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ABSTRACT  

Single cell RNA sequencing (scRNA-seq) has shown great potential in measuring the gene 

expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the 

characterisation of transcript sequence diversity of functionally relevant sub-populations of T 

cells, and notably the identification of the full length T cell receptor (TCRαβ), which defines the 

specificity against cognate antigens. Several factors, such as RNA library capture, cell quality, 

and sequencing output have been suggested to affect the quality of scRNA-seq data, but these 

factors have not been systematically examined.  

We studied the effect of read length and sequencing depth on the quality of gene expression 

profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 publically available 

scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an 

increased number of unique genes identified with short read lengths (<50 bp), but these featured 

higher technical variability compared to profiles from longer reads. TCRαβ were detected in 

1,027 cells (79%), with a success rate between 81% and 100% for datasets with at least 250,000 

(PE) reads of length >50 bp. 

Sufficient read length and sequencing depth can control technical noise to enable accurate 

identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells. 
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INTRODUCTION 

Single cell RNA sequencing (scRNA-seq) has vastly improved our ability to determine gene 

expression and transcript isoform diversity at a genome-wide scale in different populations of 

cells. scRNA-seq is becoming a powerful technology for the analysis of heterogeneous immune 

cells subsets 1,2 and studying how cell-to-cell variations affect biological processes 3,4. Despite its 

potential, scRNA-seq data are often noisy, which are caused by a combination of experimental 

factors, such as the limited efficiency in RNA capture from single cells, and also by analytical 

factors, such as the challenges in separating true variation from technical noise 5-7. The quality of 

scRNA-seq data depends on mRNA capture efficiency 8, the protocol utilised to obtain libraries, 

as well as sequence coverage and length 3,4. Bioinformatics tools for the analyses of scRNA-seq 

data have been rapidly evolving, whereby various algorithms have been proposed to resolve the 

issues related to scRNA-seq compared to classical bulk transcriptomic analysis 9,10. However, the 

lack of a consensus in the data analyses further contributes to difficulties in assessing the quality 

of the data analysed so far. 

One important consideration in designing scRNA-seq experiments is to decide on the desired 

sequencing depth (i.e., the expected number of reads per cell) and read length 3,6. These are two 

important experimental parameters that can be controlled, and which need to be often 

predetermined before sequencing. For bulk RNA-seq data, sequencing depth and read length are 

known to affect the quality of the analysis 11. For scRNA-seq it has been shown that half a 

million reads per cell are sufficient to detect most of the genes expressed, and that one million 

reads are sufficient to estimate the mean and variance of gene expression 6. Low coverage 

scRNA-seq has also been utilised to show that 50,000 reads per cell are sufficient to classify a 

cell type in a sample of 301 cells 12. Nevertheless, this may not be sufficient when more 
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homogenous populations are involved, for example T cell subsets, such as central memory and 

effector memory cells. In these scenarios, deep sequencing of single cell library may be required 

for improving detection of genes with low expression 3,6. Indeed, an important issue for scRNA-

seq data is the very large number of genes with no detectable expression in a cell 6. This 

overrepresentation of zeros in scRNA-seq datasets makes it difficult to distinguish technical 

dropout of transcripts from true biological variation between cells 3. 

Nonetheless, there has not been any systematic evaluation of the effect of sequencing depth and 

read length on scRNA-seq data analysis. In designing a scRNA-seq experiment it is optimal to 

generate data by maximising sequencing depth and utilising the longest read length. This 

approach would improve the quality of the reads alignment and also maximise the chance of 

detecting low abundant transcripts. In reality, we are often constrained by the cost of sequencing. 

Therefore a more practical question is to ask what is the minimum sequencing depth and read 

length that allows users to obtain adequate information for their desired downstream analyses.  

To answer these questions, we have focussed on assessing the quality of available scRNA-seq 

data from T cells, which form a highly heterogeneous population of lymphocytes that play a vital 

role in mounting successful adaptive immune responses against intracellular pathogens and 

tumours 13. T cells are also characterised by a highly diverse repertoire of TCRs, which identify 

the specific recognition of the cognate antigen. TCRs are heterodimer proteins composed of two 

chains, α and β, and a subset of those expressing the γδ chains, which result from genetic 

recombination of the V(D)J genes. The diversity of TCRαβ repertoire has been associated with 

successful control of many pathogens 14, and more recently with outcome of checkpoint inhibitor 

immunotherapy for patients with metastatic melanoma 15. The highly polymorphic nature of the 

TCR genes has made their identification very difficult in bulk population sequencing datasets. In 
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the last decade, deep sequencing approaches of bulk TCRs focusing on either α or β chains 16.  

