA was then performed on the epoched data 505 

when blinks occurred. PCA components were visually inspected to reject the one capturing blink 506 

artifacts. On average, 2.1% (±0.7%) of trials per participant (mean ± SEM) were contaminated 507 

by eye movement artifacts and were corrected before further analyses.  508 

fMRI recording and preprocessing. Images were collected using a Verio 3.0 T (Siemens) whole 509 

body and radio frequency coil scanner. The fMRI blood oxygenation level-dependent signal 510 

(BOLD) was measured using a T2*-weighted echoplanar sequence (repetition time = 2110 ms; 511 

echo time = 26 ms; flip angle = 90°). Forty contiguous slices (thickness = 3 mm; gap = 15%; 512 

matrix size = 64 x 64; voxel size = 3 x 3 x 3 mm3) were acquired per volume. A high-resolution T1-513 

weighted anatomical image (repetition time = 2300 ms; echo time = 4.18 ms; T1 = 900ms; image 514 

matrix  = 256 x 256; slab thickness = 176 mm; spatial resolution = 1 x 1 x 1 mm3) was collected for 515 

each participant after functional acquisition. Image preprocessing was performed using SPM8 516 

(The Wellcome Trust Centre for Neuroimaging, University College London, UK, 517 

http://www.fi.ion.ucl.ac.uk/spm/). Each of the 4 scanning sessions contained 400 functional 518 

volumes. All functional volumes were realigned to the first one to correct for interscan 519 

movement. Functional and structural images were spatially preprocessed (realignment, 520 

normalization, smoothed with an 8-mm full-width-at-half-maximum isotropic Gaussian kernel) 521 

and temporally processed using a high-pass filter with a cutoff frequency of 60 Hz. We then 522 

checked data for electronic, and rapid-movements artifacts using the ArtRepair toolbox 523 

(http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html). Artifacted 524 

volumes were substituted by linear interpolation between contiguous volumes and explicitly 525 

modeled in the following statistical analyses. Estimated head movements were small compared 526 

to voxel size (<1 mm), and 3.2% (±0.3%) of the volumes were excluded due to rapid head 527 

movements (>1.5mm/s). 528 

Intracranial stereotactic electroencephalography (i-EEG) recording and preprocessing. 529 

Electrophysiological activity was recorded over arrays of depth electrodes surgically implanted 530 

to identify epilepsy focus. Intracranial EEG was recorded (Ceegraph XL, Biologic System Corps.) 531 

using electrode arrays with 8 stainless contacts each (AD-Tech, electrode diameter = 3 mm, 532 

inter-contact spacing = 10 mm), implanted in several brain regions in the right hemisphere (see 533 

Fig 3, 4, 5). We determined the precise electrode shaft locations by co-registering a post-534 

operative computed tomography scan (CT) with a high-resolution anatomical MRI template. For 535 
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the i-EEG recordings, we used bipolar montage where each channel was referenced to its 536 

adjacent neighbour. We sampled the i-EEG signal at 1024 Hz for patient 2, and at 2048 Hz for 537 

patients 1 and 3.  538 

Steady-state frequency spectra were estimated using a standard Fourier transform from 1 s 539 

before the onset of the stimulus to 1 s after the offset of the stimulus. Time-frequency power 540 

was defined as the single-trial square amplitude estimates of complex Fourier components. 541 

Time-frequency analyses were carried out using the Fieldtrip toolbox for MATLAB (57). The 542 

spectral-power of MEG oscillations was estimated using a family of complex Morlet wavelets, 543 

resulting in an estimate of power at each time point and each frequency. We restricted the 544 

analysis to frequencies between 2 and 150 Hz, spanning the whole range of relevant brain 545 

rhythms. Note that time-frequency transform uses frequency dependent wavelets (from 3 to 7 546 

cycles per window), with decreasing time-windows with increasing frequency.  547 

Neural encoding of parametric information. We regressed out single trials of MEG, fMRI and i-548 

EEG signals against i) the acoustic dimension, corresponding to F2-parameters (the onset value 549 

of the second formant (F2) and the F2-slope linearly co-varied in six steps) or to voice onset time 550 

