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Abstract

In the sensory systems, most neurons’ firing rates are tuned to at least one aspect of the stimulus.

Other neurons are untuned, meaning that their firing rates appear not to depend on the stimulus.

Previous work on information coding in neural populations has ignored the untuned neurons, based

on the tacit assumption that they are unimportant. Recently, me and other researchers have begun to

question that assumption. Using theoretical calculations and analyses of in vivo neural data, I show

how untuned neurons contribute to neural information coding. Ignoring untuned neurons can lead to

severe underestimates of the amount of stimulus information encoded, and in some cases population

codes can be made more informative by replacing tuned neurons with untuned ones.

Introduction

When you look at a picture, signals from your eyes travel along the optic nerve to your brain, where

they evoke activity in neurons in the thalamus and visual cortex. As sensory systems neuroscientists,

we ask how these patterns of stimulus-evoked brain activity reflect the outside world – in this case,

the picture at which you are looking. Other related work asks how patterns of activity in different

parts of the brain reflect motor commands sent to the muscles. Answers to these questions are

important both for basic science, and for brain-machine interface technologies that either decode

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2017. ; https://doi.org/10.1101/134379doi: bioRxiv preprint 

https://doi.org/10.1101/134379
http://creativecommons.org/licenses/by-nc/4.0/


brain activity to control prosthetic limbs or other devices [1, 2, 3], or stimulate the brain to alleviate

sensory deficits [4, 5].

For decades, researchers have addressed these information coding questions by recording neural

activity patterns in animals while they are being presented with different stimuli, or performing

different motor tasks. That work revealed that many neurons in the relevant brain areas show firing

rates that depend systematically on the stimulus presented to the individual, or on the motor task.

This neural “tuning” underlies the ability of these neural circuits to encode information about the

stimulus and/or behavior. At the same time, many neurons appear to be untuned, thus showing little

or no systematic variation in their firing rates as the stimulus (or behavior) is changed [6]. These

untuned neurons are typically ignored in studies of neural information coding because it is presumed

that they do not contribute [7]. Instead, data collection and analysis are typically restricted to the

tuned neurons (for example, consider the selection criteria used by [8, 9]). Recently, me and other

researchers have begun to question that assumption, by asking whether and how untuned neurons can

contribute to neural information coding (Insanally et al., Cosyne 2017 abstract).

To answer this question, I used theoretical calculations, and then verified the predictions from those

calculations by analyzing 2-photon imaging data collected in the visual cortex of mice that were shown

drifting grating stimuli [10]. For the theoretical calculations, I used a common mathematical model of

the neural population responses to sensory stimulation [11, 12, 13, 14, 15, 16, 17, 9, 18, 19, 20, 17, 21].

This model describes key features of sensory neural responses: the stimulus tuning (or lack thereof)

of individual neurons; the trial-by-trial deviations (or “noise”) in the neural responses [9, 22, 23,

24, 25, 26]; and the potential for that noise to be correlated between neurons [27, 28, 9, 29, 30,

27, 31, 32, 33, 34, 35, 36]. For different conditions – for example, including vs. excluding untuned

neurons – I computed the amount of information about the stimulus that is encoded in the population

firing patterns. By comparing the information across conditions, I characterized the manner in which

untuned neurons affect the neural population code.

My main finding is that, when the untuned neurons are correlated with the tuned ones, they

contribute to neural information coding. Because neurons are typically correlated with each other,

this means that ignoring untuned neurons can lead to substantial underestimates of the information

in a neural population code. Consequently, our understanding of sensory information coding could

be incomplete unless we measure from, and consider the effects of, untuned neurons. Moreover, for

brain-machine interface technologies, performance could be improved by using decoders that take

into account the activities of both tuned and untuned neurons. A secondary finding is that neural

population codes can sometimes be made more informative by replacing some of the tuned neurons

with untuned ones. This provides a potential explanation for why these neurons exist: despite their

lack of explicit stimulus tuning, they can improve the brain’s ability to encode useful information

about the outside world.
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Results

I first study a theoretical model of information coding in neural populations, to understand whether

and how untuned neurons contribute to information coding. I then validate the main prediction from

the theory by analyzing data collected in mouse visual cortex.

Theoretical study of how untuned neurons impact sensory informa-

tion coding

To investigate the role of untuned neurons in sensory information coding, I studied populations of

neurons that encode information about the motion direction of a visual stimulus via their randomly

shaped and located tuning curves (Fig. 1A). Many different population sizes were considered. For each

population, 70% of the neurons were tuned, and the other 30% were untuned. (These numbers match

the fraction of well-tuned neurons selected for analysis in a recent population imaging study [36],

and are comparable to the fraction of tuned neurons in the experimental data that we study below.

