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Abstract 
A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete 

neurobiological “atoms”. Resting-state functional magnetic resonance imaging (rs-fMRI) 

offers the possibility of in-vivo human cortical parcellation. Almost all previous parcellations 

relied on one of two approaches. The local gradient approach detects abrupt transitions in 

functional connectivity patterns. These transitions potentially reflect cortical areal boundaries 

defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters 

similar functional connectivity patterns regardless of spatial proximity, resulting in parcels 

with homogeneous (similar) rs-fMRI signals. Here we propose a gradient-weighted Markov 

Random Field (gwMRF) model integrating local gradient and global similarity approaches. 

Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF 

parcellations to be more homogeneous than four previously published parcellations. 

Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas 

defined using histology and visuotopic fMRI. Some parcels captured sub-areal (somatotopic 

and visuotopic) features that likely reflect distinct computational units within known cortical 

areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful 

features of brain organization and are potentially useful for future applications requiring 

dimensionality reduction of voxel-wise fMRI data. Multi-resolution parcellations generated 

from 1489 participants are available 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal) 

 

Keywords: resting-state functional connectivity, Brodmann areas, brain parcellation, 

cytoarchitecture, retinotopy 
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Introduction 
 The human cerebral cortex is a thin folded sheet of neural tissue that provides the 

substrate for sensory and motor functions, and also higher mental processes that distinguish 

humans from other animals. Complex behavior arises from the transformation of neural 

signals across networks of distinct cortical areas (Ungerleider and Desimone 1986; Felleman 

and Van Essen 1991) that are putative atoms of neural processing. Accurate labeling of 

cortical areas is therefore an important problem in systems neuroscience (Amunts and Zilles 

2015).  

Cortical areas have traditionally been defined based on the idea that a cortical area 

should exhibit distinct function, architectonics, connectivity and topography (Kaas 1987; 

Felleman and Van Essen 1991; Eickhoff and Grefkes 2011). Each of these criteria can be 

interrogated using a broad range of invasive techniques, including direct electrophysiological 

recordings during behavioral manipulations to measure function (Shadlen and Newsome, 

1998) and topography (Hubel and Wiesel, 1965), histological staining of cell body 

distribution, myelination and transmitter receptor distribution to measure architectonics 

(Brodmann 1909; Vogt and Vogt 1919; von Economo and Koskinas 1925; Amunts and Zilles 

2015), and retrograde and anterograde tracing via axonal transport to measure neuronal 

connectivity (Peyron et al. 1997).  

 Advances in non-invasive brain imaging technologies, such as positron emission 

topography (PET; Raichle 1987; Petersen et al. 1988) and fMRI (Kwong et al. 1992; Ogawa 

et al. 1992), offer the possibility of estimating cortical areas in-vivo (Sereno et al. 1995; Hinds 

et al. 2009; Van Essen and Glasser 2014). One promising approach is resting-state functional 

connectivity (RSFC), which measures synchronization of rs-fMRI signals between brain 

regions while a subject is lying at rest in the scanner, not performing any directed task (Biswal 

et al. 1995). Although not a direct measure of anatomical connectivity (Vincent et al. 2007; 

Honey et al. 2009; Lu et al. 2011), RSFC is sufficiently constrained by anatomy to provide 

insights into large-scale circuit organization (Fox and Raichle 2007; Buckner et al. 2013) and 

are strongly associated with task-evoked networks (Smith et al. 2009; Mennes et al. 2010; 

Cole et al. 2014; Krienen et al. 2014; Bertolero et al. 2015; Yeo et al. 2015a; Tavor et al. 

2016). In addition, RSFC is heritable (Glahn et al. 2010; Yang et al. 2016) and correlated with 

gene expression across the cortical mantle (Hawrylycz et al. 2015; Richiardi et al. 2015; 

Krienen et al. 2016).  

 Consequently, rs-fMRI has been widely utilized to estimate large-scale brain networks 

(Greicius et al. 2003; Beckmann et al. 2005; Vincent et al. 2008; Damoiseaux et al. 2006; De 
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Luca et al. 2006; Fox et al. 2006; Vincent et al. 2006; Dosenbach et al. 2007; Margulies et al. 

