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ABSTRACT 

At any given moment, we experience a perceptual scene as a single whole and yet we may 

distinguish a variety of objects within it. This characteristic of perception instantiates two general 

properties of phenomenological experience: integration and differentiation. While integration is the 

property of experiencing a collection of objects as a unitary percept, differentiation is the property 

of experiencing these objects as different percepts. Little is known about how these two 

phenomenological properties are dynamically indexed by the brain in terms of information 

processing. Here we evaluated the dynamics of neural information underlying phenomenological 

integration and differentiation in bistable perception. Participants listened to auditory bistable 

stimuli, a sequence of tones experienced either as a –single– integrated percept (phenomenological 

integration) or as two –parallel– differentiated percepts (phenomenological differentiation). We 

computed neurophysiological indices of information integration and information differentiation 

with electroencephalographic and direct cortical recordings in human participants. We focused 

specifically on the gamma-band dynamics within the frontoparietal network, commonly implicated 

in conscious processing. In electrical recordings at the scalp and intracranially, the 

phenomenologically integrated percept generated an increase in neural information integration and 

a decrease in differentiation between frontal and parietal regions, whereas the opposite pattern 

was observed for the phenomenologically differentiated percept. This effect was not observed in 

the auditory control task. Furthermore, this dissociation was not observed when computing 

traditional measures of neural oscillatory integration (phase synchronization) within the same 

frontoparietal network and frequency range. However, this frontoparietal phase synchrony was 

able to distinguish between a stable perceptual window and the transitional period between the 

two percepts. These theoretically-motivated neural indices of information dynamics dissociated 

phenomenological integration and differentiation that indices of oscillatory dynamics did not. By 

incorporating theoretically motivated measures of information theory in the characterization of 

perceptual content, we contribute to the construction of a testable framework to investigate the 

neuroscience of conscious experience. 

 

Keywords: contents of consciousness, bistable perception, wSMI, K complexity, integrated 

information theory, EEG.  
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INTRODUCTION 

Brains continuously coordinate information for creating coherent internal states underpinning 

perception, cognition and action. Thus, investigating neural information processing seems crucial for 

understanding complex cognitive phenomena. Under this information-theory framework, processes 

such as the information flow, information complexity and information transfer have been recently 

explored as potential dynamical mechanisms underlying cognition and consciousness. For instance, 

the dynamic of information transfer within cortical networks has been useful for unravelling the 

mechanisms of sensorimotor integration (Lungarella and Sporns, 2006; Siegel et al., 2015), visual 

perception (Hanslmayr et al., 2013; Ince et al., 2016), working memory (Salazar et al., 2012), and 

pathological states of consciousness (King et al., 2013).  

During the last years, consciousness research has benefited, primarily at the theoretical level (and to 

a certain degree, empirically), from the application of information theory for investigating the neural 

dynamics of conscious processing. Importantly, current theories of consciousness propose that the 

information generated by the dynamics of neural activity is crucial for the emergence of conscious 

experience (Dehaene and Changeux, 2011; Dehaene et al., 2014; Koch et al., 2016; Tononi et al., 2016). 

However, empirical research derived from these theories have focused primarily on investigating 

conscious states and conscious access rather than on its potential role on underpinning conscious 

experience itself (Dehaene et al., 2014). For instance, the role of information dynamics has been 

investigated for distinguishing between pathological (Casali et al., 2013; King et al., 2013; Sitt et al., 

2014) and pharmacological (Casali et al., 2013; Sarasso et al., 2015; Schartner et al., 2015, 2017) 

conscious states, and for discriminating between conscious and unconscious processing during 

conscious access tasks (Gaillard et al., 2009). However, the potential role of information dynamics for 

indexing conscious experience has not yet been tested. Here we describe a testable framework for 

studying the general properties of conscious experience using theoretically motivated informational 

measures of brain activity. 

According to current theories of consciousness, although conscious experience cannot be divided into 

discreet independent components (that is, it is phenomenologically integrated; Tononi et al., 2016), it 

can contain different assortment of events and objects (that is, it is phenomenologically 

differentiated; Tononi et al., 2016). We propose that these two general properties of conscious 

experience can be neurophysiologically investigated during auditory bistability. During auditory 

bistability, an invariant sequence of tones is experienced as forming either a phenomenologically 

integrated percept (one stream) or a phenomenologically differentiated percept (two streams) 

(Snyder et al., 2012) (Figure 1).  
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Neurophysiologically, conscious experience is thought to require the joint presence of information 

integration and information differentiation (Oizumi et al., 2014; Tononi et al., 2016). In particular, the 

emergence of conscious percepts are believed to involve the integration of information coming from 

multiple, specialized brain areas to form a phenomenologically unified whole (Dehaene and Changeux, 

2011; Dehaene et al., 2014; Tononi et al., 2016). Therefore, a reasonable assumption is that a 

phenomenologically integrated percept (one stream, as the one used in this experiment) should be 

associated with correspondingly higher neural information integration (NII). Recently, NII has been 

empirically measured in a direct manner by computing the amount of information shared between 

long-distance EEG signals, and it has been used to discriminate between vegetative and minimally 

conscious patients (King et al., 2013; Sitt et al., 2014). This NII measure can detect non-oscillatory 

coupling between signals as compared to classical measures of neural oscillatory integration (NOI) 

such as phase synchronization. In the case of auditory bistability, we expect higher neural information 

integration for the perceptually integrated percept (one-stream) compared to the perceptually 

differentiated percept (two-streams), as the former would require information about tones of two 

different frequencies to form a single, integrated percept.   

Complementary to NII, empirical indices of neural information differentiation (NID) have been used 

to separate levels of consciousness by estimating the degree of compressibility of EEG signals (Casali 

et al., 2013; Sitt et al., 2014; Schartner et al., 2015, 2017). For instance, a decrease in NID has been 

observed in patients in vegetative states compared to minimally conscious states (Sitt et al., 2014), 

showing that differentiation of neural information is associated with a cognitively more advanced -

clinically defined- state of consciousness. On the other hand, the only study providing preliminary 

indication that neurophysiological differentiation might be related to perceptual processes is a fMRI 

study (Boly et al., 2015), showing that NID was highest when participants watched a coherent movie, 

intermediate when scenes were scrambled, and minimal for ‘TV noise’. However, it is unclear whether 

neurophysiological differentiation was specifically related to conscious awareness since factors such 

as low-level visual processing, expectations and top-down attention might be influencing the 

differences observed between conditions. During auditory bistability, we can specifically evaluate 

phenomenological differentiation directly since what is changing is not the stimulus itself but how it 

is subjectively experienced. If the neural information associated with a conscious percept is highly 

differentiated, NID is expected to be high since information is not easily compressible. In contrast, 

neural differentiation is expected to be low if EEG signals are processing information in a stereotypical 

way because information is highly redundant and can be easily compressed. Following this rationale, 

we expect that the phenomenologically differentiated percept (two stream) should be associated with 

higher neural information differentiation. 
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Neurophysiological studies of auditory bistable perception, including those on streaming, have often 

been optimised for detection of activity in auditory-related cortices. Convergent results from several 

EEG, MEG, and fMRI studies indicate greater stimulus-locked activity on the superior temporal plane 

for the perception of two-streams percept than for that of one-stream (Gutschalk et al., 2005; Hill et 

al., 2011; Szalardy et al., 2013). Relatively fewer studies have shown percept-related activation beyond 

the auditory cortices. These have demonstrated that a wider set of brain areas (including subcortical 

sites; Kondo and Kashino, 2009) and the intraparietal sulcus (Cusack, 2005; Teki et al., 2011) are 

involved in, or reflect, auditory bistability. Recent computational models of auditory bistable 

perception (Mill et al., 2013; Schroger et al., 2014) have emphasized predictive and inferential 

processing for auditory streaming, suggesting the involvement of high-order cortical (e.g. 

frontoparietal network) areas in the emergence of auditory percepts, albeit this has not yet been 

experimentally verified. Importantly, content-specific experimental studies have revealed that a broad 

frontoparietal network is activated during visual (Hipp et al., 2012) and auditory (Basirat et al., 2008) 

tasks that contrast alternating conscious percepts. These results suggest that the awareness of 

conscious percepts might require the widespread broadcasting of neural information within the 

frontoparietal network (Dehaene and Changeux, 2011; Dehaene et al., 2014).  

Alongside, there is ample and rapidly growing evidence that endogenous or 'ongoing' brain activity in 

the gamma band (30-70 Hz) is neither meaningless nor random but instead carries functional 

information which largely determines the way incoming stimuli are interpreted (Engel et al., 2001, 

2013; Varela et al., 2001; Freeman, 2015). For instance, studies in the visual systems have shown that 

neural oscillatory integration (NOI) in the gamma-band is involved in the alternation between visual 

conscious percepts (Doesburg et al., 2005; Hipp et al., 2012). Thus, drawing upon these results and a 

wealth of previous research that has identified gamma band activity as relevant for conscious 

perception (e.g. Engel et al., 2013; Levy et al., 2015; Melloni et al., 2007), we analyse information and 

oscillatory dynamics of ongoing activity in the gamma band. However, we specifically evaluate the 

theoretical prediction (Koch et al., 2016) that information dynamics (NII and NID) but not oscillatory 

dynamics (NOI) of ongoing activity underpins phenomenological integration and differentiation. 