The advent of scRNA-seq allowed the identification of the full length TCR of both α and β 

chains (referred to hereafter as TCRαβ) from T cells 17,18. This has now led to the capacity to 

simultaneously detect TCRαβ and full gene expression profiles in one experiment, thereby 

allowing direct study of TCR diversity and its interaction with the T cell functions reflected in 

gene expression profiles.  

In this study we performed a comprehensive analysis of the impact of sequencing depth and read 

length on the detection of full length TCRαβ sequences, as well as estimation of gene expression 

and its effect on cell-type identification. Our study aims to fill this gap through performing a re-

analysis of eight published scRNA-seq data that have a wide range of read length and sequencing 

depth, and analysis of simulated datasets that were subsampled from a deeply sequenced human 

T-cell scRNA-seq dataset. The analysis suggests important precautionary steps for researchers 

seeking to maximise throughput of single cell experiments without compromising the quality of 

the results. 
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RESULTS 

To assess the effects of sequencing depth and read length on accurate reconstruction of full 

length TCRαβ and gene expression profile from scRNA-seq data, we manually reviewed NCBI’s 

Gene Expression Omnibus 19 and ArrayExpress 20 to identify relevant T-cell scRNA-seq data 

published prior to April 2016. Eight datasets were identified with accessible data, collectively 

profiling 1,305 single cells (Table 1). The datasets were generated from mouse 18,21-23 and 

human-derived cells 17, utilising one of the available versions of the Smart-Seq protocol 24, and 

had a wide range of sequencing depth (1.2-8.4 million paired-end (PE) reads per cell) and read 

length (25-215bp) (Table 1). The number of expressed genes identified among the 1,305 cells 

ranged between 2,563 and 6,795 per cell (Table 1). We observed a weak negative linear 

correlation between read length and the average number of genes identified within a dataset (R=-

0.49), but no relationship with the number of genes identified in each cell (R=-0.16). There was 

no clear correlation between the number of genes identified and the sequencing depth (R=0.1). 

 

The effect of sequencing depth and read length on reconstruction of full-length T-cell 

receptors 

We analysed whether sequencing depth and read length affect the detection and reconstruction of 

TCRαβ. Two recently developed bioinformatics methods for reconstruction of full-length 

TCRαβ from scRNA-seq data were used, TraCeR 18 and VDJPuzzle 17. The analysis performed 

with VDJPuzzle and TraCeR revealed successful TCRαβ reconstruction in 1027 cells (79%) and 

953 cells (73%), respectively (Table 2). With VDJPuzzle consistently had a higher 

reconstruction rate than TraCeR, with regard to reconstruction of the αβ full length, as well as of 

the single chain repertoires (i.e., α or β)  (p<0.05; paired t-test; Table 2). Six of the eight datasets 
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had a success rate >80% in detection of TCRαβ, and up to 100% for scRNA-seq datasets with an 

average read length of 215 bp. The two datasets with lowest detection rate of TCRαβ had 25 and 

32 bp long reads, where only 0% and 1.89% of the cells successfully generated TCRαβ 

sequences, respectively (Table 2 and Fig. 1A). In terms of sequencing depth, datasets with less 

than 0.25 million PE reads resulted in detection of TCRαβ in less than 1% of the cells, and this 

increased rapidly to >80% for depths >0.25 million PE reads (Fig. 1B).  

To further assess the quality of the reconstruction of TCRαβ sequence, we analysed the 

distribution of CDR3 amino acid sequences across both α and β chains, and the distribution of 

cells carrying double α chains. The average CDR3 length of the reconstructed TCRαβ sequences 

with VDJPuzzle was 14 amino acids for both α and β chains (Fig. 1C and D), with similar results 

using TraCeR (Fig. S1). This result shows a distribution of CDR3 lengths consistent with those 

previously estimated with other methods. In addition, we assessed the distribution of single cell 

carrying double α chains. One of the major advantages of using scRNA-seq to reconstruct TCR 

sequences is the possibility to detect double α chains within a single T cell. Overall, 30% 

(n=395) of the cells analysed here presented more than one α but not double β. In a single study 

(datasets 3 and 4 in Table 1), 43% (n=333) of the cells sequenced presented more than one α, and 

44% (n=337) had more than one β sequence detected. Notably, 29% (n=225) of these cells had 

both more than two unique α and two unique β chain sequences, thus suggesting that in this 

study multiple cell could have been sorted in a single well. By filtering out cells with more than 

one α and one β, a total of 309 unique TCRαβ sequences were identified across all datasets. 

