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ABSTRACT 
 
Electroencephalography (EEG) allows recording of 
cortical activity at high temporal resolution. EEG 
recordings can be summarised along different 
dimensions using network-level quantitative 
measures, e.g. channel-to-channel correlation, or 
band power distributions across channels. These 
reveal network patterns that unfold over a range of 
different time scales and can be tracked 
dynamically.  
Here we describe the dynamics of network-state 
transitions in EEG recordings of spontaneous brain 
activity in normally developing infants and infants 
with severe early infantile epileptic 
encephalopathies (n=8, age: 1-8 months). We 
describe differences in measures of EEG dynamics 
derived from band power, and correlation-based 
summaries of network-wide brain activity.  
We further show that EEGs from different patient 
groups and controls can be distinguished based on 
a small set of the novel quantitative measures 
introduced here, which describe dynamic network 
state switching. Quantitative measures related to 
the smoothness of switching from one correlation 
pattern to another show the largest differences 
between groups.  
These findings reveal that the early epileptic 
encephalopathies are associated with 
characteristic dynamic features at the network 
level. Quantitative network-based analyses like the 
one presented here may in future inform the clinical 
use of quantitative EEG for diagnosis.  
 
 

INTRODUCTION 
 
Epilepsy is the most common primary neurological 
disorder globally, with a particularly high incidence in 
infancy and childhood (Olafsson et al. 2005). In a group 
of epilepsy syndromes, the burden of epileptic 
discharges can cause severe, persistent brain 
dysfunction, i.e. a recognisable encephalopathy. When 
these occur in early infancy, they are known as early 
infantile epileptic encephalopathies (EIEE) (Jette et al. 
2015; Ben-Ari & Holmes 2006). Within the category of 
severe epilepsies, there are several discrete 
electroclinical syndromes that follow specific 
developmental timelines, occurring mainly in the 
neonatal period or very early infancy (e.g. Ohtahara 
syndrome), later during infancy (e.g. infantile spasms / 
West syndrome), or in early childhood (e.g. Lennox-
Gastaut syndrome). This developmental pattern can 
also be observed in individual patients, such that a 
syndromic pattern may evolve e.g. from Ohtahara to 

West syndrome during development. This suggests that 
despite an individually persistent cause for the epilepsy 
(such as a genetic mutation or structural lesion), it is 
specific stages of brain development that translate the 
abnormality into age-specific, recognisable 
electroclinical phenotypes (Kodera et al. 2016; 
Ohtahara & Yamatogi 2006).   
 
Electroencephalography (EEG) gives a rich picture of 

dynamic neuronal function and regionally distinct 

oscillatory brain behaviour in frequency ranges that 

span several orders of magnitudes (Lopes da Silva 

1991). In clinical practice, EEG analysis is focussed on 

visual pattern recognition of specific waveform 

abnormalities (e.g. epileptiform discharges) associated 

with specific clinical correlates (e.g. increased risk of 

epileptic seizures). Visual analysis – whilst essential – 

is biased towards certain observable features: For 

example, between-channel correlation of low frequency, 

high amplitude discharges is much more readily 

apparent than of high frequency, low amplitude 

discharges. Quantitative, automatic analysis may reveal 

some of these EEG features usually overlooked by 

visual analysis alone (Tong & Thakor 2009).  

 

Recently graph theory, or network-based approaches to 

understanding neuronal function in terms of ‘functional 

networks’ have emerged in imaging neuroscience. 

Particularly in functional magnetic resonance imaging 

(fMRI) of the resting state this has led to the discovery 

that neuronal networks show functionally relevant and 

quantifiable fluctuation between different constellations, 

or states over time (Allen et al. 2014; Krienen et al. 

2014). Similar methods based on graph theory have 
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now been applied to electrophysiological signals from 

EEG and MEG recordings in humans (Brookes et al. 

2011; Maldjian et al. 2014; Boersma et al. 2011), and 

suggest that the high temporal resolution in these 

signals can be harnessed to identify recognisable 

‘microstates’ at millisecond-to-second time scales and 

characterise the switching between them (Van De Ville 

et al. 2010; Koenig et al. 2002; Baker et al. 2014; 

Khanna et al. 2015; Vidaurre et al. 2016).  

 

Dynamic features not directly visible in EEG analysis – 

such as the microstate dynamics described above – are 

not commonly considered in computational analyses of 

clinical EEG recordings. There is an emerging literature 

on the computational analysis of EIEE phenotypes 

(Japaridze et al. 2013; Japaridze et al. 2016) and 

related abnormal EEG patterns (Liu & Ching 2017; 

Ching et al. 2012). Yet our understanding of intrinsic 

network dynamics in these phenotypes is still limited. 

Yet, these network dynamics are potentially important 

to understand whole brain dysfunction as seen in the 

EIEEs, where there is often not a sharp distinction 

between seizure patterns and interictal abnormalities.  