By measuring high-density scalp EEG and Local Field Potentials (LFP) from direct cortical recordings in 

humans, we tested the hypothesis that during the formation of conscious percepts, phenomenology 

goes along with neurophysiology. Specifically, we predict that the phenomenologically integrated 

percept goes along with high frontoparietal neural information integration in the gamma band and 

conversely, that the phenomenological differentiated percept goes along with high neural information 

differentiation within frontal and parietal regions. 
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RESULTS 

Twenty-nine healthy participants and one patient implanted with intracranial electrodes listened to a 

repeating pattern of three tones followed by a temporal gap, that are experienced either as a one-

stream percept (phenomenological integration) or as a two-streams percept (phenomenological 

differentiation) (Figure 1, upper panel). Participants were asked to press a button when perceiving 

that one-stream percept had fully changed into two-streams percept and a second button when 

perceiving that two-streams percept had fully changed into one-stream percept (Figure 1, middle 

panel). As an experimental control, we used a condition in which the stimuli were physically 

manipulated (varying the length of the silence between tones) in order to generate two externally-

driven alternating percepts (exogenous condition), and participants had to perform the same task as 

in the endogenous condition. On the one hand, the exogenous condition was designed to control for 

stimuli-related differences, allowing us to characterize the neural dynamics specifically triggered by 

the external changes in the stimuli (the two alternating patterns) and to contrast them with the 

dynamics of internal neural activity elicited by the endogenous condition (bistability). On the other 

hand, the exogenous condition allowed us to control for top-down attention in the absence of 

bistability by creating externally driven switches between percepts as oppose to the internally driven 

ones induced endogenously.  

Information integration in frontoparietal ongoing activity. 

We first investigated the dynamics of neural information integration in the gamma range (NIIγ). After 

comparing activity occurring during a 500-ms window before a perceptual change with that occurring 

after the change (see Experimental Procedures), repeated-measures ANOVA (RANOVA) revealed a 

significant triple interaction between condition (endogenous, exogenous), window (before change, 

after change), and percept (one stream, two streams) for NIIγ (τ = 6 ms) (F1,28 = 5.73, P = 0.024, Cohen's 

d = 0.90, Bayes factor (Bf) in favour of the alternative = 2.73). Bonferroni's post hoc test revealed 

higher NIIγ in one-stream compared to two-streams percept in the before-change (BC) window (F1,28 = 

7.92, P = 0.009, Cohen's d = 1.06, Bf in favour of the alternative = 6.42) (Figure 2a,c). Interestingly, ~1 

s later in the after change (AC) window, NIIγ showed again higher values for one-stream than two-

streams percept (F1,28 = 5.51, P = 0.026, Cohen's d = 0.87, Bf in favour of the alternative = 2.49) (Figure 

2a,c). These findings suggest that the phenomenologically integrated percept consistently involved a 

higher level of gamma neurophysiological integration than the phenomenologically differentiated 

one.  

Interestingly, while NIIγ discriminated between conscious percepts during the endogenous condition 

(Figure 2a), did not show any difference between percepts in the exogenous condition (BC: F1,28 = 0.34, 
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P = 0.561; AC: F1,28 = 0.90, P = 0.349, Bf in favour of the null = 3.26) (Figure 2b), suggesting that 

frontoparietal NIIγ may be specifically indexing endogenously generated percepts. Furthermore, no 

differences were observed in the mean level of NIIγ between endogenous and exogenous conditions 

(F1,28 = 1.39, P = 0.248, Bf in favour of the null = 2.12) or between windows (F1,28 = 0.11, P = 0.918, Bf 

in favour of the null = 3.59), indicating that the overall amount of information sharing within the 

frontoparietal network was similar between conditions. This index of information integration was 

hence sensitive to endogenously driven perceptual changes and may specifically underlie the 

formation of conscious auditory percepts. 

In addition to NIIγ, we investigated whether neural information integration in the alpha band (NIIα) 

dissociates between auditory percepts, as alpha activity has been previously related to perceptual 

bistability (Flevaris et al., 2013; Handel and Jensen, 2014). However, the ability of frontoparietal NII to 

track and distinguish between different endogenous percepts seems to be specifically related to the 

gamma range since no differences were found between percepts in frontoparietal NIIα (F1,28 = 1.01, P 

= 0.321, Bf in favour of the null = 2.48) (Supplementary Figure 1). Finally, to establish the specific role 

of frontoparietal areas, we computed inter-hemispheric NIIγ between temporal electrodes. We found 

no significant triple interaction in temporotemporal NIIγ (F1,28 = 1.51, P = 0.228, Bf in favour of the null 

= 2.02) (Supplementary Figure 2), implying relative specific involvement of frontoparietal networks in 

the emergence of endogenous auditory percepts. 

Information differentiation of frontal and parietal ongoing activity 

We next investigated the dynamics of neural information differentiation (NID) within frontal and 

parietal electrodes during bistable perception (Figure 3). The RANOVA revealed a significant triple 

interaction between condition (endogenous, exogenous), window (before change, after change), and 

percept (one stream, two streams) for NID (F1,28 = 7.05, P = 0.013, Cohen's d = 1.00, Bf in favour of the 

alternative = 4.57). Bonferroni's post hoc test revealed higher NID in two- compared to one-stream 

percept in the BC window (F1,28 = 7.49, P = 0.011, Cohen's d = 1.03, Bf in favour of the alternative = 

5.41) (Figure 3a) and a similar pattern in the AC window, showing higher NID values for two-streams 

than one-stream percept (F1,28 = 6.64, P = 0.016, Bf in favour of the alternative = 3.88, Cohen's d = 

0.97) (Figure 3a). These results show that the phenomenologically differentiated percept exhibits 

higher neurophysiological differentiation than the phenomenologically integrated one.  

Like in the case of NIIγ, information differentiation did not change between percepts in the exogenous 

condition (B.C: F1,28 = 0.84, P = 0.366, Bf in favour of the null = 2.66; A.C: F1,28 = 1.94, P = 0.174, Bf in 

favour of the null = 1.68) (Figure 3b). Furthermore, no differences were observed in the mean level of 

NII between endogenous and exogenous conditions (F1,28 = 1.39, P = 0.248, Bf in favour of the null = 
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2.12) or between windows (F1,28 = 0.15, P = 0.228, Bf in favour of the null = 3.53), indicating that the 

overall information differentiation within the frontoparietal network was similar across conditions. 

Finally, no triple interaction was observed in NII between temporal electrodes (right and left 

hemispheres) (F1,28 = 3.59, P = 0.069; Bf in favour of the null = 0.86) (Supplementary Figure 3). In 

agreement with the wSMI results, this index of information complexity dissociated endogenous 

percepts. However, NID showed an opposite pattern compared to NII in the directions of the effects 

between one and two streams, suggesting that NID is capturing a different but complementary aspect 

of neural information dynamics associated with conscious percepts.  

Information integration and differentiation in direct cortical recordings (LFP)  

In order to validate these findings (in a similar manner as we performed elsewhere (Canales-Johnson 

et al., 2015), we repeated the experiment in a patient implanted with intracranial electrodes for 

epilepsy surgery. We benefited from the high spatial resolution of intracranial recordings, which 

allowed us to directly test the hypothesis that it is specifically the information sharing between frontal 

and parietal areas that differentiates between the two auditory percepts. We computed NIIγ on direct 

cortical recordings (local field potentials; LFP) between the superior parietal lobe (SPL) and middle 

frontal gyrus (MFG) obtained from the intracranial patient performing the same task as above (Figure 

4a-c). As in the healthy participants, the RANOVA showed a triple interaction between (endogenous, 

exogenous), window (before change, after change), and percept (one stream, two-streams) for NIIγ 

(F1,56 = 36.02, P < 0.001, Cohen's d = 1.73, Bf in favour of the alternative > 100). Simple effects within 

the BC window showed higher NIIγ for one- compared to two-streams percept in the endogenous (F1,56 

= 18.96, P < 0.001, Cohen's d = 1.24, Bf in favour of the alternative > 100) (Figure 4b) but not the 

exogenous condition (F1,56 = 0.84, P = 0.362, Bf supporting the null = 3.43) (Figure 4c). In the case of 

the AC window, one-stream percept again showed higher NIIγ than two-streams percept in the 

endogenous (F1,56 = 6.20, P = 0.016, Bf supporting the alternative = 3.10) (Cohen's d = 0.70, Figure 4b) 

but not in the exogenous condition (F1,56 = 0.33, P = 0.857, Bf in favour of the null = 4.31) (Figure 4c). 