Choosing larger or smaller fractions of untuned neurons does not qualitatively affect the results – see

Fig. S1.) The untuned neurons had flat tuning curves that did not depend on the stimulus – see the

dashed lines in Fig. 1A.

The neurons had Poisson-like variability: for each cell, the variance over repeats of a given stimulus

was equal to the mean response to that stimulus. This mimics the experimentally observed relation

between means and variances of neural activities [23, 21]. The variability was correlated between

cells, and the correlation coefficients were chosen to follow the “limited-range” structure reported

experimentally [28, 16, 37, 38, 39], and used in previous theoretical studies [11, 12, 13, 18]. With

this structure, the correlation coefficients were large for neurons with similar preferred directions, and

smaller for neurons with very different preferred directions (see Methods and Fig. 1B).

For each population, I computed the Fisher information (Fig. 1D, black curve), which quantifies

how well an observer – like a downstream neural circuit – can estimate the stimulus direction angle

from the neural activities (see Methods). I compared that with the Fisher information obtained from

only the tuned subset of neurons – in other words, the information that would be obtained if the

untuned cells were ignored (Fig. 1D, red curve). The difference was stark. Ignoring the untuned

neurons leads to a dramatic underestimate of the encoded stimulus information. This emphasizes

that, despite their lack of stimulus dependence, the untuned neurons can still contribute significantly

to the population code.

Does this effect arise because there is some special property to the untuned neurons, or because

ignoring any neurons (tuned or not) sacrifices information? To address this question, I computed the

information for random subsets of 70% of the neurons in each population (i.e., subsets the same size

as are obtained when untuned neurons are ignored). This yielded less information than did the full

populations (Fig. 1D, blue curve), and showed more information than when only untuned neurons were

ignored. This result was surprising because these random subsets contain both tuned and untuned

neurons. The fact that they contain more information than subsets of the same size, but with only

tuned neurons, implies that an untuned neuron can sometimes contribute more to a population code
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Figure 1: Untuned neurons can play an important role in sensory information coding.

I considered populations of neurons with randomly shaped and located tuning curves (A). Of

those neurons, 70% were tuned to the stimulus, whereas 30% were untuned – their mean firing

rates do not depend on the stimulus (dashed black lines in panel A). The neurons’ trial to trial

variability was Poisson-like and correlated between neurons. These correlations followed the

“limited-range” structure (B) with ρmax = 0.5 and λ = 0.5 radians (29o). The mean correlation

coefficients (averaged over neurons) were 0.08, which is comparable to values reported in primary

visual cortex [28]. (Modifying these values did not qualitatively change our results – see Fig.

S2). The correlation matrix for a small population is shown in panel (C). For different sized

populations, I computed the Fisher information, which quantifies how well the stimulus can be

estimated from the neural population activities (D). The different lines correspond to: the Fisher

information for the full neural populations (black); the Fisher information for the tuned 70% of

the populations (red); or the Fisher information for random subsets of 70% of the populations

(including both tuned and untuned cells: blue). Data points shown in (D) are mean ± S.E.M.,

computed over 5 different random draws of the tuning curves.

than does a tuned one.

These results suggest that, at least under some conditions, the brain’s population code could be

made more informative by replacing some tuned neurons with untuned ones. To test this hypothesis,

I repeated the calculations from Fig. 1, but with different fractions of the population untuned. For

each population size and tuning fraction, I computed the Fisher information in the entire population.

These calculations show that in large neural populations, having at least some untuned neurons can

lead to better information coding than having only tuned neurons (Fig. S1). While this effect was

modest in magnitude, a larger effect was observed in populations with a different correlation structure
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(Fig. 3B). These findings suggest a functional reason for why there are untuned neurons in the sensory

areas.

How do untuned neurons contribute to neural information coding?

In Fig. 1, and in reality, the noise is correlated between neurons. This means that, while the untuned

neurons’ activities do not directly reflect the stimulus, they do reflect the trial-specific noise in the

other neurons’ activities. Accordingly, a downstream readout – like the circuit receiving these neural

spikes – can obtain a less noisy estimate of the stimulus by using the untuned neurons’ activities to

estimate the noise in the activities of the tuned neurons, and subtracting that noise estimate from the

observed firing rates. Ignoring untuned neurons leads to the loss of the information available through

this “de-noising”.