There was no clonotype (defined as cells bearing identical TCRαβ) overlapping between 

datasets. 
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Effect of sequencing depth and read length on the TCRαβ detection using simulated 

datasets 

To systematically investigate the effect of sequencing depth and read length, we generated 

simulated datasets with different sequencing depth and read length to assess the success rate of 

TCRαβ reconstruction. Simulated datasets were all derived from the original datasets 1 and 2, 

which had the deepest coverage (~8.4 million PE reads per cell) and longest read length (Table 

1).  The original dataset consisted of a total of 54 single cells originated from HCV specific 

CD8+ T cells from a single subject that previously cleared HCV. Of these cells, 18 were directly 

sorted from peripheral blood mononuclear cells (PBMC-derived T cells) and the remaining 36 

were sorted after in vitro expansion following stimulation with cognate antigen. Of these 36, 18 

were sorted after a second antigen restimulation 24 hours prior to sorting 17). From each cell, we 

generated 16 randomly subsampled scRNA-seq datasets with all combinations of four different 

sequencing depths (0.05, 0.25, 0.625 and 1.25 million PE reads) and four different read lengths 

(25, 50, 100 and 150 bp) (Fig. 2A). For each of the 16 subsampled datasets, the TCRαβ sequence 

was reconstructed using VDJPuzzle 17, and the success rate was calculated (Fig. 2B and Fig. S2). 

Only TCRαβ sequences with a complete CDR3 recognised by the international 

ImMunoGeneTics information system (IMGT, 25) were considered as an exact TCRαβ 

reconstruction.  

 

Success rate of paired α and β was above 80% for datasets which had a minimum read length of 

50 bp and a depth of at least 0.25 million reads. This rate was substantially diminished up to 0% 

for datasets with a number of PE reads per cell below 0.25 million PE reads (Fig 2B). Finally, 

the proportion of cells with double α detected was also proportional to both read length and 
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sequencing depth, with the highest success rate corresponding to a depth of 0.25 million PE 

reads and a read length above 100 bp (Fig. S3). The relationship between the success rate of 

TCRαβ reconstruction and both sequencing depth and read length was fitted with a sigmoidal 

function (Fig. S2). The success rate in TCRαβ reconstruction from the experimental datasets (the 

real dataset) closely followed this specific relationship (r=0.97, p <0.01).  

 

The effect of read length and sequencing depth on the quantification of the gene expression 

profile 

Next, we used the 16 subsampled scRNA-seq datasets to investigate the effect of sequencing 

depth and read length on read alignment and gene expression quantification. Surprisingly, we 

observed a slight increase in the total number of aligned PE reads in datasets with shorter read 

length, especially when the read length was below 100 bp (Fig. 3). This higher level of total read 

alignment at short read length can be attributed to an increased proportion of reads with multiple 

alignments, and more discordant alignment of PE reads (Fig. 3). Notably, this relationship with 

read length was also observed for the proportion of concordant pairs aligned, but with a lower 

proportion for reads of 25 bp long compared to 50 bp. We did not observe any effect of the 

sequencing depth on read alignment. 

To assess the effect of this trend on the quantification of genes, fragments per kilo base per 

million (FPKM) were calculated allowing only one alignment per read, hence eliminating a 

potential confounding factor of multiple alignments. . We found that the number of detectable 

expressed genes (those with FPKM>1) was positively correlated with sequencing depth (Pearson 

correlation = 0.89) but negatively correlated with read length (Pearson correlation = -0.93). The 
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number of genes that were expressed in at least 10% of the cells showed a similar correlation 

with sequencing depth and read length (Table 3, Fig. 4A). Notably, there was a positive 

relationship between number of genes expressed among cells within the same dataset and read 

length for sequencing depth smaller than 0.625 million PE reads, while there was no variation at 

higher sequencing depths (Fig. 4B).  