Furthermore, no differences were found between these percepts in the same LFP recordings within 

the alpha band (NIIα) (F1,56 = 0.58, P = 0.569, Bf in favour of the null = 3.84) (Supplementary Figure 4). 

Next, we investigated NID dynamics on LFP signals in the intracranial patient within SPL and MFG 

(Figure 4d,e). Again, RANOVA showed a triple interaction between (endogenous, exogenous), window 

(before change, after change), and percept (one stream, two streams) (F1,56 = 8.32, P = 0.008, Cohen's 

d = 1.13, Bf in favour of the alternative = 7.67). In agreement with the scalp EEG results, simple effects 

analysis within the BC window showed higher NID for the phenomenologically differentiated percept 

compared to phenomenologically integrated percept in the endogenous (F1,56 = 19.08, P < 0.001, 
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Cohen's d = 1.71, Bf in favour of the alternative > 100) (Figure 4d) but not in the exogenous condition 

(F1,56 = 2.10, P = 0.159, Bf in favour of the null = 1.97) (Figure 4e). In the case of the AC window, two-

streams percept again showed higher NID than one-stream percept in the endogenous (F1,56 = 10.57, 

P = 0.003, Cohen's d = 1.27, Bf in favour of the alternative = 20.15) (Figure 4d) but not in the control 

(exogenous) condition (F1,56 = 0.49, P = 0.488, Bf in favour of the null = 4.02) (Figure 4e). These findings 

demonstrate strong convergent evidence between scalp EEG and direct cortical recordings, further 

supporting the hypothesis that phenomenology goes along with neurophysiology of conscious 

percepts, specifically indexed by the frontoparietal ongoing activity.  

Oscillatory integration of frontoparietal ongoing activity 

Finally, we evaluated the theoretical prediction that information dynamics but not oscillatory 

dynamics of brain activity underpins the emergence of conscious percepts (Koch et al., 2016). Thus, 

we investigated whether neural oscillatory integration (NOI) of ongoing activity might also capture the 

dynamics of auditory bistability. Specifically, we investigated whether frontoparietal gamma phase 

synchronization (Weighted Phase-Lag Index (wPLIγ)) could differentiate between endogenous 

percepts. Unlike NIIγ, RANOVA revealed no triple interaction between condition (endogenous, 

exogenous), window (before change, after change), and percept (one stream, two streams) for NOIγ 

(F(1,28) = 0.12, P = 0.726, Bf in favour of the null = 3.58) (Figure 5a,b). However, a (weak) significant 

interaction between condition (endogenous, exogenous) and window (before change, after change) 

was found (F(1,28) = 4.22, P = 0.049, Cohen's d = 0.77, Bf in favour of the alternative = 1.50) (Figure 5c,d). 

Bonferroni's post hoc test showed that NOIγ significantly decreased in the AC window compared to 

the BC window in the endogenous (F(1,28) = 6.51, P = 0.016, Cohen's d = 0.93, Bf in favour of the 

alternative = 3.73) (Fig 5c) but not in the exogenous condition (F(1,28) = 1.47, P = 0.236, Bf in favour of 

the null = 2.04) (Figure 5d). Furthermore, the same null result for NOIγ between percepts was observed 

in the intracranial patient (RANOVA (condition x window x percept): F(1,56) = 0.12; P = 0.726, Bf in favour 

of the null = 4.73) (Fig 6). As with the scalp EEG, the intracranial patient showed an interaction 

between condition and window (F(1,56) = 13.51, P = 0.001, Cohen's d = 0.99, Bf in favour of the 

alternative = 68.09) in NOIγ , showing a decrease in phase synchrony in the AC window compared to 

the BC window only in the endogenous condition (Bonferroni’s post hoc test in endogenous condition: 

F(1,56) = 12.90, P = 0.001, Cohen's d = 0.96, Bf in favour of the alternative = 53.48; and exogenous 

condition: F(1,56) = 2.16, P = 0.147, Bf in favour of the null = 1.92) (Fig 6.d,e) between SPL and MFG 

electrodes. These findings suggest that oscillatory integration does not index the identity of auditory 

percepts but follows the duration of percept stability: phase synchrony maxima occur in the BC 

window (before the end of a stable percept) and phase synchrony minima in the AC window (just at 

the onset of percept stability).  
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DISCUSSION 

Here we demonstrate that only information dynamics in frontoparietal ongoing neural activity 

differentiates alternative conscious percepts during auditory bistability. By means of studying neural 

dynamics (EEG and direct cortical recordings), we show that empirically tractable measures of 

neurophysiological information integration and neurophysiological information differentiation go 

along with auditory percepts experienced either as phenomenologically integrated (one stream) or 

differentiated (two stream), respectively. Furthermore, phase synchronization of oscillatory gamma 

activity in the frontoparietal network does not differentiate between auditory percepts, nor it does 

the information between temporal networks. 

Neural correlates of consciousness, information integration and differentiation. 

Our results expand the understanding of the neural correlates of consciousness (NCC) (Koch et al., 

2016) in several ways. First, our experimental findings directly support information-based theories of 

consciousness (Dehaene and Changeux, 2011; Dehaene et al., 2014; Tononi et al., 2016); in their 

current instantiation, the Integrated Information Theory (IIT) (Tononi et al., 2016) and the Global 

Neuronal Workspace Theory (GNWT) (Dehaene and Changeux, 2011) of consciousness emphasize 

both the role of information exchange in generating conscious percepts. Although both theories 

conceptualize information differently, their proposed empirical indices are based on classical 

Shannon-entropy information framework. Using these measures of information dynamics, our results 

show convergent evidence supporting both GNWT and IIT predictions by demonstrating a role of 

neural information in the emergence of contents of consciousness. The interpretation of these results 

is albeit different between the IIT and GNWT. 

However, our results suggest a differential role of information integration vs. information 

differentiation in the emergence of conscious percepts. According to IIT, the neural activity associated 

with conscious percepts should reflect the joint presence of neurophysiological integration and 

neurophysiological differentiation. Under this theoretical framework, integration is expected – in 

principle – to be paralleled by differentiation of neural activity. Contrary to this prediction, our results 

show dissociation between neurophysiological integration and neurophysiological differentiation of 

frontoparietal ongoing activity. Interestingly, while the phenomenologically integrated percept (one 

stream) showed a relative increase in NII and relative decrease in NID, the perceptually differentiated 

percept (two streams) exhibited the opposite pattern, that is, a decrease in NII and increase in NID. 

Together, these dissociated patterns suggest that each measure is instead directly associated with the 

phenomenology of conscious percepts: whereas information integration of neural activity is capturing 
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phenomenological integration (one-stream percept), information differentiation may be capturing 

phenomenological differentiation (two-streams percept).  

Second, we demonstrate a potential mechanistic role of information integration and differentiation in 

the formation of conscious percepts. Why do these measures capture the neural dynamics of 

conscious percepts? Coordination in the brain has been classically studied by computing phase 

synchronization between neural oscillations (Uhlhaas et al., 2009; Engel et al., 2013). Synchronization 

is a highly-ordered form of neural coordination that primarily captures the linear (or proportional) 

phase relationship between signals at specific frequencies (phase-locking). Thus, a mechanism of 

coordination-by-synchrony captures only certain regimes of neural coordination that are periodic. 

However, brain dynamics exhibits both a tendency to integrate information (synchronization) and a 

tendency for the components to differentiate information (independent function) (Dehaene and 

Changeux, 2011; Tognoli and Kelso, 2014; Tononi et al., 2016). During auditory bistability, conscious 

percepts typically alternate continuously without becoming locked into any one percept for long 

periods. We propose that underlying this dynamical process are ensembles of neurons that are 

repeatedly assembled and disassembled, and that this non-trivial dynamic might be instantiated by a 

mechanism of coding-by-information that captures complex, nonlinear patterns of neural activity and 

not merely simple proportional associations between neural signals.  

Interestingly, NII dynamics suggest that integrating two tones into a single perceptual stream requires 

higher information-sharing than integrating two tones into two separate streams. What exactly is it 

about integrating A and B tones (one-stream percept) that requires higher information sharing than 

perceptually grouping an A tone with subsequent A tones (and B tones with subsequent B tones, i.e. 

two-streams percept)? Some theories of streaming (Fishman et al., 2001) propose that for tones 

sufficiently close in frequency, integration is the default (initial) percept because overlapping neural 

populations respond to the two tones, until adaptation gives rise to a separation in these populations 

(and a corresponding emergence of two auditory streams). Arguably, once those two streams have 

emerged, more information sharing would be required across those neural populations to re-integrate 

them into a one-stream percept. Conversely, NID dynamics suggest that neural information of the 

two-streams percept is more differentiated than neural information associated with one-stream 

percept. What is it about segregating A and B tones into two parallel streams (two-streams percept) 

that requires higher neurophysiological differentiation than integrating them (one-stream percept)? 