To illustrate this point, I considered a pair of neurons, one of which is tuned to the stimulus

(Fig. 2A). In response to stimulation, the neurons give noisy responses, and that noise is correlated

between the two cells. When plotted in the space of the two cells’ firing rates, the distributions of

neural responses to each stimulus are defined by ellipses, shown in Fig. 2B. (These are the 1 standard

deviation probability contours.) The correlation between cells is reflected in the fact that these ellipses

are diagonally oriented. These ellipses are well separated, meaning that the neural responses to the

different stimuli do not overlap, and so it is relatively unambiguous to infer from the neural firing

rates which stimulus was presented. For contrast, consider the neural activities observed when the

untuned neuron is ignored. In that case, only the tuned neuron is observed, and the distributions in its

responses to the different stimuli overlap substantially (Fig. 2B, right vertical axis). This means that,

based on only observations of the tuned cell, the stimulus cannot reliably be determined. Ignoring the

untuned neuron leads to a loss of stimulus information.

When do untuned neurons improve the population code?

Because they have no stimulus tuning, untuned neurons do not, in isolation, convey information about

the stimulus. Instead, their contributions to the population code are indirect, and stem from the fact

that their activities reflect the noise in the activities of the tuned cells. Accordingly, the untuned

neurons’ activities give information that can correct for the noise, thereby making the population

code more informative. Consequently, untuned neurons contribute to the population code when their

trial-specific activities are correlated with those of the tuned neurons.

To demonstrate this point, I considered neural populations with two different correlation structures.

As in Fig. 1, I computed the stimulus information available in either the full population (black curves),

the tuned subset of the population (red curves), or a random subset the same size as the tuned subset,

but including both tuned and untuned neurons (blue curves). In the first of these populations, the

untuned neurons are independent of the tuned ones, and the untuned neurons do not contribute to

the population code (Fig. 3A: red and black curves overlap in the center panel). In the second

population, the untuned neurons were correlated with the tuned ones, and the untuned neurons

contribute substantially to the population code (Fig. 3B: red curve is lower than black curve in the
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Figure 2: Untuned neurons can shape noise, improving the population code. Two

neurons’ tuning curves are shown in panel (A). Cell 1 is untuned. In response to stimulation,

they give noisy responses. That noise is correlated between the two neurons. The distribution

of noisy responses to each stimulus is described by an ellipse in the space of the two neurons’

firing rates (B). The stimulus values are indicated by arrows in panel (A). The ellipses are well

separated, meaning that the stimuli can be readily discriminated based on the two cells’ firing

rates. If the untuned cell is ignored, then only the tuned cell is observed. The distribution of the

tuned cell’s firing rate in response to each stimulus is shown along the right vertical of panel (B).

Because those distributions overlap substantially, the stimulus cannot be readily discriminated

based only on the firing rate of the tuned cell.

center panel). These findings emphasize that untuned neurons enhance population codes when they

are correlated with the tuned cells.

Moreover, the random subsets of 70% of the neurons in Fig. 3B contain more information than

do subsets of the same size, but containing only tuned neurons (blue curve is above red curve). In

other words, populations containing untuned neurons can have more stimulus information than do

populations of the same size, but containing only tuned cells.

To generate these examples, I used the same random tuning curve shapes from Fig. 1A, but

different covariance matrices. (In both cases, the neurons had Poisson-like variability, as is seen

experimentally). In Fig. 3A, the neurons had the differential correlations studied by [17, 21] (see

Methods for details). These correlations are such that the shared (correlated) part of the population

noise mimics the changes in neural firing pattern induced by changes in the stimulus, thereby causing

the distributions of responses to different stimuli to overlap substantially (Fig. 3A, lower). As a a

result of that overlap in the stimulus-evoked response distributions, the noise substantially hinders

the population code. Because changes in the stimulus do not change the mean firing rates of the

untuned neurons – and the differential correlations mean the correlated noise mimics the stimulus-

evoked changes in firing rates – the untuned neurons are unaffected by the correlated noise. This means

that the noise in the untuned neurons is independent from the noise in the tuned ones. Consequently,

ignoring the untuned neurons causes no loss of information (Fig. 3A: full population and tuned subset

have the same information values).