In order to quantify the reliability of the gene expression profile as a function of read length and 

sequencing depth, two simulated datasets with a sequencing depth of 0.05 million PE reads were 

generated, with read length of 25 bp and 150 bp, respectively. Two replicates for each dataset 

were simulated. This analysis showed a significantly higher correlation between the gene 

expression profiles of paired cells from the two replicates with read length 150 bp when 

compared to the two replicates with read length 25 bp (Fig. 4C). This result suggested that gene 

expression profiles from short read length dataset have higher levels of technical noise.  

 

To further assess how the technical variation generated by shorter read length and lower 

sequencing depth affects the identification of the three cell sub-populations available from the 

experimental scRNA-seq data of HCV specific T cells 17, a clustering algorithm was applied on 

all the simulated datasets. A newly developed bioinformatics tool CIDR 26 was used to perform 

dimensionality reduction, Principal Coordinates Analysis (PCoA) and clustering on the scRNA-

seq gene expression profiles. When forced to identify three clusters (since there are three cell-

types in the dataset), CIDR achieved the best clustering when the dataset has >= 100 bp long 

(Fig. 5A, B, Fig. S4). A higher misclassification rate with shorter read length was observed: 28% 

for read length 25 and 50 bp, and 9% for read length 100 and 150 bp (Fig 5C, Fig. S4). 

Sequencing depth did not affect the misclassification rate. To investigate whether the ‘tightness’ 
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of the clustering is affected by sequencing depth and read length, the within-cluster-sum-of-

squares of each cell type was computed. Consistent with the misclassification analysis, longer 

reads led to tighter clusters, reflected by a substantial decrease in within-class-sum-of-squares for 

PBMC derived Ag CD8+ T cells (Fig 5D, Fig. S4). The effect of read length was less 

pronounced for the other two in vitro expanded subpopulations, as these are biologically more 

close to each others when compared to the blood derived original population.  

To analyse the effect of read length and sequencing depth on specific gene categories, the 

distribution of gene expression levels (in terms of log(FPKM)) was analysed for highly 

expressed genes (average FPKM > 100), lowly expressed genes (average FPKM < 100), 

housekeeping genes, and transcription factors in all the subsampled simulated datasets. 

Independent of the gene category, there was a reduction in the number of genes identified with 

an expression level below 100 FPKM in datasets with a low sequencing depth (< 0.05 PE reads x 

million, Fig. S5). This effect was more evident among the transcription factors, where a 

combination or short read length and low depth led to a complete loss of lowly expressed genes. 

There was an increase in the frequency of highly abundant genes with the decrease of read 

length. To illustrate these trends, six individual genes were considered: two housekeeping genes 

(GAPDH, RPL7A, and RPL34), two genes constitutively expressed in CD8+ T cells (CD8B and 

TRAC), and one transcription factor (GAS5, which is associated with T cell proliferation 27). The 

analysis showed that, contrary to the expectation, the gene expression profile of the selected 

housekeeping genes varied significantly for low depth and short reads (Fig. 6). GAPDH and 

CD8B expressions were positively correlated with the read length, while a significant variability 

was detected for GAS5, independent of sequencing depth and read length. TRAC did not show 

any substantial variation.  
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DISCUSSION 

 

This study aimed to explore how sequencing depth and read length of scRNA-seq dataset affect 

various downstream analyses, such as transcript reconstruction, gene expression estimation and 

cell-type identification. The overall messages of this study can be summarised with two major 

findings. Firstly, by combining available algorithms for TCRαβ detection, along with simulation-

based analysis, this study has revealed that accurate detection of full-length TCRαβ is possible 

and achievable with sequencing depth below 250,000 PE reads, and with a minimum of read 

length of 50 bp. The detection rate of full length TCRαβ is at least 80% for reads with a 

sequencing depth >0.25 million PE reads of at least 50bp long. Secondly, the use of short reads 

(25 or 50 bp) is associated with a higher number of detected genes when compared to datasets 

with longer reads. However, this increase in gene expression quantification is also associated to a 

diminished accuracy and increased misclassification of cell populations. Hence, short read 

datasets are more prone to technical noise. The proposed analysis showed that despite accurate 

detection of full-length TCRαβ with short reads and relatively low sequencing depth, the gene 

expression profile is characterised by high level of technical variability. Future experimental 

designs should consider the quality of the reads as an important feature to obtain reliable results.  