Following the abovementioned rationale, a higher variety of information patterns are expected across 

neural populations responding to each individual tone as compared to an overlapping neural 

population responding to the two tones (A and B).  
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Conscious auditory percepts and ongoing neural activity. 

The frontoparietal patterns of neural information are a manifestation of the interaction between the 

external stimulation and the endogenous, ongoing brain activity, as opposed to activation purely 

imposed by the auditory stimuli. Thus, NII and NID patterns do not merely reflect stimulus-driven 

neural activity but rather the intrinsic coordination of endogenous frontoparietal neural activity. 

Indeed, in the endogenous condition of our study, internally generated changes in neural activity 

triggered changes in conscious percepts in the complete absence of any change in the auditory stimuli. 

In line with our results, recent studies in the visual system have shown that long-distance integration 

of ongoing oscillations reflects internally coordinated activity associated with conscious perception 

(Hipp et al., 2012; Engel et al., 2013; Helfrich et al., 2016). Here, by directly measuring the amount of 

information integration and information differentiation contained in the ongoing neural activity, we 

demonstrate a functional role of information dynamics in the emergence of auditory conscious 

percepts and in general in perceptual integrative processes 

Although the pioneering electrophysiological studies supporting the active role of ongoing activity in 

perception and cognition date from the 70’s (Freeman, 1976, 2000), over the last decade ongoing 

brain activity has been mainly studied in the context of “resting state networks” (Fox and Raichle, 

2007). In these recent studies, fluctuations in ongoing activity between spatially segregated networks 

(brain regions) are correlated when a participant is not performing an explicitly defined task. In the 

present study, by taking advantage of the high temporal resolution of EEG and direct cortical 

recordings, we show that patterns of neural information are transiently coordinated during the active 

discrimination of internally generated auditory percepts. Furthermore, our results also allowed us to 

differentiate the contribution of information in frequency-space, showing that gamma but not alpha 

NII differentiates auditory percepts during bistable perception. 

Auditory bistable perception and frontoparietal activity. 

Our results also suggest a fruitful new approach to conceptualizing and investigating auditory bistable 

perception. We demonstrate that the dynamics of auditory conscious percepts can be associated with 

the long-distance coordination of neural activity. Previous neural signatures of auditory bistability 

have mainly been identified in sensory cortices; in our report we demonstrate a role of long-distance 

sharing of neural information across associative, frontoparietal areas. One possibility is that this 

network activity reflects attention being drawn to (or directed to) subsets of the sounds; such 

processes are known to influence the perceptual organization of ABA… sequences (Carlyon et al., 

2001; Snyder et al., 2006; Billig and Carlyon, 2015). Alternatively, it may instantiate the ongoing (and 

automatic) prediction of upcoming sounds based on patterns extracted from earlier stimulation, as 
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has been proposed in theories that consider auditory perceptual objects as generative models 

(Winkler and Schröger, 2015).   

These findings provide convergent evidence about the role of frontoparietal networks in the dynamics 

of formation and maintenance of the contents of consciousness. Research in visual bistability has 

focused on characterizing content-related activity predominantly in local brain areas or networks 

(Sterzer et al., 2009). Of those few studies that have expanded their scope to associative cortices and 

wider networks, one has recently proposed mechanistic accounts on visual percepts using multivariate 

pattern analysis (MVPA) of fMRI data (Wang et al., 2013). The results showed differential patterns of 

BOLD activity in high-order frontoparietal regions between visual percepts during bistable perception. 

The present study complements these results by showing a role for the frontoparietal network in 

indexing percepts in the auditory modality. Furthermore, the temporal resolution of our EEG and LFP 

data enabled us to characterize the fine-grained temporal dynamics of neural information integration 

associated with specific auditory percepts within the frontoparietal network. These results represent 

convergent evidence towards a possible general mechanism of information integration underlying the 

emergence of the contents of consciousness under invariant stimulation. 

In conclusion, we have presented experimental evidence that conscious percepts may require both 

information integration and differentiation of ongoing neural activity in order to emerge. We have 

also highlighted the stark differences between fleeting endogenous percepts, where 

neurophysiological integration and differentiation parallel the corresponding integrated and 

differentiated percepts, and those that are externally triggered, for which no differences between 

these measures were observed. Importantly, the conceptual mapping between phenomenology and 

the neurophysiology that we have highlighted here should be considered as a fruitful approach for 

measuring the different dimensions of phenomenology in an experimentally testable manner, in light 

of some of the main current theoretical framework of conscious perception (IIT and GNWT).  

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

Materials and Methods 

Healthy participants and patient 

Twenty-nine right-handed healthy participants (14 males; mean ± SD age = 21.30 ± 2.2 years) and one 

left-handed epileptic patient (female; 29 years) gave written informed consent to take part in the 

experiment. The study was approved by the institutional ethics committee of the Faculty of 

Psychology of Universidad Diego Portales (Chile) and the Institutional Ethics Committee of the Hospital 

Italiano de Buenos Aires, Argentina, in accordance with the Declaration of Helsinki. The patient 

suffered from drug-resistant epilepsy from the age of 8 years and was offered surgical intervention to 

alleviate her intractable condition. Drug treatment at the time of implantation included 600 mg/d 

oxcarbazepine, 200 mg/d topiramate, and 750 mg/d levetiracetam. Computed tomography (CT) and 

magnetic resonance imaging (MRI) scans were acquired after insertion of depth electrodes. The 

patient took part in the current study one day before the surgery. She was attentive and cooperative 

during testing, and her cognitive performance before and one week after the implantation was 

indistinguishable from healthy volunteers. The patient was specifically recruited for this study because 

she was implanted with electrodes covering frontal and parietal regions.  

Stimuli 

In the endogenous condition, a high-frequency pure tone A alternated with a low-frequency pure tone 

B, in a repeating ABA- pattern. The frequency of A was 587 Hz and that of B was 440 Hz (5 semitones 

difference). The duration of each tone was 120 ms. The silence ('-') that completed the ABA… pattern 

was also 120 ms long, thus making the A tones isosynchronous (Pressnitzer and Hupé, 2006). In the 

exogenous (control) condition, the ABA- pattern alternated with an AB-- pattern. This second pattern 

had the same parameters (frequencies and duration) and same silence duration as the ones used for 

the endogenous condition (ABA- pattern). Duration of both patterns (ABA- and AB--) were randomly 

set between 4-8 seconds, which suppressed the effect of endogenous bistability, and ABA- was most 

often perceived as a one stream, whereas AB-- as two streams. 

For both experimental conditions, the auditory stimuli consisted of 4 min long sequences. Each 

sequence was presented 12 times per condition with a 30 second pause between sequences. Stimuli 

were presented binaurally using Etymotics ER-3A earphones, and the sound level was individually 

adjusted to a comfortable level. The order of experimental conditions was counterbalanced between 

participants.  
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Experimental conditions  

There were two experimental conditions. In the endogenous condition (bistability), we used a bistable 

auditory stimulus(Carlyon et al., 2001),(Gutschalk et al., 2005),(Pressnitzer and Hupé, 2006). 

Participants listened to a pattern of three tones (ABA) separated by a silence ('-') (see Stimuli section 

below) that are experienced either as a one-stream percept or as a two-streams percept (Figure 1a). 

Participants were instructed to press a button with one hand when perceiving that one-stream 

percept had fully changed into two streams and a second button with the other hand when perceiving 

that two-streams percept had fully changed into one stream (Figure 1, middle panel). In the exogenous 

condition (control), participants listened to two alternating patterns of three (ABA) and two (AB) tones 

separated by a period of silence ('-') (see Stimuli section below). As in the endogenous conditions, 

participants were instructed to press a button with one hand when perceiving that ABA- had fully 

changed into AB- and another button with the other hand when pattern AB- had fully changed into 

ABA-. The exogenous condition allowed us to characterize the dynamics of neural activity specifically 

related to external changes in the stimuli (the two alternating patterns) and to contrast them with the 

dynamics of internal neural activity elicited by the endogenous condition (bistability). The endogenous 

and exogenous conditions used physically similar stimuli, as described in the next section, with the 

latter sometimes having one fewer A tone. Because the analysis windows were not time-locked to the 

stimuli, differences in the evoked responses to specific tones are unlikely to account for the observed 

pattern of results.  