To make Fig. 3B, I modified the differential correlation structure such that the untuned neurons
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Figure 3: Untuned neurons improve population coding when they are correlated

with the tuned neurons. I considered neural populations with tuning curves as in Fig. 1,

and where the untuned neurons were either independent of the tuned ones (A), or where the

untuned neurons were correlated with the tuned ones (B). 70% of the neurons in each population

were tuned to the stimulus, and 30% were untuned. Upper panels show correlation matrices for

250-cell populations: cells 1 through 75 are untuned, whereas the remainder were tuned. Center

panels show the Fisher information for the full neural populations (black), for the tuned subsets

of neurons (red), and for random subsets of 70% of the neurons in each population (blue). (Data

points shown are mean ± S.E.M., computed over 5 different random draws of the tuning curves).

The cartoons in the lower panels illustrate why these two different correlation structures lead to

untuned neurons having such different effects on the population code (see text). The cartoons

show the space of neural firing patterns: each axis is the firing rate of a different neuron. The

vertical axis is the firing rate of an untuned neuron. The other axes are the firing rates of tuned

cells. Ellipses represent the 1 standard deviation probability contours of the neural population

responses to the 3 different stimuli.

were correlated with the tuned ones (see Methods). For the tuned subset of the population, the noise

structure was identical to Fig. 3A (both contain differential correlations), and thus the tuned subsets

of neurons have the same information in both cases. (Red data points in Fig. 3A have the same values

as do points on the red curve in Fig. 3B). Different from Fig. 3A, the full population contained much

more information than did the tuned subset, indicating that the untuned neurons do contribute to
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the population code in this case.

This contribution of untuned neurons to the population code can be understood via the cartoon

in Fig. 3B (lower), which shows the distribution of population responses to 3 different stimuli. In the

cartoon, cell 1 is untuned, whereas the rest of the cells are tuned. This means that, as the stimulus

changes, the mean responses change along the plane orthogonal to the cell 1 axis. Because the untuned

neuron is correlated with the tuned ones, the noise distributions are tilted along the vertical axis. In

this configuration, the distributions do not overlap very much. If, however, the untuned neuron is

made independent from the tuned ones (as in Fig. 3A), the vertical tilt goes away, causing much more

overlap in the response distributions. In other words, when the untuned neurons are correlated with

the tuned ones, they improve the population code by separating the responses to different stimuli.

This effect disappears when the untuned neurons are independent of the tuned ones.

Decoding in vivo neural activities with untuned neurons either in-

cluded or excluded from the analysis

The theoretical work in the preceding Section makes one key prediction: the ability to decode a stimu-

lus from the evoked neural population activities could be improved if untuned neurons are included in

those populations, as opposed to being ignored. To test that prediction, I analyzed data from 2-photon

Ca2+ imaging recordings done in primary visual cortex of awake mice (data from [10]) whose neurons

expressed the genetically encoded calcium indicator GCaMP6f. The mice were presented with stimuli

consisting of gratings drifting in 8 different directions, and the fluorescence levels of O(100) neurons

were observed in each experiment. I analyzed the data from 46 such experiments.

For each stimulus presentation and neuron, I extracted the mean fluorescence change during the

stimulus presentation, relative to the fluorescence in the period before the stimulus presentation: this

∆F/F value measures the stimulus-induced change in neural activity. I then computed the neurons’

tuning curves by averaging these ∆F/F values over all trials in which the stimulus drifted in each

direction. Some of the neurons had well-defined direction tuning curves (Fig. 4A), whereas others

were relatively untuned (Fig. 4B). Following [10], I categorized these cells as tuned or untuned based

on their direction selectivity indices (see Methods). Between the 46 experiments, 2973/4495 ≈ 66%

of the neurons were tuned.

Along with the tuning, I measured the correlations in the cells’ trial-to-trial variability over repeats

of each stimulus. These “noise correlations” are shown for one of the experiments in Figs. 4C and

D. The correlation coefficients were similar between pairs of tuned neurons (“TT”), pairs of untuned

neurons (“UU”), and mixed pairs consisting of one tuned and one untuned neuron (“TU”). Because

there were correlations between the tuned and untuned neurons, the theory predicts that stimulus

decoding could be improved by including the untuned neurons, as opposed to ignoring them.

To test this prediction, I used the k-nearest neighbors (KNN) decoder to estimate the stimulus

direction corresponding to the population activity pattern observed on each trial (Fig. 5A). KNN

implements a simplified form of maximum likelihood estimation, works with even modest amounts of

data, and has previously been used to study neural population coding [9, 25]. To estimate the stimulus
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Figure 4: Tuned and untuned neurons are correlated in vivo. Neurons’ responses to

drifting grating stimuli were measured using 2-photon Ca2+ imaging. Example tuning curves

for two direction tuned neurons are shown in panel (A), and for two untuned neurons in panel

(B). Markers show mean ∆F/F ± S.E.M, calculated over 75 trials of each stimulus direction.