ID EEG  
Classification 

Age  
(months) 

EEG 
Abnormality 

1 Normal  
for age 

2 - 

2 Normal  
for age 

6 - 

3 Ohtahara 
Syndrome  

1 Burst 
suppression 

4 Ohtahara 
Syndrome 

2 Burst 
suppression 

5 Ohtahara 
Syndrome 

2 Burst 
suppression 

6 West 
Syndrome 

5 Hypsarrhythmia 

7 West 
Syndrome 

6 Hypsarrhythmia 

8  West 
Syndrome 

8 Hypsarrhythmia 

 
Table 1: EEG and clinical features of participant included in 
the analysis. 

 
Figure 1. EEG recordings of healthy controls (A,C) and patients with EIEEs (B,D). Compared to healthy controls at 2 months (A), Ohtahara 
syndrome is associated with abnormal burst-suppression patterns disrupting the ongoing background, characterised by widespread, intermittent 
bursts of high amplitude activity (B). Compared to healthy controls at 6 months (C), West syndrome is associated with chaotic and disorganised 
high amplitude activity with mixed frequency components (hypsarrhythmia, D). All EEGs are shown in average referential montage.  
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The work presented in this paper has two main goals: 
To (1) describe a method to quantify network dynamics 
in terms of dynamical switches between EEG states 
based on correlation patterns and power distributions, 
thus deriving a multivariate feature space capturing 
network-level brain dynamics. And (2) to evaluate 
whether this approach captures pathological brain 
dynamics by mapping two distinct EIEE electroclinical 
syndromes (Ohtahara syndrome, West syndrome) onto 
this brain dynamics feature space. In the future, such an 
approach may prove valuable for resolving diagnostic 
uncertainties (e.g. in neonatal epilepsy), but also inform 
computational models of neuronal populations, and thus 
help identify the neurobiological mechanisms 
underlying the phenotypes seen in this group of severe 
epilepsies. 
 

METHODS  

 
2.1  Subjects 

This study is focussed on establishing estimates that 

describe EEG microstate dynamics using different 

network measures, and thus illustrates the methodology 

on a small number of participants with profound EEG 

abnormalities. Both patients and control EEG 

recordings were selected from previously recorded 

standard paediatric clinical EEGs. The selection was 

based on classification by a clinical neurophysiologist 

with expertise in paediatric EEG (FM).  

 

Subject characteristics are detailed in Table 1. Two 

control subjects were identified from routine clinical 

service in a tertiary paediatric hospital providing 

specialist regional neurophysiology services, based on 

their age and an EEG within normal limits without 

evidence of epileptiform abnormalities. Patients with 

Ohtahara syndrome were selected based on (1) clinical 

history of seizures, (2) neonatal or early infantile onset 

of the epilepsy, and (3) evidence of a burst-suppression 

pattern on standard clinical EEG. Patients with West 

syndrome were selected based on (1) clinical history of 

infantile spasms, (2) infantile onset of the epilepsy, and 

(3) evidence of hypsarrhythmia on standard clinical 

EEG. Examples of the EEGs from patients, compared 

to the age-matched healthy controls are shown in Fig 1. 

Where identified, underlying causes for the epilepsy 

ranged from genetic abnormalities, localised brain 

lesions to brain malformations. 

 

All EEG recordings were performed with informed 

consent from the patients’ legal guardians, and as 

necessitated by the patients’ clinical course. Use of 

anonymised EEGs from the clinical database for 

quantitative analysis was reviewed and approved by the 

UCL Great Ormond Street Institute of Child Health Joint 

Research and Development office.      

 

2.2  EEG Recordings and Preprocessing  

Routine clinical EEG recordings were used for the 

analysis. Each patient had 19-21 scalp electrodes 

placed according to the International 10-20 system. 

Recordings lasted for up to 30 minutes during task free 

resting with the subjects’ parent or guardian. Data were 

recorded with a sampling frequency of 256 or 512Hz 

and Butterworth bandpass filtered to a 1-80Hz 

frequency band for visual analysis.  

 

For each individual subject a total of five artefact-free 

10s segment of EEG were selected for further analysis, 

excluding periods of visually apparent deep sleep. No 

distinction was made for light sleep and awake 

segments in the EEGs where no obvious electrographic 

sleep architecture was appreciated on visual analysis. 

Because of the severity of the EEG abnormalities, sleep 

stages were not apparent for some of the patients.  

 

Further analysis was performed on these data 

segments, each filtered to 6 different standard EEG 

frequency bands: broadband (0.1-60Hz); delta-band (1-

4Hz), theta band (4-8Hz), alpha band (8-13Hz), beta 

band (13-30Hz), and gamma band (30-60Hz). 

Quantitative analysis was performed on an average 

montage with each channel referenced to the overall 

mean scalp activity.  