Electroencephalography (EEG) recordings, pre-processing and analysis  

EEG signals were recorded with 128-channel HydroCel Sensors using a GES300 Electrical Geodesic 

amplifier at a sampling rate of 500 Hz using the NetStation software. During recording and analyses, 

the electrodes’ average was used as the reference electrode. Two bipolar derivations were designed 

to monitor vertical and horizontal ocular movements. Following Chennu et al (Chennu et al., 2014), 

data from 92 channels over the scalp surface were retained for further analysis. Channels on the neck, 

cheeks and forehead, which reflected more movement-related noise than signal, were excluded. Eye 

movement contamination and other artefacts were removed from data before further processing 

using an independent component analysis(Delorme and Makeig, 2004). All conditions yielded at least 

91% of artefact-free trials. Trials that contained voltage fluctuations exceeding ± 200 μV, transients 

exceeding ± 100 μV, or electro-oculogram activity exceeding ± 70 μV were rejected. The EEGLAB 

MATLAB toolbox was used for data pre-processing and pruning(Delorme and Makeig, 2004). MATLAB 

open source software FieldTrip (Oostenveld et al., 2011) and customized scripts were used for 
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calculating weighted symbolic mutual information (wSMI), K complexity and weighted phase lag index 

(wPLI). 

Local field potential (LFP) recordings and pre-processing 

Direct cortical recordings were obtained from semi-rigid, multi-lead electrodes that were implanted 

in the patient. The electrodes had a diameter of 0.8 mm and consisted of 5, 10 or 15 contact leads 

that were 2-mm wide and 1.5-mm apart (DIXI Medical Instruments). The electrode strips were 

implanted in different regions of the frontal, temporal, central and parietal cortices and subcortical 

structures. For the purposes of the current study, local field potentials (LFP) were analysed from the 

left middle frontal gyrus and left superior parietal lobe. MNI coordinates of the depth electrodes were 

obtained from MRI and CT images using SPM (Friston, 2006) and MRIcron (Rorden and Brett, 2000) 

software. The recordings were sampled at 1024 Hz and down-sampled to 500 Hz for further analysis. 

The exact MNI coordinates and cortical regions of the selected electrodes are reported in 

Supplementary table 1. Open-source BrainNet Viewer software was used for visualization of selected 

electrodes (Xia et al., 2013). 

Analysis of ongoing neural activity 

A classical experimental approach for studying endogenous, or “ongoing” activity in the EEG related 

to internal fluctuations during cognitive tasks is by analysing the EEG window before the onset of 

motor responses when participants report internal changes. This approach has been used for studying 

neural signatures of conscious awareness, such as in bistable perception(Parkkonen et al., 2008), 

binocular rivalry (Doesburg et al., 2005),(Frässle et al., 2014) and intrusions of consciousness (Noreika 

et al., 2015). Here, ongoing EEG and LFP activity (not time-locked to stimuli) preceding the onset of 

each response (button press) was analysed in terms of connectivity (wSMI and wPLI) and complexity 

(K complexity). 

Window size selection was based on the following procedure. In the exogenous condition, we 

calculated the mean reaction times in the group of healthy participants (M = 1342 ms; SD = 101 ms). 

Then, in the endogenous condition, we calculated the minimum temporal gap between responses 

such that epochs would not overlap (2500 ms). Since mean reaction times in the exogenous condition 

corresponded to roughly half of the minimal window size of the endogenous condition, we selected a 

2500 ms window for both conditions (from -2500 to 0 ms relative to button press) (Figure 1, lower 

panel). Importantly, this window included the onset of the exogenous auditory patterns ('ABA-' and 

'AB--'), making the exogenous and endogenous conditions comparable from a stimulus perspective. 
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The same procedure was repeated for the intracranial data (reaction times in the exogenous 

condition: M = 1380 ms, SD = 79 ms; window size in the endogenous conditions: 2500 ms). 

For statistical analyses (see below), two time windows of 500 ms were selected based on the 

exogenous condition. A window after the change between auditory percepts (after-change window 

(AC)) was defined based on the mean reaction times at the group level (from -1342 to -842 ms). A 

second time window was defined at the epoch onset (before-change window (BC); from -2500 to -

2000 ms). The rationale behind both time windows latencies was to select the periods when both 

externally driven percepts remained stable. The same window lengths and latencies were used for the 

endogenous condition (Figure 1).  

Phase synchronization 

We quantified phase coherence between pairs of electrodes as a measure of dynamical linear coupling 

among signals oscillating in the same frequency band. Phase synchronization analysis proceeds into 

two steps: (i) estimation of the instantaneous phases and (ii) quantification of the phase locking.  

Estimation of the instantaneous phases 

To obtain the instantaneous phases φ of the neural signals, we used the Hilbert transform approach 

(Foster et al., 2016). The analytic signal ξ(t) of the univariate measure x(t) is a complex function of 

continuous time t defined as:  

(1) 𝜉(𝑡) =  𝑥(𝑡) + 𝑖𝑥ℎ(𝑡) =  𝑎𝜉(𝑡)𝑒𝑖𝜑𝜉(𝑡)   

where the function xh(t) is the Hilbert transform of x(t): 

(2)  𝑥ℎ(𝑡) =  
1

𝜋
𝑃. 𝑉. ∫

𝑥(𝑡)

𝑡−𝜏

+∞

−∞ 
𝑑𝜏 

P.V. indicates that the integral is taken in the sense of Cauchy principal value. Sequences of digitized 

values give a trajectory of the tip of a vector rotating counterclockwise in the complex plane with 

elapsed time.  

The vector norm at each digitizing step t is the state variable for instantaneous amplitude aξ(t). This 

amplitude corresponds to the length of the vector specified by the real and imaginary part of the 

complex vector computed by Pythagoras’ law and is equivalent to the magnitude of the observed 

oscillation at a given time and frequency point. 

(3) 𝑎ξ(𝑡) =  √𝑥(𝑡)2 + 𝑖𝑥ℎ(𝑡)2 
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and the arctangent of the angle of the vector with respect to the real axis is the state variable for 

instantaneous phase φx(t).  

(4) 𝜑𝑥(𝑡) =  𝑎𝑟𝑐𝑡𝑔
𝑖𝑥ℎ(𝑡)

𝑥(𝑡)
 

The instantaneous phase φx(t) of x(t) is taken equal to φξ(t). Identically, the phase φy(t) is estimated 

from y(t). This phase is thus the angle of the vector specified by the real and imaginary components. 

For a given time and frequency point, it corresponds to a position inside the oscillation cycle (peak, 

valley, rising, or falling slope). 

The instantaneous phase, although defined uniquely for any kind of signal to which the Hilbert 

transform can be applied, is difficult to interpret physiologically for broadband signals. For this reason, 

a standard procedure is to consider only narrow-band phase synchronization by estimating an 

instantaneous phase for successive frequency bands, which are defined by band-pass filtering the time 

series(Le Van Quyen et al., 2001). Thus, for each trial and electrode, the instantaneous phase of the 

signal was extracted at each frequency of the interval 1- 60 Hz (in 1-Hz steps) by computing the Hilbert 

transform using a zero phase shift non-causal finite impulse filter.  

Neural oscillatory integration: weighted phase lag index (wPLI)  

Phase synchronization is often calculated from the phase or the imaginary component of the complex 

cross-spectrum between the signals measured at a pair of channels. For example, the well-known 

Phase Locking Value (PLV) (Lachaux et al., 1999) is obtained by averaging the exponential magnitude 

of the imaginary component of the cross-spectrum. However, such phase coherence indices derived 

from EEG data are affected by the problem of volume conduction, and as such they can have a single 

dipolar source, rather than a pair of distinct interacting sources, producing spurious coherence 

between spatially disparate EEG channels. The Phase Lag Index (PLI), first proposed by Stam et al (Stam 

et al., 2007) attempts to minimize the impact of volume conduction and common sources inherent in 

EEG data, by averaging the signs of phase differences, thereby ignoring average phase differences of 

0 or 180 degrees. This is based on the rationale that such phase differences are likely to be generated 

by volume conduction of single dipolar sources. However, despite being insensitive to volume 

conduction, PLI has a strong discontinuity in the measure, which causes it to be maximally sensitive to 

noise.  

The Weighted Phase Lag Index (wPLI) (Vinck et al., 2011) addresses this problem by weighting the 

signs of the imaginary components by their absolute magnitudes. Further, as the calculation of wPLI 
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also normalises the weighted sum of signs of the imaginary components by the average of their 

absolute magnitudes, it represents a dimensionless measure of connectivity that is not directly 

influenced by differences in spectral or cross-spectral power. For these reasons, we employed the 

wPLI measure to estimate connectivity in our data. The wPLI index ranges from 0 to 1, with value 1 

indicating perfect synchronization (phase difference is perfectly constant throughout the trials) and 

value 0 representing total absence of synchrony (phase differences are random). For each trial and 

pair of electrodes, wPLI was estimated using a 500 ms sliding window with 2 ms time step, i.e. with a 

96% overlap between two adjacent windows.  