2007; Seeley et al. 2007; Calhoun et al. 2008; Zuo et al. 2010). While some work has focused 

on parcellating the brain into a small number of (less than twenty) functional systems (van 

den Heuvel et al. 2008; Bellec et al. 2010; Power et al. 2011; Lee et al. 2012; Zuo et al. 2012; 

Hacker et al. 2013), others have focused on finer subdivisions (Cohen et al. 2008; Eickhoff et 

al. 2011; Craddock et al. 2012; Blumensath et al. 2013; Ryali et al. 2013; Shen et al. 2013; 

Wig et al. 2014a; Honnorat et al. 2015; Glasser et al. 2016). Given that there is an estimated 

300 to 400 classically defined cortical areas in the human cerebral cortex (Van Essen et al. 

2012a), these final subdivisions might correspond with more precision to cortical areas 

(Gordon et al. 2016).  

 These finer brain parcellations might also capture sub-areal features since classically 

defined cortical areas are often not homogeneous (Kaas 1987). Well-known intra-areal 

heterogeneities include occular dominance bands, orientation bands, and cytochrome oxidase 

dense puffs within primary visual cortex (Livingstone and Hubel 1984). Heterogeneity can be 

observed even at the macro-scale (i.e., at the resolution of fMRI), such as somatotopy within 

primary somatosensory cortex (Lotze et al., 2000). Such heterogeneities have prompted a 

recent proposal to delineate parcels that might be referred to as “neurobiological atoms” 

(Eickhoff et al., 2017). The difference between traditional cortical areas and neurobiological 

atoms is especially salient for brain regions that are topographically organized. For example, 

the different body representations are arguably distinct neurobiological units and might 

therefore warrant differentiation. Indeed, when modeling a behavioral task with button press, 

it is probably useful to distinguish between the hand and tongue motor regions. Existing rs-

fMRI parcellations (Yeo et al. 2011; Long et al., 2014; Gordon et al. 2016) already appeared 

to capture certain sub-areal features, including somatotopy and visual eccentricity (Buckner 

and Yeo 2014). 

 There are two major approaches to parcellating the brain using rs-fMRI: local gradient 

and global similarity approaches. The local gradient or boundary mapping approach (Cohen et 

al. 2008; Nelson et al. 2010; Hirose et al. 2012; Wig et al. 2014b; Laumann et al. 2015; 

Gordon et al. 2016; Xu et al. 2016) exploits the fact that RSFC patterns can abruptly change 

from one spatial location to a nearby location. These abrupt changes can be detected by 

computing local gradients in whole brain RSFC patterns. Previous work suggests that the 

local gradient approach is especially suited for delineating cortical areas because detecting 

abrupt changes in RSFC is similar to histological delineation of cortical areas (Cohen et al. 

2008; Buckner and Yeo 2014; Wig et al. 2014b). 
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 In contrast, the global similarity approach (e.g., mixture models and spectral 

clustering) cluster brain regions based on similarity in rs-fMRI time courses or RSFC patterns 

(van den Heuvel et al. 2008; Power et al. 2011; Yeo et al. 2011; Craddock et al. 2012; Ryali et 

al. 2013; Shen et al. 2013; Honnorat et al. 2015). The global similarity approaches often 

disregard spatial distance (e.g., medial prefrontal and posterior cingulate regions can be 

grouped into the same default network despite their spatial distance), although some 

approaches discourage spatially disconnected parcels (Honnorat et al. 2015) or neighboring 

brain locations to have different parcellation labels (Ryali et al. 2013). Because the global 

similarity approach seeks to group voxels or vertices with similar rs-fMRI time courses or 

RSFC patterns, the resulting parcels might be highly connectionally homogeneous, suggesting 

that the parcels might reflect putative neurobiological atoms (Eickhoff et al., 2017). Just as 

importantly, the parcellations might potentially be utilized as a dimensionality reduction tool 

in many rs-fMRI applications, where dealing with the fMRI data at the original voxel level 

resolution is difficult (Finn et al. 2015; Smith et al. 2015). In these applications, each parcel 

could be represented by an average time course of voxels or vertices within the parcel. 

Therefore the voxels or vertices constituting a parcel should ideally have very similar fMRI 

time courses. 