 

2.3   Quantitative Network Analysis 

Analysis was performed using customised scripts 

written by the authors running on Matlab 2016a, as well 

as the k-Wave toolbox (Treeby et al. 2011) for 

quantification of matrix sharpness and contrast, and the 

Chaos toolbox to evaluate stationarity in the features 

described here. All scripts are available to download 

and free to use at doi.org/10.5281/zenodo.556391. 

 

Estimating dynamic correlation pattern changes 

In order to identify changes in network states, dynamic 

correlation patterns were estimated (summary of the 

analysis pipeline shown in Fig 2): For each EEG 

segment a sliding window approach was used to 

estimate dynamic changes in the patterns of correlation 

between channels: Starting at each sampling point 

between 0 and 8s of any 10s EEG segment, a two-

second window was extracted, yielding 𝑘 overlapping 

short segments. For each short segment, pairwise 

Pearson’s correlation indices between individual 

channels were calculated, yielding a total of 𝑘 

correlation matrices that were 𝑛 ∗ 𝑛 elements large each 

(Fig 2B, where 𝑘 = number of steps for sliding window, 

𝑛 = number of channels). 

 

To identify transitions between network states defined 

by specific scalp-electrode correlation patterns, a single 

𝑘 ∗ 𝑘 correlation dynamics matrix (CDM) was calculated 

to identify temporal changes in the correlation patterns 

of the channel-to-channel correlation matrices (Fig 2D). 

Further statistical analysis was based on a single such 

CDM for each 10s time window.  

 

Estimating dynamic power distribution changes 

Similar to the correlation dynamics analysis, we 

established a related measure describing the power 

distribution changes over time (also shown in Fig 2): For 
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each EEG segment, a sliding window approach was 

used to calculate mean band power for each channel 

within the respective frequency band. This yielded 𝑘  

vectors of length 𝑛 (Fig 2C, with 𝑘 = number of steps for 

sliding window, 𝑛 = number of channels). A 𝑘 ∗ 𝑘 power 

dynamics matrix (PDM) was calculated by estimating 

the pairwise correlation between each of the k power 

distribution vectors (Fig 2E). Further statistical analysis 

was based on a single PDM for each 10s time window. 

 

2.4   Statistical Analysis 

Quantifying dynamics matrix features  

To quantify features in the dynamics matrices, a set of 

scalar measures was calculated for each dynamics 

matrix; these are summarised in Table 2. Briefly, they 

include the matrix mean (i.e. dynamic correlation 

averaged in time); matrix contrast; and matrix 

sharpness (defined as the Brenner Operator, Treeby et 

al., 2011).  Contrast and sharpness measures are 

derived from image analyses and in this context, 

represent measures describing the transition between 

correlated network states in time. They are differentially 

sensitive to regional amplitude differences (where 

contrast is more robustly sensitive) and smoothness of 

transition between states (where sharpness is more 

robustly sensitive), as illustrated in Fig 3. 

 

Testing for stationarity and statistical differences 

To evaluate whether the dynamic matrix features reflect 

non-stationary processes, they were statistically 

evaluated against a set of stationary surrogate time 

series of the same frequency composition. For each 

individual time window included in the analysis, the 

following analysis steps were performed in order to 

derive a normal distribution of the measures illustrated 

above (mean values, contrast, and sharpness) in a 

stationary time series the following steps were 

performed:  

 

1. Fourier transforms for each channel were 

calculated for the whole length of each 10s EEG 

segment 

 

Figure 3: Contrast and sharpness measures encode related 
but different matrix features.  
Analysis of example matrices with different levels of Gaussian 
smoothing (left vs right panels), and different signal amplitudes 
(top vs bottom panels) shows differential sensitivity of the 
measures employed (normalised values shown): Contrast 
changes mainly with amplitude of the regional signal differences, 
whilst sharpness is affected both by amplitude, and smoothness 
modulations.  

Table 2: Measures used for quantification of dynamics matrix features 

 
Mean values 

 

∑ 𝑓𝑥,𝑦

𝑥,𝑦

    𝑘2⁄  

 
Contrast* ∑(𝑓𝑥,𝑦 − 𝑓𝑥+1,𝑦+1)

2

𝑥,𝑦

 

 
Sharpness (Brenner Operator)** ∑(𝑓𝑥+2,𝑦 −  𝑓𝑥,𝑦)2 + (𝑓𝑥,𝑦+2 − 𝑓𝑥,𝑦)2

𝑥,𝑦

 

 

* derived indirectly from the gray level co-occurrence matrix  
**modified from Treeby et al., 2011 
𝑓𝑥,𝑦 =  𝑓(𝑥, 𝑦), the scalar value of the matrix at column 𝑥, row 𝑦. 𝑘 is the number of rows in the matrix 
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2. A total of 50 amplitude adjusted surrogate time 

series were generated for each channel based on 

their Fourier transforms (based on Schreiber and 

Schmitz, 1996, using the Chaotic Systems Toolbox)   

 

3. Each set of synthetic time series were then 

analysed using the same sliding window analysis 

applied to the original datasets, thus deriving 50 

surrogate sets of the measures described above for 

each 10s time window analysed.    