(the voicing length before and after the consonantic burst varied in six steps), and ii) the 551 

categorization difficulty dimension corresponding to the inverse of the discriminability index 552 

from signal detection theory (–d′). These two dimensions are naturally orthogonal (r = .02, p 553 

>.20). A general linear regression model was carried out separately for each dimension (sensory 554 

encoding and decisional effort) along the stimuli, and finally averaged across participants to 555 

produce a group-level grand average. That approach was adopted to disentangle the neural 556 

correlates of basic bottom-up perceptual processing indexing the tracking of the acoustic cue, 557 

from the neural correlates of the categorization difficulty reflecting the distance of each 558 

stimulus to the phoneme identity criterion (37,58). 559 

fMRI – Neural encoding of parametric information. Statistical parametric t scores were obtained 560 

from local fMRI signals using a linear multiple regression model with sensory encoding (F2-561 

parameters or voice onset time value for each condition) and decisional effort (–d′ value 562 

reported by each subject for each trial) as covariates. Regression parameters were estimated in 563 

every voxel for each subject, and parameter estimates were then entered in a between-subject 564 

random-effects analysis to obtain statistical parametric maps. We identified brain activation 565 

showing significant contrasts of parameter estimates with a voxelwise (T = 3.21, p < .005, 566 

uncorrected) and clusterwise (p < .05, uncorrected) significance threshold. Anatomical locations 567 

were determined based on automated anatomical labeling (AAL). Regressors of interest were 568 

constructed by convolving functions representing the events with the canonical hemodynamic 569 

response function. For each continuum, a categorical regressor modeled the ‘sound’ event using 570 

a Dirac function time locked to syllable onset. Two hierarchically orthogonalized parametric 571 

regressors (referred to as “sensory encoding” and “decisional effort” regressors) were added to 572 

the ‘sound’ regressor in order to capture the modulation of BOLD activity as a function of F2 573 

variation tracking and categorization difficulty. 574 

MEG – Neural encoding of parametric information. We first used single-trial signals on each 575 

sensor to perform parametric regressions at successive times from -0.2 to 1 second following 576 

stimulus onset. For each participant and each sensor, we calculated the time course of beta 577 

coefficients and then computed cortical current maps with Brainstorm using the weighted 578 

minimum-norm estimation approach – meaning that the time series for each source are a linear 579 

combination of all time series recorded by the sensors (59). Sources were estimated for each 580 

subject on the basis of individual MRI images. After realignment and deformation of each 581 
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subject’s cortical surface, sources were projected onto the standard MNI/Colin27 brain, to 582 

perform grand mean averages. We then performed within group statistics so as to show the 583 

sensitivity to sensory encoding and decisional effort dimensions. Note that the two 584 

transformations applied to the data (regression and source-projection) both capture a linear 585 

relationship between the observed and the expected data, and can thus be implemented in 586 

whichever order. Nonetheless, we found that regressing data in the sensor space first, then 587 

“source projecting” the resulting beta values, was less sensitive to noise. Source projecting the 588 

results of the regression optimizes the signal-to-noise ratio (SNR) from the sensor data, and 589 

improves the interpretability of the source maps (Fig 2B). This method, therefore, was used to 590 

localize the sources of sensory and perceptual decision components. 591 

Single-trial evoked signals on each sensor were also used to compute source current maps for 592 

each trial. The inverse operators were generated with the default MNE parameters and applied 593 

at the single-trial level. The estimated sources were morphed to the MNI brain. We then 594 

extracted single-trial neural activity from regions of interest defined according to the Destrieux 595 

atlas (60) (G_temp_sup-Plan_tempo, G_temp_sup-G_T_transv, G_front_inf-Opercular, 596 