I measured the correlations in the responses of the different cells over repeats of each stimu-

lus. These are shown in panel (C): correlation coefficients were averaged over all stimuli. The

distributions of these mean correlation coefficients are shown in panel (D) for cell pairs of dif-

ferent types: where both cells were direction tuned (“TT”; n = 7875 pairs); where both cells

were untuned (“UU”; n = 1326 pairs); and where one cell was tuned and one was untuned

(“TU”; n = 6552 pairs). Each box plot shows the median, the range (maximum and minimum

indicated by black bars), and the boundaries of the 25th and 75th percentiles (blue box) of the

distributions.

corresponding to a given activity pattern (like the question mark in Fig. 5A), the classifier identifies

the k most similar activity patterns in the dataset (similarity measured by Euclidean distance between

data points; k = 5 in Fig. 5A). The classifier then takes a majority vote over the stimulus directions

associated with those activity patterns, to estimate the stimulus that is responsible for the test point.

(Note that, for decoding each data point, the KNN decoder is constructed from all other data points.

This means that the test point is held-out from the decoder’s construction. This is important, because

otherwise the test point would be used to decode itself, which could yield erroneously high performance

values.)

For one of the experiments (the same one shown in Fig. 4), I performed the KNN decoding for
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different values of k, and computed the fraction of trials on which the stimulus direction was correctly

identified. This performance measure did not depend strongly on k (Fig. 5B), so I chose k = 10 for

the subsequent analyses. Next, I performed the KNN decoding on the neural populations from each

of the 46 different recordings. I separately performed the decoding on the full populations (including

both tuned and untuned neurons), or on the subsets of tuned neurons in each recording. In most of the

experiments, the stimulus could be decoded substantially better by including the untuned neurons, as

opposed to ignoring them (Fig. 5C: p = 5 × 10−11; one-sided paired sample t-test; t = −8.4 with 45

degrees of freedom). On average, decoding performance was 36 ± 6% (mean ± S.E.M.) better using

the full populations vs just the tuned subsets. These results are consistent with the theoretical work

presented above, and indicate that untuned neurons can contribute to sensory information coding,

and that in some cases, their contributions can be sizable.

Next, I asked whether – as in the theoretical calculations – populations that include both tuned

and untuned neurons could yield better decoding vs populations of the same size but containing only

tuned cells. For each population, I extracted a random subset of the neurons that was the same

size as the set of tuned neurons. I then performed the KNN decoding on these random subsets, and

compared the performance with that which was obtained on only the tuned subsets (Fig. 5D). On

average, the decoding performance was 21 ± 5% (mean ± S.E.M.) better using the random subsets

vs the fully tuned ones, a statistically significant difference (p = 2× 10−6, single-sided paired sample

t-test; t = −5.3 with 45 degrees of freedom).

The findings on the population imaging experiments validate the theoretical results from Figs. 1,3.

Namely, they show that untuned neurons can enhance neural population coding (Fig. 5C), and that

mixed populations of tuned and untuned neurons can sometimes yield better information coding than

can populations of the same size but containing only tuned neurons (Fig. 5D).

Discussion

I showed that, when the variability in neural responses to stimulation is correlated between cells,

untuned neurons can contribute to sensory information coding. This effect was observed in both a

theoretical model (Figs. 1-3), and in large population recordings from mouse visual cortex (Fig. 5).

Moreover, in at least some cases (Figs. 1D, S1, and 3B, 5D), populations with both tuned and untuned

neurons can convey more information about the stimulus than do populations of the same size but

containing only tuned neurons.

These results have three main implications. First, our understanding of how the sensory systems

encode information about the outside world is likely to be incomplete unless it includes the contribu-

tions of untuned neurons. This means that current practices, in which untuned neurons are ignored

during data collection and analysis, might be hindering progress.