 

4. z-scores were calculated for each measurement 

derived from the empirical time series, based on the 

distribution of synthetically generated surrogate 

measurement sets 

 

If a dynamics matrix measure reflects only stationary 

processes caused by random fluctuations around 

steady-state frequency distributions, empirical values 

are expected to fall within the normal distribution of the 

surrogate data, i.e. roughly within the −2 to 2 z-score 

interval. We also used the z-score normalised data to 

test for differences between individual measures using 

two-sided t-tests.  

 

Clustering based on network dynamics 

The approach taken above yields several distinct 

measures for each EEG time window: 3 dynamics 

matrix measures (mean, contrast, sharpness) for 2 

different matrix types (CDM, PDM), for 6 frequency 

bands (broadband, delta, theta, alpha, beta, gamma) 

expressed as 2 values (raw, z-score) results in a total of 

72 feature measures for each EEG window. To identify 

dynamic network measures that capture discriminatory 

features between the EEG abnormalities analysed here, 

we (1) measured according to how well they can be 

used to classify individual EEG segments into distinct 

groups, and (2) used a subset of the highest-ranking 

 

 
 
Figure 2. Dynamics of band power fluctuations and changing network correlations can be estimated separately. This figure summarises 
the estimation of dynamic changes in the power distribution, and correlation patterns over a single 10 second window: (A) A sliding window estimator 

(window length: 2𝑠; step size: 1 512⁄ 𝑠) is used for feature extraction. (B) Channel-by-channel correlations are estimated using Pearson’s linear 
correlation coefficients for each time window. (C) The average power within the specified frequency band is estimated for each channel 
independently, resulting in a specific band power distribution for each time window. (D,E) Estimating window-to-window correlation based on these 

measures yields two 𝑛 ∗ 𝑛 dynamics matrices describing correlation dynamics (D: CDM), and power dynamics (E: PDM) respectively.   
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measures to automatically identify clusters within the 

data using machine learning approaches.  

 

For each measure we identified thresholds that optimise 

the classification of EEG windows into three clusters 

corresponding to the three participant groups (i.e. 

Ohtahara syndrome, West syndrome, and healthy 

controls). To that effect, the purity of the classification, 

𝑃, resulting from a set of two threshold parameters was 

maximised using a simulated annealing approach. 𝑃 

ranges from 0 (no element is correctly categorised) to 1 

(all elements are correctly categories) and is calculated 

as follows: 

𝑃(Ω, ℂ) =  
1

𝑁
∑ max

𝑗
|𝜔𝑘 ∩ 𝑐𝑗|

𝑘

 

 

where Ω = {𝜔1, 𝜔2, … , 𝜔𝑘} is the set of estimated 

clusters, and ℂ = = {𝑐1, 𝑐2, … , 𝑐𝑗} is the set of given 

classes 

 

The maximally achieved value for 𝑃 was recorded for 

each measure and used to rank the 72 individual 

dynamics measures according to how well they can be 

used to cluster EEGs into patient groups. As a second 

step, we then used subsets of the high-ranking 

dynamics measures to automatically cluster the EEGs 

into different groups using k-means clustering. This 

approach partitions a dataset into a set of k clusters 

automatically, given a set of observations. We use this 

approach to quantify how well the measures we 

identified in the first steps can be used to categorise 10s 

segments of EEG into the appropriate participant 

categories (using the purity measure 𝑃), and how well 

they distinguish between normal and abnormal 

(Ohtahara, and West syndrome combined) categories 

(using sensitivity and specificity estimates). This does 

not aim to assess individual measures in terms of their 

diagnostic accuracy, but quantify how much information 

about the original classification based on full EEG 

recordings is retained in this low-dimensional feature 

space.  

 

RESULTS 

 
3.1   Correlation and band power dynamics   

A total of 5 relatively artefact free EEG segments were 

selected randomly and analysed for each participant, 

yielding separate CDM and PDM for each segment and 

each frequency band. Across all subjects and segments 

there are visible differences in the temporal dynamics of 

correlation patterns and band power distribution 

patterns (shown in Fig 4A-B, which can be quantified in 

 
 