 Local gradient approaches do generate homogeneous parcels (Gordon et al. 2016) 

because they implicitly encourage homogeneity by discouraging high RSFC gradients within 

a parcel. However, because global similarity approaches explicitly optimize for connectional 

homogeneity, they should in theory be able to produce more homogeneous parcels than local 

gradient approaches. On the other hand, local gradient approaches appear to be more sensitive 

to certain biological boundaries than global similarity approaches. For example, boundary 

between areas 3 and 4 is captured by local gradient approaches (Gordon et al. 2016), but not 

global similarity approaches (Craddock et al. 2012; Shen et al. 2013). Therefore integrating 

local gradient and global similarity approaches might generate parcellations that are both 

neurobiological meaningful and useful for future applications requiring dimensionality 

reduction.   

In this work, we developed a gradient-weighted Markov Random Field (gwMRF) 

model that fuses the local gradient and global similarity approaches. MRFs are used in many 

neuroimaging software packages for delineating anatomical structures (Zhang et al., 2001; 

Fischl et al., 2002). For example, the FSL FAST (Zhang et al., 2001) MRF model balances a 

global similarity objective that encourages voxels with similar T1 intensities to be labeled the 

same structure with a local smoothness objective that encourages neighboring voxels to have 
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the same labels (Zhang et al., 2001). The key idea in this paper is to modify the local 

smoothness objective to encourage neighboring voxels to have the same labels only in the 

presence of low local RSFC gradients. The resulting gwMRF fusion model was compared 

with four publicly available parcellations (Craddock et al. 2012; Shen et al. 2013; Glasser et 

al. 2016; Gordon et al. 2016) using multiple multimodal datasets across MNI, fsaverage and 

fsLR coordinate systems.  After controlling for the number of parcels, our results suggest that 

compared with other fully automatic approaches, parcellations generated by the gwMRF 

approach enjoy greater functional and connectional homogeneity as measured by task-fMRI 

and rs-fMRI respectively, while achieving comparable agreement with architectonic and 

visuotopic boundaries. Finally, we applied the gwMRF model to 1,489 participants from the 

Genomics Superstruct Project (GSP; Holmes et al., 2015) yielding 400, 600, 800 and 1000 

parcels, which are publicly available as reference maps for future studies 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal). 
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Methods 

Overview 

 A gwMRF parcellation procedure was developed and applied to a rs-fMRI dataset (N 

= 744) from the Genomics Superstruct Project. The resulting parcellations were compared 

with four previously published rs-fMRI parcellations using multimodal data from multiple 

scanners with diverse acquisition and processing protocols. A final set of gwMRF 

parcellations at different spatial resolutions were estimated from the full GSP dataset (N = 

1489) and further characterized.  

 

Genomics Superstruct Project (GSP) Data 

 The primary dataset utilized in this work consisted of structural MRI and rs-fMRI data 

from 1,489 young adults (ages 18 to 35) of the Genomics Superstruct Project (GSP; Holmes 

et al., 2015). All imaging data were collected on matched 3T Tim Trio scanners (Siemens 

Healthcare, Erlangen, Germany) at Harvard University and Massachusetts General Hospital 

using the vendor-supplied 12-channel phased-array head coil. One or two fMRI runs were 

acquired per participant – 1,083 participants had two runs, 406 participants had one run. Each 

run was acquired in 3mm isotropic resolution with a TR of 3.0 seconds and lasted for 6 

minutes and 12 seconds. The structural data consisted of one 1.2mm isotropic scan for each 

subject.  

Details of the data collection and preprocessing can be found elsewhere (Yeo et al. 

2011; Holmes et al. 2015). Briefly, structural scans were processed using FreeSurfer 4.5.0 

(http://surfer.nmr.mgh.harvard.edu; Fischl 2012) and structure-function registration was 

performed using FsFast (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast; Greve and Fischl 

2009). Functional preprocessing steps included slice time correction, motion correction, low 

pass temporal filtering retaining frequencies below 0.08Hz, regression of motion parameters, 

ventricular signal, white matter signal, whole brain signal, and linear trend. The final data was 

projected onto the fsaverage6 surface space (where vertex spacing is roughly 2mm) and 

smoothed using a 6mm full-width half-maximum kernel. Preprocessing of the GSP data 

followed the official data release publication (Holmes et al. 2015). However, we recognize 

that certain preprocessing steps (e.g., whole brain signal regression) are controversial. 