Neural information integration: weighted symbolic mutual information (wSMI)  

In order to quantify the coupling of information flow between electrodes we computed the weighted 

symbolic mutual information (wSMI) (King et al., 2013; Sitt et al., 2014). It assesses the extent to which 

the two signals present joint non-random fluctuations, suggesting that they share information. wSMI 

has three main advantages: (i) it allows for a rapid and robust estimation of the signals' entropies; (ii) 

it provides an efficient way to detect non-linear coupling; and (iii) it discards the spurious correlations 

between signals arising from common sources, favouring non-trivial pairs of symbols. For each trial, 

wSMI is calculated between each pair of electrodes after the transformation of the EEG and LFPs 

signals into sequence of discrete symbols discrete symbols defined by the ordering of k time samples 

separated by a temporal separation τ (King et al., 2013). The symbolic transformation depends on a 

fixed symbol size (k = 3, that is, 3 samples represent a symbol) and a variable τ between samples 

(temporal distance between samples) which determines the frequency range in which wSMI is 

estimated(Sitt et al., 2014). In our case, we chose τ = 32 and 6 ms to isolate wSMI in alpha (wSMIα) 

and gamma (wSMIγ) bands respectively. The frequency specificity f of wSMI is related to k and τ as: 

 

f = 1000 / (τ * k) 

 

As per the above formula, with a kernel size k of 3, τ values of 32 and 6 ms hence produced a sensitivity 

to frequencies near 55 Hz (gamma) and 10 Hz (alpha) range, respectively. 

 

wSMI was estimated for each pair of transformed EEG and LFPs signals by calculating the joint 

probability of each pair of symbols. The joint probability matrix was multiplied by binary weights to 

reduce spurious correlations between signals. The weights were set to zero for pairs of identical 

symbols, which could be elicited by a unique common source, and for opposite symbols, which could 

reflect the two sides of a single electric dipole. wSMI is calculated using the following formula: 
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𝑤𝑆𝑀𝐼(𝑋, 𝑌) =  
1

log(𝑘!)
∑ ∑ 𝑤(𝑥, 𝑦) 𝑝(𝑥, 𝑦) log (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦 ∈𝑌𝑥 ∈𝑋

 

 

where x and y are all symbols present in signals X and Y respectively, w(x,y) is the weight matrix and 

p(x,y) is the joint probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally, 

p(x) and p(y) are the probabilities of those symbols in each signal and K! is the number of symbols - 

used to normalize the mutual information (MI) by the signal's maximal entropy. Temporal evolution 

of wSMI was calculated using a 500 ms sliding window with 2 ms time step, i.e. with a 96% overlap 

between two adjacent windows.  

 

Neural information differentiation: Kolmogorov-Chaitin complexity (K complexity) 

Kolmogorov-Chaitin complexity quantifies the algorithmic complexity (Kolmogorov, 1965; Chaitin, 

1974) of an EEG signal by measuring its degree of redundancy (Sitt et al., 2014; Schartner et al., 2015, 

2017). Algorithmic complexity of a given EEG sequence can be described as the length of shortest 

computer program that can generate it. A short program corresponds to a less complex sequence. K 

complexity was estimated by quantifying the compression size of the EEG using the Lempel-Ziv zip 

algorithm (Lempel and Ziev, 1976).  

Algorithmic information theory has been introduced by Andreï Kolmogorov and Gregory Chaitin as an 

area of interaction between computer science and information theory. The concept of algorithmic 

complexity or Kolmogorov-Chaitin complexity (K complexity) is defined as the shortest description of 

a string (or in our case a time series X). That is to say, K complexity is the size of the smallest algorithm 

(or computer program) that can produce that particular time series. However, it can be demonstrated 

by reductio ad absurdum that there is no possible algorithm that can measure K complexity (Chaitin, 

1995).  To sidestep this issue, we can estimate an upper-bound value of K complexity(X). This can be 

concretely accomplished by applying a lossless compression of the time series and quantifying the 

compression size. Capitalizing on the vast signal compression literature, we heuristically used a 

classical open-source compressor gzip (Salomon, 2004) to estimate K complexity(X). It is important to 

standardize the method of representation of the signal before compression in order to avoid non-

relevant differences in complexity.  Specifically, to compute K complexity(X): 

1. The time series were transformed into sequences of symbols. Each symbol represents, with 

identical complexity, the amplitude of the corresponding channel for each time point. The 

number of symbols was set to 32 and each one corresponds to dividing the amplitude range 
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of that given channel into 32 equivalent bins.  Similar results have been obtained with binning 

ranging from 8 to 128 bins (Sitt et al., 2014).  

2. The time series were compressed using the compressLib library for Matlab, this library 

implements the gzip algorithm to compress Matlab variables. 

3. K complexity(X) was calculated as the size of the compressed variable with time series divided 

by the size of the original variable before compression. Our premise is that, the bigger the size 

of the compressed string, the more complex the structure of the time series, thus potentially 

indexing the complexity of the electrical activity recorded at a sensor. 

For each trial and channel, K complexity was estimated using a 500 ms sliding window with 2 ms time 

step, i.e. with a 96% overlap between two adjacent windows. 

EEG electrode cluster analysis and epoch correction  

Clusters of electrodes were selected for complexity analysis and connectivity analysis (wPLI and wSMI) 

by selecting the canonical frontal, parietal, right-temporal and left-temporal electrodes. In the case of 

spectral power analysis, power values within frontal and parietal electrodes were averaged per 

condition and participant. In the case of frontoparietal wPLI, wSMI and K complexity analyses, we 

calculated the mean connectivity that every electrode of the frontal cluster shared with every 

electrode of the parietal cluster. Connectivity values between pairs of electrodes and between parietal 

pairs of parietal electrodes were discarded from the analysis. Similarly, in the case of 

temporotemporal connectivity analyses, we calculated the mean connectivity that every electrode of 

the of the right-temporal cluster shared with every electrode of the left-temporal cluster, discarding 

connectivity values within pairs of right-temporal electrodes and pairs of left-temporal electrodes. 

This procedure allows us to specifically test the role of long-distance interactions (frontoparietal and 

temporotemporal) during bistable perception. K complexity, wSMI and wPLI values of the 

corresponding regions of interest were averaged per condition and participant.  

In order to make both conditions comparable (endogenous vs exogenous), after transforming data 

into complexity (K complexity) and connectivity (wPLI and wSMI) time series and creating the 

corresponding electrode clusters, we subtracted the mean activity between -2500 to -700 ms from 

each data point per epoch and condition. Motor-related activity in the gamma band has been reported 

~-200 ms before the button press during bistable perception (Basirat et al., 2008). Thus, although it is 

a common procedure to analyse response-evoked activity by correcting epochs using the mean of the 

entire window (Doesburg et al., 2005), we used a more conservative approach by baseline correcting 

each epoch from -2500 to -700 ms relative to the button press in order to avoid possible 

contamination due to motor-related artefacts.  
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Statistical analysis  

For K complexity, wPLI and wSMI analyses of EEG and LFPs data, repeated-measures ANOVA between 

conditions (endogenous, exogenous), window (before change, after change) and percept (one stream, 

two streams) were performed using Bonferroni corrections for post hoc comparisons, and Bayes 

Factors of the null and alternative hypothesis were reported (Masson, 2011; Jarosz and Wiley, 2014). 

Statistical analyses were performed using Statistical Product and Service Solutions (SPSS, version 20.0, 

IBM) and open-source statistical software JASP (JASP Team (2017), version 0.8.1.1).  
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FIGURES 

 

Figure 1. Experimental design and analysis of ongoing brain activity. Top row: Phenomenology during 

auditory bistable illusion. Participants listened to a series of tones of two different frequencies 

separated by a temporal gap (see Experimental Procedures). Tones are experienced either as one 

stream (phenomenologically integrated percept; orange blocks surrounded by one ellipse) or as two 

streams (phenomenologically differentiated percept; green blocks surrounded by two ellipses). 

Perceptual transitions occur either in the one-stream to two-streams direction (blue arrows and blue 

background) or in the two-streams to one-stream direction (red arrow and red background). Middle 

row: behavioural responses during the task. Participants pressed one button when perceiving that 

one-stream had fully changed into two-streams percept (blue button) and another button when 

perceiving that two-streams had fully changed into one-stream percept (red button). Bottom row: 

dynamical analyses and windows of interest for EEG and LFP signal analyses. Ongoing activity in during 

both transitions was calculated using a sliding window procedure on a fixed time window locked to 

the onset of the button press. Window size was calculated based on the mean reaction times (RT) in 

the exogenous condition (1342 ms), and the minimum duration between responses that guaranteed 

no overlap between RT (2500 ms) (see Experimental Procedures). 
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Figure 2. Frontoparietal NII dissociate alternative endogenous percepts during bistable perception. 

Neural dynamics of NIIγ for transitions from two-streams to one-stream percept (red line) and from 

one-stream to two-streams percept (blue line) for the endogenous (a) and exogenous (control) 

conditions (b). Purple dashed line marks the mean reaction time (1342 ms) of the exogenous (control) 

condition. Auditory percepts were directly compared in two windows of interest: the before-change 

(BC) and the after-change (AC) windows. (c) Connectivity topographies for the BC and AC windows for 

transitions from two-streams to one-stream percept (left panel) and from one-stream to two-streams 

percept (right panel) averaged over participants in the endogenous condition. Red areas on the scalp 

indicate regions of interest (frontal and parietal electrodes, see Experimental Procedures). The height 

of an arc connecting two nodes indicates the strength of the NII link between them. Values are time-
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locked to the button press (0 ms) and baseline corrected between -2500 and -700 ms relative to button 

press (see Experimental Procedures). Statistical analyses (bottom row) were computed on two pre-

defined 500 ms windows: a BC window (-2500 to 2000 ms) and an AC window (-1342 ms to -842 ms). 