Figure 5. Dissociation of bandpower and network correlation dynamics. (A) Shows the CDM for a single 10s EEG broadband segment in 
healthy control aged 2 months. (B) Shows the PDM for the same EEG segment. (C) Channel-to-channel correlation patterns are shown for three 
separate time window, with big differences between time point 1 and the others, and more similarities between time points 2 and 3. (D) Correlations 
are shown between a single time window (indicated by the dashed lines in A,B) and all other time windows based on correlation dynamics (i.e. 
CDM) and power dynamics (i.e. PDM). (E) Shows the bandpower distribution across channels over time.  
Whilst there are broad similarities in the temporal trajectories of power and correlation dynamics, there are discrete instances where similar 
bandpower distribution patterns (at t1 and t3) are associated with very different correlation patterns, and vice versa (at t2 and t3). 
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the difference between the two matrices: if band power 

distribution and channel-to-channel correlation followed 

the same dynamics, the differences would be expected 

to center around 0. The mean of the CDM - PDM 

difference is shown for each time window in the analysis 

in Fig 4C. This suggests that in healthy controls, PDM 

values are overall higher than CDM values, which is 

also seen in Fig 4B. In both patient groups, there is more 

temporal-cross correlation in network correlation states, 

than in the band power distribution, resulting in positive 

mean difference values. 

 

A closer analysis of the temporal patterns underlying 

these differences is shown for a single healthy control 

EEG segment in Fig 5: Transitions between network 

motifs as measured through CDM, or PDM show a 

dissociation: Observed band power distribution across 

the scalp may change without closely associated 

corresponding changes in the network correlation 

patterns and vice versa. 

 

3.2   Non-stationarity in CDMs   

Randomly generated stationary time series of the same 

spectral composition as the empirical recordings were 

used to assess for non-stationarity in different measures 

applied to the EEG segments. For each measure, z-

scores were calculated from a distribution generated 

based on analysis of 50 synthetic data sets for each 

individual EEG segments, and are shown in Fig 6. Most 

of the dynamics measures derived from the PDM can 

be explained as random fluctuations around a stationary 

distribution, whilst CDM-derived measures differ 

significantly from the stationary distributions, i.e. show 

non-stationarity.  

All z-score normalised CDM measurements show group 

differences between patients with Ohtahara, or West 

syndrome and healthy controls. Example CDMs for 

each participant group are shown in Fig 7A. It is worth 

noting that direction of the statistical differences is not 

necessarily evident from the CDM alone: For example, 

CDM contrast in patients with West syndrome is lower 

than expected, even though the example CDM for West 

syndrome shown in Fig 7A appears rich in contrast. This 

illustrates that expected ranges of CDM measures are 

highly dependent on the overall frequency composition 

of the underlying EEG signal, i.e. higher correlation 

values may be occur by chance if the signal contains a 

large low frequency component. 

 

3.3   Network dynamics in EIEE patients  

A complete set of dynamics measures derived from 

both CDM and PDM were collated for each EEG 

segment resulting in 72 measures (3 measures * 2 

matrix types * 6 filter bands * 2 normalisation types) per 

EEG segment. For each individual value thresholds 

were identified that could be used to separate the data 

into three clusters that reproduced the original 

participant groups (Ohtahara syndrome, West 

syndrome, and healthy controls) most closely. Table 3 

shows the ranking based on maximum purity achieved 

for each measure after automatic threshold 

optimisation.  Several of these variables can be used in 

conjunction to map out distinct groups’ distributions in a 

low-dimensional feature space. As an example, Fig 8 

shows each individual EEG segment mapped onto the 

three highest ranked dynamics measures from Table 3. 

In order to verify how well these measures separate 

distinct subgroups, we evaluated results from a k-

 
 
 
Figure 4. Network correlation states and band power 
distribution show different recurrence patterns in time.  
The dynamics matrices show recurrent correlation or band power 
distribution patterns in time. (A) Shows CDM and PDM for a single 
10s EEG segment of a patient with West syndrome. Both show 
high correlation values outside of the leading diagonal (i.e. 
between different time segments). (B) In healthy controls, high 
between time-window correlation is largely restricted to the leading 
diagonal in the CDM, but not the PDM, suggesting that network 
correlation patterns are less recurrent than band power distribution 
patterns. (C) Mean CDM - PDM difference values suggest that for 
healthy controls, but not the patient groups, recurrent band power 
patterns recur more across time than network correlation patterns. 
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means automatic clustering algorithm based on 

increasingly large subsets (range: 1 to 30 parameters) 

of the dynamics measures. Results of this unsupervised 

clustering approach were then compared with the 

known disease category, using overall classification 

purity, as well as sensitivity and specificity of separating 

healthy controls segments from patients (Fig 8B). An 

example of such a clustering is shown for just two 

parameters in Fig 8C. Using the top-ranking five 

parameters, this approach can reach a classification 

purity of 82.5%, with a disease classification sensitivity 

of 93.3% and a specificity of 80.0% (Fig 8B).   