 

Analyses of simulated and real scRNA-seq data showed that current methods, such as SMART-

seq2 are consistent with a capture efficiency between 3-10% of the total mRNA available 8. In 

the analysis proposed here, the effect of low sequencing depth in the quality of gene expression 
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quantification and TCR reconstruction is likely to be associated to the poor library capture 

efficiency of mRNA from single cells (<10%) 8, hence  it is conceivable that downstream 

analyses are not affected by large increase in sequencing depth. Low depth scRNA-seq has also 

been utilised to show that 50,000 reads are sufficient to classify a cell type in a sample of 301 

cells 12. On the other hand, this may not be sufficient when more homogenous populations are 

involved, such as central memory and effector memory cells from the same antigen-specific 

repertoire. Deep sequencing of single cell library may still be required to improve detection of 

low abundant transcripts. Indeed, an important issue for scRNA-seq data is the very large amount 

of genes with zero expression 6. This observation results from real zero expression genes that a 

single cell may have at the time of RNA extraction, as well as dropout events, which are due to 

inefficient mRNA capture and library processing.  

 

Full length TCRαβ can be accurately estimated and linked to the gene expression profile of the 

same cell. The analysis also showed multiple instances of single cells with at least two α and two 

β sequences detected. These findings are likely explained by the presence of multiple cells per 

well being sequenced, and the higher detection rate of double chains in the Th17 dataset (datasets 

3 and 4) is likely due to the larger sample size compared to the other studies. The high success 

rate obtained with both available software programs further support the high quality of the 

scRNA-seq data, which significantly improve the quality of TCR reconstruction with more 

classical approaches such as bulk sequences and Sanger sequencing.  Along with TCRαβ full-

length data, the entire transcriptome can be interrogated to identify specific gene profiles 

associated to T cell subsets, along with the relationship with the TCRαβ clonotypes. Single cell 

approaches are therefore likely to increase further the accurate identification of novel markers, 
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which could be utilised for detecting novel subpopulations of cells, for instance in flow 

cytometry. Another improvement is to introduce bar coding of the cell, with approaches such as 

MARS-seq 28. This novel approach however still lacks incorporation of full-length transcriptome 

sequencing, hence affecting the accurate detection of full length TCRαβ.  

 

A drawback of current scRNA-seq approaches to study gene profiles is the relatively high cost 

3,4. Currently, an Illumina HiSeq run can sequence up to 400 million PE reads of 150 bp in a 

single run. This allows generation of sufficient sequences reads for 640 single cells with depth of 

0.625 PE reads with a total cost (library preparation + sequencing) of ~US$10,000. This estimate 

assumes that the library preparation cost is approximately $5 per cell, which is achievable with 

in-house reagents. With these settings the expected number of reconstructed paired αβ TCR is 

about 85%. This cost is lower or equal to the cost of reconstructing TCRαβ from single cell using 

standard Sanger sequencing (without transcriptomic quantification). Barcoding approaches could 

significantly reduce the library preparation cost, down to <$1. However, this may impact the 

accuracy of TCRαβ detection as current bar coded methods have a 3’ bias with a significant loss 

of transcript depth on 5’ end reads 3. This gives us confidence that scRNA-seq technology can be 

scaled up to a large number of cells to comprehensively study the role of T cells in experimental 

models and human disease states. 

 

CONCLUSIONS 

This study shed light on the effect of sequencing depth and read length of a scRNA-seq dataset 

on the quality and quantity of detection of gene expression profiles, and in particular of highly 
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variable genes. High success rates in TCRαβ reconstruction are achieved with minimum depth 

and with reads >50 bp. In contrast, accurate detection of gene expression profiles and 

identification of cell subsets require longer reads to minimize technical noise. Future analyses 

should consider these effects to ensure reliable and accurate single cell transcriptomic profiling. 

 

MATERIAL AND METHODS 

 

ScRNA-seq data 

Raw data were downloaded from NCBI’s Gene Expression Omnibus and ArrayExpress (Table 

1). 

Generation of simulated datasets 

Simulated data were obtained by generating subset of reads from Dataset 1 in Table 1 by 

randomly reducing read length and sequencing depth using an in-house python scripts. Original 

dataset consisted of 54 scRNA-seq data all with read length of 150 bp and sequencing depth of 

about 8.4 million PE reads. Sixteen combinations of read length and sequencing depth were 

considered: read length of 25, 50, 100 and 150 bp; and sequencing depth of 0.1, 0.5, 1.25 and 2.5 

million. A new set of paired fastq file for each combination was then generated. For each dataset, 

reduced depth was obtained by randomly subsampling the original set of PE reads while the 

shorter read length was obtained by randomly cropping original PE reads.  