G_front_inf-Triangul). Single-trial evoked responses projected on these selected sources were 597 

used in two ways:  598 

(1) For each participant, we regressed out single-trial neural activity to estimate spectral power 599 

of the beta coefficients via a standard Fourier transform. Time frequency analyses were carried 600 

out according to the exact same parameters defined in the previous paragraph (Intracranial 601 

stereotactic electroencephalography (i-EEG) recording and preprocessing). We thus estimated the 602 

trial-to-trial variability in neural signal from region of interests at a given frequency that 603 

describe sensory encoding or decisional effort (t-test against zero, P < 0.05, Bonferroni 604 

corrected).  605 

(2) For each participant, source activity in the pSTG and in the left inferior frontal gyrus (IFG) 606 

was used to measure Granger Causality (GC). While GC is classically used to assess causal 607 

influence between two time series, we here computed GC for non-stationary time series, such 608 

as oscillating neural signals (61,62). We used a non-parametric test by computing a spectral 609 

density matrix factorization technique on complex cross-spectra, obtained from the continuous 610 

wavelet transform of source-reconstructed MEG time series. We then assessed the linear 611 

directional influence between two brain areas, the pSTG and the left IFG. 612 

GC was computed on a trial-by-trial basis for each subject (61), and averaged across time and 613 

trials. Because we computed GC on oscillating neural signals that are non-stationary in time, GC 614 

spectra were thus obtained in a non-parametric manner by computing Geweke’s frequency 615 

domain version of GC without going through the multivariate autoregressive model fitting. For 616 

each subject, we computed the mean GC across trials and the corresponding standard 617 

deviation. The original GC spectra were then standardized to obtain a vector of z-values, one for 618 

each frequency. Top-down and bottom-up influences were measured simultaneously, and 619 

information flow was considered primarily top-down when GC from the left IFG to right pSTG 620 

exceeded GC from pSTG to IFG, and bottom-up in the inverse case. We tested for significant 621 

frequency peaks separately for bottom-up and top-down GC direction, in directly comparing the 622 

z-transformed vectors obtained from GC spectra to a zero-mean normal distribution, and 623 

corrected for multiple comparisons with the Bonferroni method at p < .05. Our choice to focus 624 

on left-IFG was empirically motivated. Previous papers (e.g., (63–65)) have shown that the left-625 

IFG is consistently involved in articulatory processing during speech perception but also in 626 

lexical information retrieval, both skills that are engaged when categorizing ambiguous speech 627 

sounds – i.e., when the internal perceptual decision criterion is difficult to reach, as in the 628 

current study. 629 
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 630 

MEG – Decoding analyses. Decoding analyses were performed with the Neural Decoding 631 

Toolbox (66), using a maximum correlation coefficient classifier on single-trial induced 632 

responses, across all MEG sensors. Data from both magnetometers and gradiometers were 633 

used. The analyses were performed with a cross-validation procedure where the classifier is 634 

trained on a subset of the data (80% of the data), and then classifier’s performance is evaluated 635 

on the held-out test data (20% of the data). Classification accuracy is reported as the 636 

percentage of correct trials classified in the test set averaged over all cross-validation splits. This 637 

procedure was repeated 50 times, leaving out each cross-validation split, and the final decoding 638 

accuracy reported is the average accuracy across the 50 decoding results. Additionally, an 639 

analysis of variance, based on second-level test across subjects, was applied to the test data to 640 

select at each time point those sensors that were significantly sensitive to syllable identity. We 641 

then assessed statistical significance using a permutation test. To perform this test, we 642 

generated a null distribution by running decoding procedure 200 times using data with 643 

randomly shuffled labels for each subject. Decoding results performing above all points in the 644 

null distribution for the corresponding time point were deemed significant with P < .005 (1/200). 645 

The first time decoding reached significantly above chance was defined when accuracy was 646 

significant for five consecutive time points. Source localization associated to the decoding 647 

results has been computed from evoked trials using the MNE source-modeling method (see 648 

above). 649 

 650 

i-EEG – Neural encoding of parametric information. We performed the same parametric 651 

regressions on i-EEG recordings from Patient 1. These analyses have only been done on that 652 

patient, as he was the only patient for whom one shaft showed a significant induced response to 653 

syllable perception. Shaft 1 colocalized to the site where spectral cue tracking was found with 654 

fMRI and MEG (right posterior STG). We selected the 5 deepest contacts on each shaft; those 655 

contacts were located between the Heschl’s gyrus and the STG on shaft 1. Parametric 656 