 

DISCUSSION  

 
This report presents a quantitative analysis approach 

for identifying temporal patterns in network states in the 

developing brain. Using electrographically distinct 

epilepsy syndromes affecting most of the background 

EEG dynamics as illustrative cases we show that (1) 

temporal correlation analysis can reveal distinct 

patterns from high dimensional datasets such as EEG; 

(2) band power and channel-to-channel correlation 

dynamics can be dissociated, even in the healthy brain; 

(3) quantitative summary measures derived from this 

analysis can capture EEG differences between different 

electroclinical syndromes.   

 

The novel measures introduced here describe 

quantitatively the temporal dynamics of whole brain 

network states. Even structurally very different networks 

may show similarities in dynamics, which makes the 

measures introduced here particularly useful for 

identifying similarities in highly heterogeneous clinical 

populations. Early infantile EEGs are furthermore 

characterised by activity in a variety of spatial 

distributions (rather than the more typical posterior 

dominant rhythms seen in the mature EEG), indicating 

that analysis of the dynamics of different network 

patterns unfolding may be particularly informative in this 

age group.  

 

 

 

Figure 6. Correlation dynamics are 
non-stationary 
PDM-derived measures of band power 
dynamics (A,C,E) fall mostly within a 
95% confidence interval derived from 
stationary surrogate synthetic 
datasets (shown as green shading), 
indicating that they may represent 
stationary processes. CDM-derived 
measures (B,D,F) are not fully 
explained by random correlations in 
stationary signals and show significant 
group differences even when z-score 
normalised. Red bars indicate the 
standard deviation around the means 
 of the individual groups. 
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Dynamics matrices can reveal hidden temporal 

structure in high-dimensional data 

Network based analyses have been the conceptual 

basis for the recent success in resting state fMRI in 

humans (Van Dijk et al. 2010). Furthermore, 

computational modelling approaches have enabled an 

understanding of the relationship of observable, 

macroscopic whole-brain network dynamics and local, 

mesoscale neuronal dynamics (Deco et al. 2011). Many 

of the network features first described based on resting 

state fMRI are also present in the analysis of EEG/MEG 

recordings, where they can be measured with very high 

temporal resolution, revealing fast, sub-second 

recurrent network switching (Baker et al. 2014). These 

fast network dynamics can be task related (O’Neill et al. 

2017), and approaches similar to the one presented 

here have demonstrated that they are modulated by 

cognitive tasks, even in children (Dimitriadis et al. 

2015). 

 

The analysis presented here is focussed on identifying 

quantitative EEG features that (i) can show differences 

between pathological and healthy brain dynamics even 

at the level of individual subjects, and (ii) can be applied 

to task-free resting state EEG recordings routinely 

performed in a clinical setting. Given the 

 

 
Figure 7. Recurrent and persistent motifs of network correlation states are more apparent in both patient groups. (A) Broadband Cz-electrode 
time series, and CDMs for are shown for single 10s EEG segments for representatives of both Ohtahara and West syndrome cohorts and healthy 
age matched controls. (B) CDMs derived from bandpass filtered data for the EEG segment from the Ohtahara patient show distinct dynamics patterns 
for each frequency band. (C) CDMs derived from stationary surrogate data are largely restricted to the leading diagonal, thus indicating few persistent 
or recurrent network patterns in any of the frequency bands 
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heterogeneities in the clinical sample, the aim is not to 

identify specific neuroanatomical networks that 

reproduce between these patients, but describe the 

visually apparent dynamic features using novel 

quantitative measures and identify whether other, less 

directly visible features can also be useful 

discriminators. 

 

The dynamics matrices reveal structured patterns that 

capture the recurrence of correlated network states over 

different time scales. The dynamics of these transitions 

can be visually represented and, importantly, quantified 

using image metrics (such as sharpness, and contrast) 

that intuitively capture features of the microstate 

transitions. This approach summarises specific aspects 

of the multi-channel, highly time resolved EEG 

recordings that are less amenable to standard visual 

analysis.   

 

Band power and correlation patterns represent 

different aspects of neuronal circuitry function 

Correlations between channels, and power distribution 

across channels are likely to represent physiologically 

separate processes that can follow distinct dynamic 

patterns: The spectral composition of the EEG signal 

(and thus its regionally specific band power distribution) 

is believed to result from synchronous firing within local 

neuronal populations; statistical correlation between 

distant channels is believed to be caused by direct or 

indirect, long-range synaptic connectivity (Buzsáki et al. 

2012; Vanhatalo & Kaila 2006). A difference between 

power- and correlation-derived network dynamics can 

therefore be understood to represent separately the 

dynamics of synaptic connectivity at the local, and the 

network level.  

 

Across all participant groups, there are visible 

differences between dynamic patterns as derived from 

band power distributions (PDM) and network correlation 

patterns (CDM). These differences suggest that a 

particular band power distribution across the scalp do 

not correspond to network correlation patterns – i.e. 

functional connectivity motifs – in the developing brain, 

both in patients and in normally developing controls. 