 

Gene expression quantification  
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PE reads were analysed for quality control using FastQC, and reads were trimmed using 

Trimmomatic  29.  

Alignment of PE reads was performed with TopHat2. For the alignment, the default option was 

used, (https://ccb.jhu.edu/software/tophat/manual.shtml) which corresponded to allow for only 

one alignment per read. In case of multiple alignments of the same read, the primary alignment 

was considered. 

Gene expression was estimated with the pipeline available in Cufflinks 2.2.1, utilising CuffQuant 

with parameter --max-frag-multihits equal to 1, which allows maximum one alignment per 

fragment. Gene expression quantification (in FPKM) was normalised with CuffNorm. Resulting 

FPKM values were loaded in R using the package Monocle 30.  

Downstream analysis, which included Pearson’s correlation analysis, number of genes 

expressed, and gene expression analysis by gene categories, was performed with an in-house R 

script. Transcription factors and housekeeping genes have been selected from available list in the 

literature 31,32.  

 

Dropout rate and clustering analysis 

Dropout analysis, principal coordinates analysis and clustering were performed using CIDR (Lin 

et al. 2017), which requires raw read counts as input data. The tool featureCounts was used to 

obtain the read counts, with the --primary option to allow only primary alignments. The 

dropoutCandidates Boolean matrix output by the determinDropoutoutCandidates method of 

CIDR is used to calculate the figures in Table 3 and Figure 5 – a gene is considered ‘expressed’ 

in a sample if the corresponding entry in the dropoutCandidates matrix has a value of FALSE.  
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For clustering, the CIDR parameters nCluster and wThreshold were set to be 3 and 6 

respectively, while the other CIDR parameters were left as defaults. Within each cluster, the first 

two CIDR principal coordinates were used to calculate the distances between all pairs of 

samples, the squares of which sum to the within-class sum of squares.  

Misclassification rate was used to evaluate the accuracy of clustering, which is defined as the 

number of misclassified cells divided by the total number of cells. To define misclassified cells, 

each CIDR cluster is associated with the ground truth cluster, which gives the biggest 

intersection, and those cells that are not in the intersection are counted as misclassified cells. 

 

Reconstruction of TCRαβ  

TCRαβ of the downloaded dataset were reconstructed using VDJPuzzle 17 and TraCeR 18. The 

exact procedure was followed as previously reported 17,18.  

The fit of the proportion of cells with successfull TCRαβ reconstruction as a function of read 

length and sequencing depth was performed using a two-dimensional sigmoid function 

implemented in the scipy package in python (the “curve_fit”) 

�� �,� �  
�1

1 � ��������	
 	  

�2

1 � ��
�����	
           �1� 

Where 
 represents the read length and � represents the sequencing depth. The obtained fitting 

values are �1 � 0.94, �2 � 0.95, � � 0.52, � � 98.67, 
� � 24.2, �� � 8.85. 
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TABLES AND FIGURE LEGENDS 

Table 1. List of dataset used for the analysis. 

Table 2. Success rates for TCRαβ detection in each dataset. 

Table 3. Analysis of empirical drop out rate on simulated datasets.  

 

Figure 1. Success rates of TCRαβ reconstruction as a function of read length (A) and sequencing 

depth (B) using VDJPuzzle and TraCeR. Panels C and D show the distributions of the length of 

the reconstructed CDR3α and CDR3β regions from the VDJPuzzle output, respectively.  

Figure 2. A) Generation of the simulated datasets from real scRNA-seq data 1. B) Success rate 

for TCRαβ reconstruction as a function of read length and sequencing depth from the simulated 

datasets. 

Figure 3. Analysis of the alignment of the simulated datasets as a function of sequencing depth 

and read length. Shown is the number of paired-end reads aligned (in log10 scale), along with the 

proportion of concordant and discordant pairs, and of multiple alignment instances. 

Figure 4. The effect of read length and sequencing depth on the technical error variability using 

simulated scRNA-seq datasets. A: Number of identified expressed genes (Fragment per Kilobase 

per Million reads; FPKM>1) as a function of read length and sequencing depth (A). B: Mean 

pairwise cell-to-cell Pearson correlation of gene expression values as a function of sequencing 

depth and read length. C: The distribution of pairwise cell-to-cell Pearson correlation of gene 

expression values using subsets of different read length drawn from the original dataset. Original 
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dataset had a read length of 150 bp with depth >8 millions PE reads, two samples drawn from 

this dataset were taken, with length 25 bp and same depth. 