Second, because adding untuned neurons can increase the stimulus information, there might be a

functional reason why these neurons exist in the sensory areas. (At the same time, it is always possible

that neurons that appear untuned are in fact tuned, but only to aspects of the stimulus that were

not varied in the experiment.) It is important to note, however, that no brain area can encode more
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Figure 5: K-nearest neighbor decoding reveals that untuned neurons can enhance

information coding in in vivo neural populations. The k-nearest neighbors decoder is

illustrated in panel (A), which shows a cartoon of 2 neurons’ activities, as measured by the

∆F/F . The activities observed on each trial are shown, with the symbol type indicating which

stimulus was presented. To decode a data point – like the one indicated by the question mark

– the k-nearest data points are identified (k = 5 in this cartoon). A majority vote is taken over

those data points’ stimulus values to classify the test point. In the cartoon, the decoder would

determine that the question mark data point was caused by the red circle stimulus. For different

values of k, I applied this decoder to the population activities from one of the experiments. The

percentage of trials in which the stimulus was correctly identified by the decoder is shown in

panel (B), for decoding either the full population of 178 neurons (black curve), or for decoding

only the 119 neurons with strong direction tuning (red curve). For k = 10, I applied the decoder

to 46 different population recordings. Panel (C) shows the fraction of trials on which the stimulus

was correctly identified using either the full population recordings, or the tuned subsets. Panel

(D) shows the decoding performance when decoding either the tuned subsets of the populations,

or random subsets the same size as the tuned subsets, but containing both tuned and untuned

neurons. Chance performance for these decoding tasks is 1/8 = 12.5%. Diagonal lines in panels

C and D denote equality.

stimulus information than it received from its inputs [40, 21]. This is the data-processing inequality,

and it implies that there is not a limitless increase in information to be obtained by adding large

numbers of untuned neurons to neural circuits.

Third, because information in a neural circuit can be lost when untuned neurons are ignored,
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it may be possible to improve the decoding of brain signals to control prosthetic limbs via brain-

machine interface devices, by including the activities of untuned neurons in those signals. This effect

is demonstrated most strongly in Fig. 5C.

Observations related to those presented in Fig. 5C have also been made by Insanally and colleagues,

based on analyses of data from awake behaving rats (Insanally, Carcea, Albanna, and Froemke, Cosyne

2017 abstract). There, as in the analysis of mouse data presented here, it is hard to distinguish weakly

tuned neurons from purely untuned ones, and thus difficult to be certain that the coding benefits of

putatively untuned neurons do not arise from non-zero tuning, that is nonetheless under the chosen

threshold. This complication highlights the value of the theoretical work presented here (Figs. 1,3):

in the model, the untuned neurons really have no stimulus dependence, enabling us to pinpoint the

role of untuned neurons in sensory information coding.

For large neural populations, an astronomically large number of different correlation patterns are

possible (and this problem is confounded when one includes correlations of higher order than the

pairwise ones considered here [41, 42]). Accordingly, it was not possible to simulate all possible

correlation patterns in the theoretical study. Thus, it is natural to ask how general the results are

over different correlation structures. Here, the fact that I made similar observations with two very

different correlation structures is encouraging (Figs. 1 and 3). Moreover, I saw a qualitatively similar

effect in the experimental data (Fig. 5) as in the theoretical model with limited range correlations

(Fig. 1), which further argues for the generality and applicability of the findings.

Adding neurons to a population can never decrease the amount of encoded stimulus information:

because a downstream read-out could always choose to ignore the added cells, those cells can at worst

contribute zero information. Consequently, untuned neurons can never hinder the population code.

(However, decoding based on observations with small numbers of trials is subject to overfitting. In this

case, adding more cells can hinder the decoding because the decoder might be inaccurate). This means

that the potential effects of untuned neurons on population coding range between no contribution (Fig.

3A), and positive contributions at least as large as those seen in Figs. 3B, 1D and S2. (I.e., at least

200% increase in information available by including vs. ignoring untuned neurons). There may be

other cases, not explored here, in which the positive contributions of untuned neurons are even larger.

It is important not to interpret the results presented here as implying that neural tuning is not

essential to sensory information coding. If there are no tuned neurons, there is no information in

the neural population (Fig. S1: information approaches zero as the fraction of untuned neurons

approaches 1). However, if there are some tuned neurons, then the untuned neurons can serve to

make them more informative, thereby improving the population code overall. Thus, untuned neurons

are not irrelevant for sensory information coding.

Methods

I first discuss the theoretical calculations, and then the analysis of experimental data.
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Theoretical Calculations

Modeling the stimulus-evoked neural responses, and the information encoded

I considered for simplicity a 1-dimensional stimulus s (for example, the direction of motion of a drifting

grating). In response to the stimulus presentation, the neural population displays firing rates ~ri, where

the index i denotes the trial. (Each element of the vector ~ri is the firing rate of a single neuron). These

responses have two components. The first, ~f(s), is the mean (trial-averaged) response to stimulus s,

whereas the second component, ~εi, represents the trial-by-trial fluctuations, or “noise” in the neural

firing rates.