Using the approach shown here, changes in correlation 

patterns and band power patterns over time can be 

tracked separately and reveal divergent trajectories. 

Most of the dynamic variance contained within the PDM 

can be explained as random fluctuations of an overall 

stationary process, whilst correlation patterns over time 

differ significantly from those observed in a stationary 

signal, thus the product of a non-stationary process.  

The first year of life is associated with a range of 

developmental changes affecting both local 

microcircuitry (e.g. synaptic pruning, neurotransmitter 

and -receptor changes), as well as global network 

integration (e.g. myelinisation of large white matter 

tracts) (Dehaene-Lambertz & Spelke 2015). Identifying 

developmental changes in the dynamics at different 

neuronal scales may thus provide insight into the 

relationship between neurobiological changes and 

observed EEG patterns, particularly where there are 

visible EEG changes, as is the case in the EIEEs 

discussed here. Applied to a larger cohort, the approach 

illustrated here with just a small sample of pathological 

EEG patterns may in future also reveal more subtle 

developmental patterns in the healthy developing brain 

by allowing quantification of network dynamic 

behaviours in simple network-based measures, such as 

the transition sharpness included in the analysis here.   

 

Quantifying abnormal brain states in clinical 

populations 

Even as little as five scalar measures derived from the 

network dynamics analysis here can be used to classify 

EEG segments with reasonable accuracy into the 

Table 3: Rank of dynamics measures based on clustering ability 

Rank Measure Matrix Type Filter Band Purity Normalisation 

1 sharpness PDM alpha 0.725 N 

2 sharpness CDM delta 0.700 N 

3 sharpness PDM theta 0.700 N 

4 sharpness CDM all 0.675 N 

5 sharpness CDM all 0.675 Y 

6 sharpness CDM delta 0.675 Y 

7 contrast CDM all 0.650 Y 

8 sharpness CDM theta 0.625 N 

9 sharpness CDM theta 0.625 Y 

10 mean CDM all 0.600 N 

11 mean CDM all 0.600 Y 

12 mean PDM theta 0.600 N 

13 contrast CDM theta 0.600 Y 

14 sharpness CDM alpha 0.600 N 

15 sharpness CDM beta 0.600 N 

16 sharpness CDM beta 0.600 Y 

17 sharpness PDM delta 0.575 N 

18 contrast PDM delta 0.575 N 

19 contrast CDM delta 0.575 Y 

20 contrast CDM delta 0.575 Y 
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known disease categories. Both Ohtahara and West 

syndrome are characterised by pervasive neuronal 

abnormalities that disrupt normal background EEG 

function. Their associated EEG phenotypes (i.e. burst 

suppression patterns, and hypsarrhythmia) are readily 

apparent throughout most EEG segments. Thus, the 

analysis approach presented here is not designed to 

resolve diagnostic uncertainty, but the distinct 

phenotypes included in the analysis were utilised to test 

whether our novel dynamics measures can reveal 

apparent differences in the EEG dynamics 

quantitatively.  

 

As the measures derived from the dynamics matrices 

are quantifiable, they allow for statistical testing and the 

application of simple machine learning tools. As 

illustrated in the approach taken here, individual 

measures can be ranked according to their 

discriminative power for clustering into disease 

categories, thereby identifying the features that most 

help differentiate different pathologies from the 

dynamics in the normal developing brain.  

 

Of the ten measures that are most distinct between 

different groups, eight are measures of sharpness in 

either the CDMs or PDMs – thus different patients 

groups and healthy controls show particular differences 

in their transition between different network states. The 

majority of the useful measures are derived from the 

CSMs, suggesting that it is specifically the temporal 

dynamics of the switch between discrete functional 

connectivity patterns that separates the groups. 

Notably, each of the top ten ranking measures were 

either broadband measures, or restricted to the lower 

frequencies (delta, theta, alpha), which may be related 

to the window length of 2s, as this will average out 

changes in high frequency correlation patterns that are 

only a few cycles long. However, most of the 

physiological and abnormal activity we were aiming to 

capture is within the lower frequency ranges, which the 

window length appears to capture well.  

 

For almost all measures, Ohtahara syndrome shows a 

higher sharpness value, suggestive of more acute 

transitions between more discretely defined states 

(which may not always correspond to apparent burst 

activity). Somewhat surprisingly, healthy controls are 

often found at intermediate values, with West syndrome 

patients with the lowest sharpness values (e.g. Fig 8A). 

Yet at the same time both patients with Ohtahara 

syndrome and with West syndrome show abnormally 

high persistence of network states (as measured by the 

mean correlation over time in the CDM, Fig 6B). These 

observations suggest that the EIEE brain is susceptible 

to enter recurrent and abnormally stable functional 

connectivity states, but the expression of dynamic 

transitions in and out of these is specific to the 

electroclinical syndrome (and therefore the 

developmental stage). 