 

Figure 5 Clustering analysis for the three populations of HCV specific CD8+ T cells. Panels A 

and B display Principle Coordinate Analysis of the three subsets of cells by varying read length 

(25 to 150 bp). Coverage for each dataset was set to 1.25 millions of PE reads per cell. The point 

colours correspond to the 'ground truth' cell type labels (see legend), while the three point styles 

correspond to the three identified clusters (circle, triangle and cross). Clustering analysis was 

performed using CIDR, and forcing the number of clusters to be n=3. Panels C and D display the 

misclassification and the variability within the same cell type (within-class sum of squares) as a 

function of read length and sequencing depth, respectively. Panel D displays only results from 

PBMC-derived T cells. 

    

Figure 6 Gene expression profiles of selected genes identified from dataset 1, human HCV- 

specific CD8+ T cells (Table 1).  
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Table 1. scRNAseq data sets analysed in this study 

Dataset  Dataset Ref Accession 
number 

Organism Number 
of cells  

Average 
reads length 
(nt) 

Average 
number of PE 
reads (x106 
reads) 

scRNA-seq 
protocol 

Number of 
genes 
expressed 
(FPKM>1) 
per cell 

1 HCV 
specific 
CD8+ T 
cells   

33 E-MTAB-
4850  

human 54 145 8.4 Smart-Seq2 2,563 

2 HCV 
specific 
CD8+ T 
cells  

33 E-MTAB-
4850  

human 12 215 3.5 Smart-Seq2 3,289 

3 Th17 cells 
(A) 

21  GSE74833 mouse 399 125 2.5 Smart-Seq 5,128 

4 Th17 cells 
(B) 

21 GSE74833 mouse 269 100 3.7 Smart-Seq 6,540 

5 Th17 cells 
(C) 

21 GSE74833 mouse 100 25 1.5 Smart-Seq 4,146 

6 CD4+ T 
cells 

18 E-MTAB-
3857 

mouse 272 100 4.3 Smart-Seq 2,354 

7 CD8+  T 
cells 

34 GSE74923 mouse 106 32 1.2 Smart-Seq2 6,796 

8 Th2 23 E-MTAB-
2512 

mouse 93 75 1.6 Smarter-Seq 6,401 
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Table 2. The success rate of reconstructing full-length T-cell receptors (TCR) using VDJPuzzle and TraCeR for the various scRNA-seq data sets. 

 

Da
tas
et 

Number of 
cells 

Average 
reads 
length 
(nt) 

Average 
number of PE 
reads (x106 
reads) 

TCRα 
success 
rate  (%) 
VDJPuzzl
e 

TCRβ 
success rate 
(%)VDJPuzz
le 

TCRαβ 
success rate 
(%) 
VDJPuzzle 

TCRα 
success rate 
(%)TraCeR 

TCRβ 
success rate 
(%)TraCeR 

TCRαβ 
success rate 
(%)TraCeR 

1 54 145 8.4  81.48 85.19 81.48 81.48 85.19 81.48 
2 12 215 3.5 100.00 100.00 100.00 100.00 100.00 100.00 
3 399 125 2.5 99.25 98.75 98.50 92.98 93.48 91.23 
4 269 100 3.7 98.51 98.88 97.77 89.59 94.42 86.62 
5 100 25 1.5 0.00 0.00 0.00 0.00 0.00 0.00 
6 272 100 4.3 89.71 93.38 85.66 80.88 91.54 80.88 
7 106 32 1.2 1.89 7.55 1.89 2.83 0.00 0.00 
8 93 75 1.6 89.25 93.55 86.02 90.32 92.47 86.02 
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Table 3. Number of genes expressed in at least 10% of the cells in the simulated data sets, comprised of subsamples of the scRNAseq data set 1, with 
various sequencing depths (columns) and read lengths (rows). 

                         Sequencing depth (PE reads x million) 
Read 
length (nt) 

0.05 0.25 0.625 1.25 

25 6,081 8,497 9,184 1,0849 
50 5,665 7,801 8,255 8,240 
100 5,141 6,879 7,333 7,440 
150 4,836 6,458 6,824 6,936 
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