~ri = ~f(s) + ~εi (1)

The tuning curves were chosen to be either Von Mises functions (as in [13, 15, 21]), or, in the case

of untuned neurons, to be constants (Fig. 1A). The parameters of the tuning curves were randomly

drawn, using the same distributions as in [21].

The neurons’ noise variances were chosen to match the mean responses, in accordance with exper-

imental observations of Poisson-like variability. I considered different patterns of inter-neural correla-

tion, as described below.

For each set of tuning curves and correlations, I used the typical linear Fisher information measure,

I(s), to quantify the ability of downstream circuits to determine the stimulus, s, from the noisy neural

responses on each trial ~ri [11, 12, 13, 14, 15, 16, 18, 20, 17, 19, 21]:

I(s) = ~f ′T (s) [C(s)]−1 ~f ′(s), (2)

where the prime denotes a derivative with respect to the stimulus, the supserscript T denotes the

transpose operation, and C(s) = cov (~εi| s) is the covariance matrix of the noise in the neural responses

to stimulus s.

To compute the information for a subset of a neural population, I extracted the block of the

covariance matrix, and the elements of the vector ~f ′(s), that correspond to the neurons in that subset.

I then used those values in Eq. 2.

For all of the information values presented here, I computed the information for each of 50 different

stimulus values, evenly spaced over [0o, 360o]. The reported values are averages over these 50 stimuli.

This accounts for the fact that Fisher information I(s) is a local quantity which varies from stimulus to

stimulus. By averaging over many stimuli, I avoid the possibility that the reported information values

might be atypical, and affected by the specific stimulus at which the information was calculated.

Limited-range correlations, and Fig. 1

The elements of covariance matrix C(s) were Cij(s) =
√
fi(s)fj(s)ρij , where ρij is the correlation

between cells i and j. The factor of
√
fi(s)fj(s) ensures that the neurons have Poisson variability

(variance of noise is equal to mean firing rate, meaning that standard deviation of noise is equal to

square root of mean firing rate).

The correlation coefficients ρij were calculated from the equation in Fig. 1B. The tuning curve

separation ∆(φ) for each cell pair was computed as ∆(φ) = | arccos [cos(φi − φj)] |, where φi and φj are
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the cells’ preferred direction angles (the locations of their tuning curve peaks). This formula accounts

for the fact that angles “wrap” around the circle: so values of 10o and 350o have a separation of 20o

(and not 340o).

For the untuned neurons, their preferred stimulus angles were randomly assigned, uniformly over

the range [0o, 360o].

Differential correlations, “modified” differential correlations, and Fig. 3

For Fig. 3A (with differential correlations), the covariance matrix was given by

CA(s) = Co + ε~f ′(s)~f ′
T

(s), (3)

where ε is a (small) scalar parameter that sets the strength of the differential correlations, and Co is

a diagonal matrix with entries equal to the mean firing rates given by f(s). For ε = 0, this covariance

matrix describes independent neurons with Poisson variability. For the results in Fig. 3A, I chose

ε = 5× 10−3, corresponding to weak but non-zero differential correlations.

Because untuned neurons have zero slope to their tuning curves – meaning the corresponding

elements in ~f ′(s) are zeros – the differential correlations formula (Eq. 3) ensures that the untuned

neurons are independent from the tuned ones (as in Fig. 3A).

For Fig. 3B, I modified Eq. 3 in a fashion that kept the tuned subset of the population unchanged,

but made the untuned subset correlated with the tuned one. To do this, I used the formula

CB(s) = Co + ε~g(s)~gT (s), (4)

where gi(s) = f ′i(s) if the neuron is tuned, and gi(s) ∼ N (0, 5) if the neuron is untuned. If only the

subset of tuned neurons is considered, CA = CB. For the untuned neurons, the corresponding rows

and columns of CA are all zeros, whereas for CB, they are randomly generated non-zero values. Fig

3B used the same value of ε as Fig. 3A.

Analysis of in vivo neural recordings

Overview of the experiment

The full description of the experiment is given by [10], and so I briefly summarize here. GCaMP6f was

expressed in the excitatory neurons of the forebrain of mice. 2-photon imaging was used to measure

the fluorescence of neurons in visual cortex through a cranial window. The mice were presented with

drifting grating stimuli. The stimuli could move in any of 8 different directions, and at 5 different

temporal frequencies. The stimuli were presented for 2 seconds each, followed by a 1 second gray

screen before the next stimulus was presented. Each combination of direction and frequency was

presented repeatedly (either 15 or 30 times each, depending on the temporal frequency).