Therefore additional rs-fMRI datasets preprocessed with alternate pipelines were employed to 

evaluate the parcellations (see Parcellation Evaluation Metrics section). The full GSP dataset 

was divided into training (N = 744) and test (N = 745) sets. 
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Gradient-weighted Markov Random Field (gwMRF) Parcellation  

 MRF models (Geman and Geman, 1984) are utilized in many well-known 

neuroimaging software packages for segmenting anatomical brain regions, including 

FreeSurfer (Fischl et al. 2002; Fischl et al., 2004) and FSL (Zhang et al., 2001). In these 

software packages, the typical goal is to assign an anatomical label (e.g., white matter, gray 

matter, cerebrospinal fluid and background) to all brain locations.  

A typical MRF model consists of an objective function with multiple competing terms, 

encoding tradeoffs between ideal properties of the final segmentation (Fischl et al., 2002; 

Fischl et al., 2004). The objective function almost always contains a global similarity term 

that encourages brain locations with similar image intensities to be assigned a shared label 

regardless of spatial proximity (Zhang et al., 2001). For instance, all white matter voxels 

should have high signal intensities in T1 MRI. If the objective function consists of only the 

global similarity term, then the MRF is also known as a mixture model, which is a superclass 

of the particular global similarity approach employed in Yeo et al. (2011).  

 In addition to the global similarity term, MRF objective functions almost always 

include a second “pairwise” term that encodes desired relationships between adjacent brain 

locations. As an example, a common pairwise term (known as the Potts model) encourages 

neighboring brain locations to have the same segmentation label (Zhang et al., 2001; Ryali et 

al., 2013). This pairwise term is useful for handling noise inherent in MRI. For example, a 

white matter voxel might exhibit abnormally low intensity, resulting in an incorrect label if 

the objective function consists of only the global similarity term. However, in cases where the 

voxel is surrounded by correctly labeled white matter voxels, the additional pairwise Potts 

model might overcome the global similarity term, and generate an accurate label assignment.  

 Our gwMRF parcellation procedure utilizes three terms in the MRF objective function. 

The first term in the objective function is the analogue of the von Mises-Fisher mixture model 

employed in Yeo et al. (2011), and thus encodes the global similarity approach. When applied 

to preprocessed fMRI data from a group of participants, the fMRI time courses are 

concatenated after normalization to mean of zero and standard deviation of one. The resulting 

global similarity term encourages brain locations with similar fMRI time courses to be 

assigned to the same parcel. Our particular choice of time course similarity is equivalent to 

the Pearson product-moment correlation coefficient computed for each participant and then 

averaged across participants (see Supplementary Methods S1 for details). 

The second term in the MRF objective function is a pairwise term that encodes the 

local gradient approach. Unlike the Potts model, which penalizes any adjacent pairs of brain 
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locations with different parcellation labels, our pairwise term down weighs the penalties in the 

presence of strong local RSFC gradients (hence the name “gradient weighted”). In this work, 

we utilize state-of-the-art RSFC gradients computed by Gordon et al. (2016), where the 

gradients ranged in values from zero to one. As the gradient magnitude between two adjacent 

brain locations increases from zero to one, the penalty of the two brain locations having 

different parcellation labels decreases exponentially to zero.    

 If the MRF objective function contains only the previous two terms, then the resulting 

parcellation will contain many spatially distributed parcels because of strong long-range 

RSFC. Requiring parcels to be spatially connected in a MRF framework (with minimal other 

assumptions) is non-trivial (Nowozin and Lampert 2010; Honnorat et al. 2015). Here we 

include a third spatial connectedness term in the MRF objective function, which encourages 

brain locations constituting a parcel to not be too far from the parcel center. If the third term 

in our MRF objective function is sufficiently strong, then parcels will indeed become spatially 

connected. This approach is significantly less computationally expensive than competing 

approaches (Nowozin and Lampert 2010; Honnorat et al. 2015). 