regressions were carried out at successive times t from -0.2 to 1 second post-stimulus onset, on 657 

each selected bipolar derivation (i.e., from the deepest (1) to the most external (5) contact). We 658 

computed the power in each frequency band at each time point of each beta coefficient, with a 659 

millisecond resolution, similar to the induced power (between 2 and 150 Hz, with a 0.5 Hz 660 

resolution below 20 Hz and 1 Hz above, by applying a TF wavelet transform, using a family of 661 

complex Morlet wavelets; m = 3 to 7). For each contact, a null distribution was computed by 662 

repeating the identical regression procedure 1000 times with shuffled regressors. We used 663 

standard parametric tests (t-test against zero) to assess the statistical significance of each 664 

parametric regression. The type 1 error rate (False Detection Rate, FDR) arising from multiple 665 

comparisons was controlled for using nonparametric cluster-level statistics (67) computed 666 

across contacts, time samples and frequencies. 667 

i-EEG – Decoding analyses. We used a maximum correlation coefficient classifier (Neural 668 

Decoding Toolbox (66)) on single-trial induced responses. We applied it on time series using a 669 

cross-validation procedure where the classifier is trained on 90% of the trials, and tested on the 670 

remaining 10%. Our recordings consisted in 3 repetitions of each stimulus condition (48 stimuli 671 

from /ba/ to /ga/) for Patient 1 and in 6 repetitions of each condition for Patients 2 and 3. This 672 

procedure was repeated 1000 times, and the results were averaged.  673 

We estimated single-trial decoding of the neuronal response induced by different syllables using 674 

both uni- and multi-variate classification. The univariate classification was applied on each 675 

bipolar derivation (i.e., on each of the 5 contacts of each shaft) whereas the multivariate 676 

classification was performed on neural activity from every bipolar derivations of one shaft (i.e., 677 

on the 5 contacts of each shaft, pooled together), and then on all bipolar derivations of Patient 1 678 
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(on all contacts of the 6 shafts, pooled together), and finally on all three Patients (on all contacts 679 

of the 14 shafts, pooled together). Single shaft multivariate decoding was compared to mean 680 

univariate decoding computed first from each contact and then averaged. Decoding accuracy is 681 

expressed as % correctly classified trials in the test set. A null distribution was computed by 682 

repeating the identical classification procedure 1000 times with shuffled labels. We defined the 683 

number of classification repetitions with respect to the number of multiple comparisons done 684 

from each contact (FDR-corrected for univariate decoding performed on each of the 5 contacts, 685 

time samples and frequencies; FDR-corrected for multivariate decoding performed on each of the 6 686 

shafts, time samples and frequencies, FDR-corrected for multivariate decoding performed on all 687 

shafts together, time samples and frequencies). Decoding accuracy was considered significant at 688 

q<0.05 if accuracy exceeded randomized classification at two consecutive time points. 689 

i-EEG – Differences Correct minus Incorrect. The psychometric identification function with 690 

percentage reporting /ba/, /da/ or /ga/ was defined along the corresponding continuum. 691 

Boundary separations determine the accuracy of categorical choice: the steeper the slope, the 692 

more accurate the perceptual decision. Patient’s ratings along the continuum were used to split 693 

responses into correct and incorrect trials. We subsequently computed the difference in neural 694 

activity from selected bipolar derivations between correct and incorrect conditions, and then 695 

compared it with the zero-mean normal distribution thresholding at q < 0.05 (FDR-corrected for 696 

multiple comparisons on shafts (30 shafts tested for patient 1), time and frequency dimensions). 697 

This procedure was repeated 1000 times with shuffled labels for correct and incorrect 698 

conditions. 699 
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S1 Fig. fMRI ba/da experiment. Bilateral inferior prefrontal (red), left (red) and right (blue) pSTG , 927 

all displayed at a P=0.05 uncorrected threshold, k=20 ("any-depth" search mode). 928 