The onset of both windows was defined based on a control (exogenous) condition in which the stimuli 

physically change to generate two different percepts (see Experimental Procedures). Shaded bars (top 

row) and error bars (middle row) represent s.e.m.   
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Figure 3. Frontoparietal NID dissociates alternative endogenous percepts during bistable 

perception. Neural dynamics of NID from two-streams to one-stream percept (red line) and from one-

stream to two-streams percept (blue line) for the endogenous (a) and exogenous (control) conditions 

(b). Purple dashed line marks the mean reaction time (1342 ms) of the exogenous (control) condition. 

Statistical analysis was performed as described in Figure 2. Shaded bars (top row) and error bars 

(bottom row) represent s.e.m.   
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Figure 4. Frontoparietal NII and NID in local field potentials. (a) Electrodes were implanted in the left 

parietal lobe and left middle frontal gyrus (Supplementary table 1). Dynamics of ongoing NIIγ and NID 

of transitions from two-streams to one-stream percept (red line) and from one-stream to two-streams 

percept (blue line) in the endogenous (b,d) and exogenous (c,e) conditions, respectively. Purple 

dashed line marks the mean reaction time (1380 ms) of the exogenous (control) condition of the 

intracranial data. Statistical analyses were performed as explained in Figure 2. Shaded bars represent 

s.e.m.   
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Figure 5. Frontoparietal NOI in the endogenous and exogenous conditions. Dynamics of ongoing NOIγ 

from two-streams to one-stream percept (red line) and from one-stream to two-streams percept (blue 

line) for the endogenous (a) and exogenous (b) conditions. Ongoing NOIγ during transitions in both 

directions in the endogenous (c) and exogenous (d). Statistical analyses were performed as described 

in Figure 2. Shaded bars represent s.e.m.    
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Figure 6. Frontoparietal NOI in local field potentials. (a) Intracranial electrodes implanted in the left 

parietal lobe and left middle frontal gyrus. Dynamics of ongoing NOIγ for the perceptual reorganization 

of tones from two-streams to one-stream percept (red line) and from one-stream to two-streams 

percept (blue line) for the endogenous (b) and exogenous (control) conditions (b). Ongoing NOIγ 

during transitions in both directions in the endogenous (c) and exogenous (d). Purple dashed line 

marks the mean reaction time (1380 ms) of the exogenous (control) condition of the intracranial data. 

Statistical analyses were performed as described in Figure 2. Error bars represent s.e.m. 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

REFERENCES 

Basirat A, Sato M, Schwartz JL, Kahane P, Lachaux JP (2008) Parieto-frontal gamma band activity 

during the perceptual emergence of speech forms. Neuroimage 42:404–413. 

Billig AJ, Carlyon RP (2015) Automaticity and Primacy of Auditory Streaming: Concurrent Subjective 

and Objective Measures. J Exp Psychol Hum Percept Perform Available at: 

http://doi.apa.org/getdoi.cfm?doi=10.1037/xhp0000146. 

Boly M, Sasai S, Gosseries O, Oizumi M, Casali A, Massimini M, Tononi G (2015) Stimulus set 

meaningfulness and neurophysiological differentiation: A functional magnetic resonance 

imaging study. PLoS One 10. 

Canales-Johnson A, Silva C, Huepe D, Rivera-Rei ??lvaro, Noreika V, Del Carmen Garcia M, Silva W, 

Ciraolo C, Vaucheret E, Sede??o L, Couto B, Kargieman L, Baglivo F, Sigman M, Chennu S, 

Ib????ez A, Rodr??guez E, Bekinschtein TA (2015) Auditory feedback differentially modulates 

behavioral and neural markers of objective and subjective performance when tapping to your 

heartbeat. Cereb Cortex 25:4490–4503. 

Carlyon RP, Cusack R, Foxton JM, Robertson IH (2001) Effects of attention and unilateral neglect on 

auditory stream segregation. J Exp Psychol Hum Percept Perform 27:115–127. 

Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno M-A, Laureys S, 

Tononi G, Massimini M (2013) A Theoretically Based Index of Consciousness Independent of 

Sensory Processing and Behavior. Sci Transl Med 5:198ra105-198ra105 Available at: 

http://stm.sciencemag.org/content/5/198/198ra105%5Cnhttp://www.ncbi.nlm.nih.gov/pubm

ed/23946194. 

Chaitin GJ (1974) Information-theoretic computation complexity. IEEE Trans Inf Theory 20:10–15 

Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1055172. 

Chaitin GJ (1995) The berry paradox. No TitleComplex Syst Bin Networks 461:23–31. 

Chennu S, Finoia P, Kamau E, Allanson J, Williams GB, Monti MM, Noreika V, Arnatkeviciute A, 

Canales-Johnson A, Olivares F, Cabezas-Soto D, Menon DK, Pickard JD, Owen AM, Bekinschtein 

TA (2014) Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness. 

PLoS Comput Biol 10. 

Cusack R (2005) The intraparietal sulcus and perceptual organization. J Cogn Neurosci 17:641–651. 

Dehaene S, Changeux JP (2011) Experimental and Theoretical Approaches to Conscious Processing. 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

Neuron 70:200–227. 

Dehaene S, Charles L, King JR, Marti S (2014) Toward a computational theory of conscious 

processing. Curr Opin Neurobiol 25:76–84. 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics 

including independent component analysis. J Neurosci Methods 134:9–21 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/15102499. 

Doesburg SM, Kitajo K, Ward LM (2005) Increased gamma-band synchrony precedes switching of 

conscious perceptual objects in binocular rivalry. Neuroreport 16:1139–1142. 

Engel  a K, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down 

processing. Nat Rev Neurosci 2:704–716 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/11584308. 

Engel AK, Gerloff C, Hilgetag CC, Nolte G (2013) Intrinsic Coupling Modes: Multiscale Interactions in 

Ongoing Brain Activity. Neuron 80:867–886. 

Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2001) Neural correlates of auditory stream 

segregation in primary auditory cortex of the awake monkey. Hear Res 151:167–187. 

Flevaris A V, Martínez A, Hillyard S a (2013) Neural substrates of perceptual integration during 

bistable object perception. J Vis 13:17 Available at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3833463&tool=pmcentrez&rende

rtype=abstract. 

Foster BL, He BJ, Honey CJ, Jerbi K, Maier A, Saalmann YB (2016) Spontaneous Neural Dynamics and 

Multi-scale Network Organization. Front Syst Neurosci 10:7 Available at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4746329&tool=pmcentrez&rende

rtype=abstract. 

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional 

magnetic resonance imaging. Nat Rev Neurosci 8:700–711 Available at: 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&li

st_uids=17704812. 

Frässle S, Sommer J, Jansen A, Naber M, Einhäuser W (2014) Binocular rivalry: frontal activity relates 

to introspection and action but not to perception. J Neurosci 34:1738–1747 Available at: 

http://www.jneurosci.org/content/34/5/1738.full. 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


32 
 

Freeman W (2000) Neurodynamics: An Exploration in Mesoscopic Brain Dynamics. Springer London. 

Available at: https://books.google.co.uk/books?id=HLuPTynGSWgC. 

Freeman WJ (1976) Mass action in the nervous system. Neuroscience 1:423. 

Freeman WJ (2015) Mechanism and significance of global coherence in scalp EEG. Curr Opin 

Neurobiol 31:199–205. 

Friston KJ (2006) Statistical Parametric Mapping: The Analysis of Functional Brain Images. 

Gaillard R, Dehaene S, Adam C, Clémenceau S, Hasboun D, Baulac M, Cohen L, Naccache L (2009) 

Converging intracranial markers of conscious access. PLoS Biol 7:0472–0492. 

Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic 

correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388. 

Handel BF, Jensen O (2014) Spontaneous local alpha oscillations predict motion-induced blindness. 

Eur J Neurosci. 

Hanslmayr S, Volberg G, Wimber M, Dalal SS, Greenlee MW (2013) Prestimulus oscillatory phase at 7 

Hz gates cortical information flow and visual perception. Curr Biol 23:2273–2278. 

Helfrich RF, Knepper H, Nolte G, Sengelmann M, König P, Schneider TR, Engel AK (2016) Spectral 

fingerprints of large‐scale cortical dynamics during ambiguous motion perception. Hum Brain 

Mapp. 

Hill KT, Bishop CW, Yadav D, Miller LM (2011) Pattern of BOLD signal in auditory cortex relates 

acoustic response to perceptual streaming. BMC Neurosci 12:85 Available at: 

http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-85. 