 

 

 
Fig 8: Clustering using dynamics measures separates patient groups 
(A) Dynamics matrix measures can be used to visualise clustering of the EEG segments in a three-dimensional feature space. Here all EEG 
segments are mapped onto the three most discriminatory dynamics measures, producing distinct clusters in this three-dimensional feature space. 
(B) Classification purity peaks when between 5-15 parameters are used for classification, after which no further gains are made. Sensitivity and 
specificity of classifying patients and healthy controls in separate groups is also shown. (C) One example clustering solution is shown using only 
the two highest ranking parameters with limited separation between West syndrome and healthy control EEGs 
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This approach complements existing computational 

modelling of epilepsy and seizure activity. The 

application of dynamic systems mathematical 

approaches to neuronal oscillators has led to the 

recognition of certain stereotypical seizure patterns as 

mathematically predictable oscillatory patterns 

(Izkhikevich 2000) that can be reproduced in 

computational simulations (Jirsa et al. 2014). Using 

these in silico simulations means that we can explain 

the effects of genetic mutations (Peters et al. 2016), 

specific seizure responses to stimulation (Taylor et al. 

2014), or seizure spread patterns (Baier et al. 2012) 

using full generative models that bridge observable and 

non-observable (‘hidden’) spatial and temporal scales. 

Such approaches focus on reproducing specific 

features observed in empirical data – typically the 

particular, directly visible oscillatory patterns and their 

relationship to neuronal function (Jirsa et al. 2014; 

Breakspear 2005). Here we offer quantitative 

descriptions of network level dynamic features that 

appear to be modulated both by the epilepsy (i.e. 

persistent network states as seen in the examples in Fig 

7A, resulting in the differences in mean correlation 

apparent in Fig 6B) and developmental stage (i.e. 

transition dynamics differences between the younger 

Ohtahara syndrome, and the older West syndrome 

cohort as indicated in Fig 6D and F) – features that can 

be specifically included in future models of EIEE.   

 

Future applications in the clinic and in epilepsy 

research  

Firstly, the EEG phenomenology-based clustering 

approach may aid in resolving diagnostic uncertainties 

in neonatal EEG analysis, where the difference between 

abnormal patterns and normal developmental variants 

are more difficult to identify visually (Torres & Anderson 

1985; Stevenson et al. 2015). Correct diagnosis 

currently relies on the expertise of clinicians trained in 

paediatric (and specifically neonatal) clinical 

neurophysiology, who are not available in all clinical 

settings where accurate diagnosis of neonatal EEG 

patterns could be valuable. Yet there is a recent focus 

on improving neurological outcomes of neonatal care, 

which is likely to involve a significant increase in EEG 

recordings and monitoring in neonates at risk of 

seizures, requiring a corresponding scaling up of EEG 

interpretation capacities (Vesoulis et al. 2014; Sands & 

McDonough 2016). Utilising quantitative, computational 

approaches as presented here may be able to support 

correct diagnosis in those settings and play a role in 

improving clinical outcomes (Mathieson et al. 2016; 

Temko et al. 2011).  

 

Secondly, the epilepsy syndromes under investigation 

here have a close relationship to developmental stages: 

Ohtahara syndrome typically is restricted to the 

neonatal or early infantile period, whilst West syndrome 

emerges in later infancy, typically between 3 and 10 

months. Both share genetic causes (e.g. GABRA1 

mutations, Kodera et al. 2016) and individual patients 

can evolve from Ohtahara syndrome to West syndrome 

during their development (Ohtahara & Yamatogi 2006). 

Thus understanding the neurobiological processes 

underlying the EEG phenotypes offers a window into the 

interactions between brain development and early onset 

pathological processes. By being able to quantify 

differences in network dynamics we can identify 

features that are crucial in distinguishing patients 

groups. These quantitative features can be used as 

benchmarks for adapting existing models of neuronal 

dynamics (Baier et al. 2012; Proix et al. 2014; 

Papadopoulou et al. 2015) to reproduce the empirical 

observations. With those models we will be able to test 

mechanistic hypotheses that link recent discoveries on 

the genetic basis of many of the EIEEs and our 

understanding of developmental processes in the infant 

brain, to the identifiable EEG syndromes seen in 

patients.  

 

Limitations 

This study is not an attempt at testing the dynamics 

measures in terms of their clinical validity: The EIEE 

syndromes included here were deliberately chosen 

because of their wide-ranging impact on the 

background EEG and the disruption of normal brain 

dynamics; they are used to illustrate the validity of the 

method and the possibility to identify less visible group 

differences. Visually observed EEG differences are 

large, thus we have only included a small number of 

subjects, aiming to identify group differences with large 

effect sizes that are likely to be useful in future 

applications in clinical samples where predictive power 

at the single individual is required.  
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