 More details of the gwMRF model (objective function) can be found in Supplementary 

Methods S1. Given the MRF objective function and data from a cortical hemisphere, a final 

parcellation can be obtained by optimizing the objective function with various standard 

techniques. Here we utilize graph cuts (Delong et al., 2010) within a maximum-a-posteriori 

(MAP) estimation framework. Readers should note that the third term in the objective 

function exists to ensure parcels are spatially connected. However, an overly strong third term 

would result in extremely round parcels, which are not biologically plausible. For example, 

we expect cortical areas in the cingulate to be long and narrow (Vogt 2009). To avoid this 

issue, the optimization procedure starts with a strong weight on the third term and then 

gradually decreases the weight of this third term. While there is no theoretical guarantee, we 

find that the third term is driven to zero for almost all parcels in practice. Details of our 

optimization procedure can be found in Supplementary Methods S2. The parcellation code is 

publicly available 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal) 

 

Parcellation Evaluation Metrics 

 If the estimated parcels were indeed neurobiological atoms of the cerebral cortex, then 

each parcel should have uniform (homogeneous) function and connectivity, as well as 
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correspond well with boundaries of cortical areas delineated with architectonics and 

topography. Therefore to assess the quality of a given cerebral cortex parcellation, evaluation 

metrics based on multimodal measurements of function, architectonics, connectivity and 

visuotopy were considered. The evaluation metrics will be utilized to compare gwMRF 

parcellations with other publicly available parcellations after controlling for the number of 

parcels (next section). 

 

1. Architectonics. Ten human architectonic areas 17, 18, 1, 2, 3 (combining areas 3a and 

3b), 4 (combining areas 4a and 4p), 6, hOc5, 44 and 45 (Geyer et al. 1996, 1999, 2000, 

2001; Amunts et al. 1999, 2000, 2004; Geyer 2004; Malikovic et al. 2007) were 

considered. The histological areas were mapped to fsLR surface space by Van Essen et 

al. (2012a) based on Fischl et al. (2008). Alignment between the architectonic and 

parcellation boundaries was numerically assessed using average Hausdorff distance (Yeo 

et al. 2010). Briefly, for each boundary vertex of each architectonic area, the geodesic 

distance to the closest parcellation boundary was computed.  

The geodesic distances were averaged across all boundary vertices of an 

architectonic area, resulting in a Hausdorff distance for each architectonic area (shown in 

Figure 2 of Results). Smaller Hausdorff distance indicates better agreement between 

parcellation and histological boundaries. When comparing between parcellations, paired-

sample t-test (dof = 19) was performed on the Hausdorff distances on both hemispheres.  

 

2. Visuotopy. 18 retinotopic areas in fsLR space from a previous study were considered 

(Abdollahi et al. 2014). The retinotopic areas were obtained with fMRI visuotopic 

mapping in individual subjects and then transformed and averaged in fsLR space using 

multimodal surface matching (Abdollahi et al. 2014). One tricky issue is that stimulating 

peripheral visual field is hard, and hence visuotopic maps tend to span about half the true 

extent of each area (Hinds et al. 2009). Consequently, only boundary vertices bordering 

adjacent retinotopic areas were considered as valid boundary vertices. In total, there were 

46 pairs of adjacent retinotopic areas for both hemispheres. Agreement between the 

visutopic and parcellation boundaries was assessed using average Hausdorff distance. For 

each valid visuotopic boundary vertex, the geodesic distance to the closest parcellation 

boundary vertex was computed.  

The geodesic distances were averaged across all boundary vertices of each 

adjacent pair of retinotopic areas (e.g., V1 and V2), and then averaged across all 46 pairs 
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of retinotopic areas, resulting in a single average distance for all retinotopic areas shown 

in Figure 5 of Results. When comparing parcellations, paired-sample t-test (dof = 45) was 

performed on the hausdorff distances. 