S2 Fig. i-EEG results in Patient 1. Time-frequency representations of beta coefficients from 929 

regression of F2 values against evoked activity on each contact of each shaft. Red frames indicate 930 

shaft contact where significant F2 tracking was found (comparison to zero-mean normal 931 

distribution thresholded at q < .05). 932 

S3 Fig. i-EEG results in Patient 1. Time-frequency representations of beta coefficients from 933 

regression of d-prime values against evoked activity on each contact of each shaft. Red frames 934 

indicate contacts where decisional effects were significant (comparison to zero-mean normal 935 

distribution, thresholded at q < .05). 936 

S4 Fig. i-EEG results in Patient 1. Difference in the time-frequency response between correctly 937 

and incorrectly recognized syllables for each contact of each shaft. Red frames indicate contacts 938 

where significant correctness effects were found (comparison to zero-mean normal distribution, 939 

thresholded at q < .05).  940 

S5 Fig. Patient 1, decoding on auditory shaft (Shaft 1). Significant univariate decoding was 941 

strongest on the 1
st

 contact, but even stronger using the multivariate approach. 942 

S6 Fig. Effect size (Cohen’s d). (A). Effect size (Cohen’s d) of machine-decoding. For univariate 943 

decoding, contacts 1 and 2 of shaft 1 showed a large effect size (Cohen’d > .8), whereas contacts 3, 4 944 

and 5 of shaft 1 showed a medium effect size (.5 < Cohen’s d < .8). A small effect size (Cohen’s d < .2) 945 

was found for all contacts of shafts 2, 3, 4, 5 and 6. For multivariate decoding, shaft 1 showed a large 946 

effect size, whereas shafts 2, 3, 4 and 6, showed a medium effect size. A small effect size was found 947 

for shaft 5. (B). Effect size (Cohen’s d) of correct minus incorrect classifications. A large effect size 948 

(Cohen’s d > .8) was found from 100 to 160 ms after stimulus onset in the alpha band (10 Hz), and 949 

from 130 to 150 ms post-stimulus onset in the high-gamma band (100-140 Hz). A medium effect size 950 

(Cohen’s d = .55) was found 200-220 ms after stimulus onset between 60 and 80 Hz, which 951 

corresponds to significant cross-correlation between decoding accuracy and correct-incorrect 952 

differences in the time-frequency domain (see Fig 4B). 953 

S7 Fig. Lesion data.  (A). MRI scan of a patient with a focal lesion of the right pSTG. (B & C). 954 

Psychometric functions for ba-da (B) and da-ta (C) continua. The blue line represents the linear 955 

variations of F2 (B), and linear variations of the voice onset time (C), across stimuli. Grey curves 956 

show that the patient could not discriminate between /ba/ and /da/, and identified all syllables as 957 

/da/ in the ba-da continuum, while performing normally on the da-ta continuum. Red curves 958 

indicate higher difficulty to perform the identification on the /ba/ end (B), but normal performance 959 

on the control da-ta task (C).  960 

S8 Fig. Control da/ta fMRI experiment. (A). Spectrograms of the stimulus continuum between 961 

syllables /da/ and /ta/, synthesized with linear variation in VOT (-15 ms : 5 ms : +15 ms). Full 962 

spectrograms at the extremes of the continuum represent /da/ and /ta/ prototype syllables (left and 963 

right panels, respectively). Middle spectrograms are centred on VOT. (B). Values for VOT (in blue, 964 

left panel), average d-prime (in red, middle panel), and percent syllables identified as /ta/ (in grey, 965 

right panel)  (mean ± s.e.m.) C. Top panel: spatial localization of VOT neural encoding (in blue) and 966 

d-prime (in red) in fMRI bold signal, expressed as beta coefficients. Significant clusters were found 967 

in the left superior temporal gyrus (STG) (peak MNI coordinates, x, y, z = -66, –22, 1, T = 4.29) for 968 

the VOT-tracking, and in left inferior prefrontal (x, y, z = –48, 14, 7, T = 3.75) cortices for perceptual 969 

decision (d-prime). Images are presented at a whole-brain threshold of P<0.001. Bottom panel: 970 

percent signal change in the left inferior prefrontal cortex (in red) and in the left STG (in blue). 971 

BOLD signal increases with VOT in the left STG, and with perceptual decision load in the left 972 

inferior prefrontal region (in red). 973 
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