Data access and analysis

Following the example Jupyter notebook provided by [10] – which provides a template for accessing

the experimental data – I retrieved the following data: average ∆F/F values for each neuron on each
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trial, the stimulus direction for each trial, the neurons’ direction selectivity indices, and indicators of

whether or not each neuron was visually responsive. Only visually responsive neurons were analyzed,

and data were retrieved for 46 different experiments.

I calculated the tuning curves (Figs. 4A and B) by averaging the ∆F/F values for all trials of each

direction: this marginalizes over the different temporal frequencies. The noise correlations coefficients

(Figs. 4C and D) were computed over repeats of the same stimulus (same orientation and temporal

frequency), and then averaged over all stimuli.

For the decoding analyses, I used the k-nearest neighbors method (Fig. 5A) on the population

activity vectors observed on each trial. These vectors had as elements the ∆F/F values for all of

the visually responsive neurons (black curves in Figs. 5B, and vertical axis of Fig. 5C), for just the

direction selective cells (red curve in Figs. 5B, and horizontal axes of Figs. 5 C and D), or for random

subsets of visually responsive neurons that were the same size as the groups of direction selective cells

(Fig. 5D, vertical axis).

For each analysis, I iteratively considered each single-trial activity vector as a “test” data point,

and identified the k most similar other data points (smallest Euclidean distance) to the test point. I

then took a majority vote over the stimulus directions of these k neighboring points, to guess the most

likely stimulus direction for the test point. This was repeated for each test point, and I measured

the neural coding performance as the percentage of trials on which the estimated stimulus direction

matched the stimulus direction associated with the test point. (Note that, for decoding each data

point, the KNN decoder is constructed from all other data points. This means that the test point is

held-out from the decoder’s construction. This is important, because otherwise the test point would

be used to decode itself, which could yield erroneously high performance values.)

Following the example analysis of [10], direction selective cells were defined as those having a

direction selectivity index (DSI) greater than 0.5. DSI values were obtained from [10], and computed as

follows. Each cell’s preferred direction was determined (direction yielding maximum neural response).

The DSI was then defined as

DSI =
Rpref −Rnull

Rpref +Rnull
, (5)

where Rpref is the mean response to the preferred direction, and Rnull is the mean response to the

“null” direction, which is the direction 180o opposite to the preferred direction.

Statistical tests

After performing the KNN decoding separately on the full recorded populations, the tuned subsets

of neurons, and random subsets of neurons, I obtained 3 coding performance values for each of the

46 experiments. I first tested the distributions of these coding performance values for Gaussianity,

using the Kolmogorov-Smirnov (KS) test. All 3 distributions had KS statistics – which measure their

deviation from a Gaussian distribution with mean equal to the sample mean, and standard deviation

equal to the sample standard deviation – of less than 1, and p values of greater than 0.05, indicating

that they do not significantly differ from the Gaussian. Accordingly, it was appropriate to test the

significance of the diferences in coding performance using paired 1-sided t-tests.
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These comparisons were done the coding performance using only tuned neurons and: a) the coding

performance using all neurons; or b) the coding performance using random subsets of the neural

population that were the same size as the tuned subset.

Code and data availability

All experimental data used here was accessed from the Allen Institute’s database, and are freely

available there [10]. The custom Jupyter and Matlab scripts used for the theory study, and analysis

of experimental data, are available from the author upon request.
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Supplementary Figure 1: Populations with untuned neurons can encode more informa-

tion than ones with only tuned neurons – dependence on tuning fraction. (Related

to Fig. 1.) I repeated the calculations from Fig. 1, but with different fractions of neurons

left untuned in each population. For each such population, I computed the Fisher information.

Error bars are the S.E.M. over 5 random sets of different tuning curves.
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Supplementary Figure 2: Dependence of information on limited range correlation pa-

rameters. (Related to Fig. 1.) I repeated the calculations from Fig. 1, in all cases for

populations of 200 neurons. I repeated the calculations for different values of ρmax and λ, the

parameters that define the limited-range correlations. For each set of parameters, I computed

the ratio of Fisher information in the full population of 200 neurons, vs. the Fisher information

in just the tuned subset of (70% of) the population. Error bars are the S.E.M. over 10 random

sets of different tuning curves.

19

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2017. ; https://doi.org/10.1101/134379doi: bioRxiv preprint 

https://doi.org/10.1101/134379
http://creativecommons.org/licenses/by-nc/4.0/