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure 

of spontaneous oscillatory activity. Nat Neurosci 15:884–890. 

Ince RAA, Jaworska K, Gross J, Panzeri S, Van Rijsbergen NJ, Rousselet GA, Schyns PG (2016) The 

Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual 

Feature Coding and Transfer Across Hemispheres. Cereb Cortex 26:4123–4135. 

Jarosz AF, Wiley J (2014) What are the odds? A practical guide to computing and reporting Bayes 

factors. J Probl Solving 7:2. 

King JR, Sitt JD, Faugeras F, Rohaut B, El Karoui I, Cohen L, Naccache L, Dehaene S (2013) Information 

sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol 23:1914–

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


33 
 

1919. 

Koch C, Massimini M, Boly M, Tononi G (2016) Neural correlates of consciousness: progress and 

problems. Nat Rev Neurosci 17:307–321 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/27094080. 

Kolmogorov AN (1965) Three approaches to the definition of the concept of quantity of information. 

IEEE Trans Inf Theory 14:662–669. 

Kondo HM, Kashino M (2009) Involvement of the thalamocortical loop in the spontaneous switching 

of percepts in auditory streaming. J Neurosci 29:12695–12701. 

Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. 

Hum Brain Mapp 8:194–208. 

Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz  a, Martinerie J, Varela FJ (2001) 

Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J 

Neurosci Methods 111:83–98 Available at: http://www.ncbi.nlm.nih.gov/pubmed/11595276. 

Lempel A, Ziev J (1976) On the Complexity of Finite Sequences. IEEE Trans Inf Theory 22:75–82. 

Levy J, Vidal JR, Fries P, Démonet J-F, Goldstein A, Demonet J-F, Goldstein A (2015) Selective Neural 

Synchrony Suppression as a Forward Gatekeeper to Piecemeal Conscious Perception. Cereb 

Cortex:1–13 Available at: 

http://www.cercor.oxfordjournals.org/cgi/doi/10.1093/cercor/bhv114%5Cnhttp://www.ncbi.n

lm.nih.gov/pubmed/26045565. 

Lungarella M, Sporns O (2006) Mapping information flow in sensorimotor networks. PLoS Comput 

Biol 2:1301–1312. 

Masson MEJ (2011) A tutorial on a practical Bayesian alternative to null-hypothesis significance 

testing. Behav Res Methods 43:679–690. 

Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (2007) Synchronization of neural 

activity across cortical areas correlates with conscious perception. J Neurosci 27:2858–2865 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/17360907. 

Mill RW, Bohm TM, Bendixen A, Winkler I, Denham SL (2013) Modelling the Emergence and 

Dynamics of Perceptual Organisation in Auditory Streaming. PLoS Comput Biol 9. 

Noreika V, Canales-Johnson A, Koh J, Taylor M, Massey I, Bekinschtein TA (2015) Intrusions of a 

drowsy mind: Neural markers of phenomenological unpredictability. Front Psychol 6. 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

Oizumi M, Albantakis L, Tononi G (2014) From the Phenomenology to the Mechanisms of 

Consciousness: Integrated Information Theory 3.0. PLoS Comput Biol 10. 

Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: Open source software for advanced 

analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011. 

Parkkonen L, Andersson J, Hämäläinen M, Hari R (2008) Early visual brain areas reflect the percept of 

an ambiguous scene. Proc Natl Acad Sci U S A 105:20500–20504. 

Pressnitzer D, Hupé JM (2006) Temporal Dynamics of Auditory and Visual Bistability Reveal Common 

Principles of Perceptual Organization. Curr Biol 16:1351–1357. 

Rorden C, Brett M (2000) Stereotaxic Display of Brain Lesions. Behav Neurol 12:191–200 Available at: 

http://www.hindawi.com/journals/bn/2000/421719/abs/. 

Salazar RF et al. (2012) Content-specific fronto-parietal synchronization during visual working 

memory. Science 338:1097–1100. 

Salomon D (2004) Data compression: the complete reference. Springer Science & Business Media. 

Sarasso S, Boly M, Napolitani M, Gosseries O, Charland-Verville V, Casarotto S, Rosanova M, Casali 

AG, Brichant JF, Boveroux P, Rex S, Tononi G, Laureys S, Massimini M (2015) Consciousness and 

complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol 

25:3099–3105. 

Schartner M, Seth A, Noirhomme Q, Boly M, Bruno MA, Laureys S, Barrett A (2015) Complexity of 

multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia. 

PLoS One 10. 

Schartner MM, Carhart-Harris RL, Barrett AB, Seth AK, Muthukumaraswamy SD (2017) Increased 

spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci 

Rep 7. 

Schroger E, Bendixen A, Denham SL, Mill RW, Bohm TM, Winkler I (2014) Predictive regularity 

representations in violation detection and auditory stream segregation: From conceptual to 

computational models. Brain Topogr 27:565–577. 

Siegel M, Buschman TJ, Miller EK (2015) Cortical information flow during flexible sensorimotor 

decisions. Science (80- ) 348:1352–1355. 

Sitt JD, King JR, El Karoui I, Rohaut B, Faugeras F, Gramfort A, Cohen L, Sigman M, Dehaene S, 

Naccache L (2014) Large scale screening of neural signatures of consciousness in patients in a 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


35 
 

vegetative or minimally conscious state. Brain 137:2258–2270. 

Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory 

stream segregation. J Cogn Neurosci 18:1–13. 

Snyder JS, Gregg MK, Weintraub DM, Alain C (2012) Attention, awareness, and the perception of 

auditory scenes. Atten Conscious Differ senses:95. 

Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: Assessment of functional connectivity from 

multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 

28:1178–1193. 

Sterzer P, Kleinschmidt A, Rees G (2009) The neural bases of multistable perception. Trends Cogn Sci 

13:310–318. 

Szalardy O, Bohm TM, Bendixen A, Winkler I (2013) Event-related potential correlates of sound 

organization: Early sensory and late cognitive effects. Biol Psychol 93:97–104. 

Teki S, Chait M, Kumar S, von Kriegstein K, Griffiths TD (2011) Brain bases for auditory stimulus-

driven figure-ground segregation. J Neurosci 31:164–171 Available at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3059575&tool=pmcentrez&rende

rtype=abstract. 

Tognoli E, Kelso JAS (2014) The Metastable Brain. Neuron 81:35–48. 

Tononi G, Boly M, Massimini M, Koch C (2016) Integrated information theory: from consciousness to 

its physical substrate. Nat Rev Neurosci 17:450–461 Available at: 

http://dx.doi.org/10.1038/nrn.2016.44. 

Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, Singer W (2009) Neural 

synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3:17 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/19668703. 

Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and 

large-scale integration. Nat Rev, Neurosci 2:229–239. 

Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CMA (2011) An improved index of 

phase-synchronization for electrophysiological data in the presence of volume-conduction, 

noise and sample-size bias. Neuroimage 55:1548–1565. 

Wang M, Arteaga D, He BJ (2013) Brain mechanisms for simple perception and bistable perception. 

Proc Natl Acad Sci 110:E3350–E3359 Available at: http://dx.doi.org/10.1073/pnas.1221945110. 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/


36 
 

Winkler I, Schröger E (2015) Auditory perceptual objects as generative models: Setting the stage for 

communication by sound. Brain Lang 148:1–22. 

Xia M, Wang J, He Y (2013) BrainNet Viewer: A Network Visualization Tool for Human Brain 

Connectomics. PLoS One 8. 

 

End notes 

Funding 

This research was supported by a Wellcome Trust Biomedical Research Fellowship WT093811MA, the 

Chilean National Fund for Scientific and Technological Development Grant 1130920, the Argentinean 

National Research Council for Science and Technology, and the Argentinean Agency for National 

Scientific Promotion, FONCyT -PICT 2012-0412 and FONCyT-PICT 2012-1309. 

 

Author’s contributions  

Conceived and designed the experiments: ACJ, TAB. Performed the experiments: ACJ, FO, AG, EM. 

Analysed the data: ACJ. Contributed reagents/materials/analysis tools: AB, SC. Gave access to clinical 

patient: MCG, WS, EV, CC. Wrote the paper: ACJ, AB, AI, VN, SC, TAB. 

 

Acknowledgments 

We thank Robert Carlyon, Simon van Gaal, Anat Arzi, William J. Harrison, Daniel Bor, David Huepe and 

Michael Schartner for contributing to valuable discussion and insights. This manuscript is dedicated to 

the memory of Prof. Walter J. Freeman (1927 - 2016) whose pioneering work on Neurodynamics has 

inspired and ignited countless meaningful insights during the execution of this project.  

 

Conflict of Interest  

None declared.  

 

 

 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133801doi: bioRxiv preprint 

https://doi.org/10.1101/133801
http://creativecommons.org/licenses/by-nd/4.0/