 

3. Function. Task-fMRI data from the Human Connectome Project (HCP) S900 release in 

fsLR surface space (Barch et al. 2013) was utilized to evaluate the functional 

homogeneity of the parcels. This dataset comprises seven cognitive domains: social 

cognition, motor, gambling, working memory, language processing, emotional processing 

and relational processing. The subset of subjects (N = 745) with available z-maps for all 

contrasts was considered. To assess the functional inhomogeneity of a parcellation, the 

standard deviation of z-values for each parcel was computed for each task contrast. A 

lower standard deviation indicates higher functional homogeneity within the parcel. The 

standard deviations were averaged over all parcels while accounting for parcel size:  

𝑠𝑑!!
!!! 𝑙

𝑙!
!!!

,                                    (1) 

where 𝑠𝑑! is the standard deviation of task activation z-values for parcel 𝑙 and 𝑙  is the 

number of vertices in parcel 𝑙.  

The functional inhomogeneity metric (Eq. (1)) was computed separately for each 

participant and each task contrast and then averaged across all contrasts within a 

cognitive domain, resulting in a functional inhomogeneity measure per cognitive domain 

(shown in Figure 3 of Results). The number of task contrasts per cognitive domain ranges 

from three for the emotion domain to eight for the working memory domain. When 

comparing between parcellations, the inhomogeneity metric (Eq. (1)) was averaged 

across all contrasts within a cognitive domain and then averaged across all seven 

cognitive domains before a paired-sample t-test (dof = 744) was performed.  

 

4. Connectivity. To assess the functional connectivity homogeneity of a parcellation, we 

utilized rs-fMRI data from three different datasets. The first dataset is the GSP test set (N 

= 745) discussed in the Genomics Superstruct Project (GSP) Data section. To assess 

whether a parcellation would generalize well to data from different scanners, acquisition 

protocols, preprocessing strategies, coordinate systems and population groups, we 

considered two additional datasets.  

The first additional dataset was the group-averaged connectivity matrix (N = 

820) in fsLR space from the HCP S900 release (Van Essen et al. 2012b; Smith et al. 
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2013). Details of the HCP data collection, preprocessing and functional connectivity 

matrix computation can be found elsewhere (HCP S900 manual; Van Essen et al. 2012b; 

Glasser et al. 2013; Smith et al. 2013). The main differences between the HCP and GSP 

data were that the HCP data were collected on a custom-made Siemens 3T Skyra scanner 

using a multiband sequence, and denoised using ICA-FIX (Griffanti et al. 2014) and 

Wishart soft thresholding with minimal (2mm) smoothing (HCP S900 manual; Glasser et 

al. 2016).  

The second dataset consisted of 205 subjects from the Nathan Kline Institute 

(NKI) Rockland Sample Release 1-3 (Nooner et al., 2012) normalized to MNI volumetric 

space. The NKI dataset have been employed in several recent lifespan connectomics 

studies (Betzel et al. 2014; Cao et al. 2014; Yang et al. 2014; Jiang et al. 2015; Xu et al. 

2015). The major difference between the GSP and NKI datasets was that the NKI dataset 

consisted of participants ranging from ages 6 to 85, offering the opportunity to assess the 

performance of the parcellations across the human lifespan (Zuo et al., 2017). Two major 

differences between the GSP and NKI preprocessing were that anatomical CompCor 

(instead of whole brain signal regression) and no smoothing were applied to the NKI 

dataset (Behzadi et al. 2007; Schaefer et al. 2014). Details of the NKI data collection and 

preprocessing can be found elsewhere (Nooner et al. 2012; Schaefer et al. 2014). The 

preprocessing pipeline can be downloaded from 

https://github.com/alexschaefer83/DynamicHubs/ 

Functional connectivity homogeneity was computed by averaging Pearson 

moment-product correlation coefficients between all pairs of vertices (or voxels) within 

each parcel. The average correlations are then averaged across all parcels while 

accounting for parcel size:  

𝜌!!
!!! 𝑙

𝑙!
!!!

,                                (2) 

where 𝜌! is the functional connectivity homogeneity of parcel 𝑙 and 𝑙  is the number of 

vertices (or voxels) for parcel 𝑙.  

The functional connectivity homogeneity metric (Eq. (2)) was computed for 

each participant separately and averaged across participants, except for the HCP group-

averaged connectivity matrix where inter-subject averaging has already been performed. 

The resulting functional connectivity homogeneity measures are shown in Figure 4 of 

Results. When comparing between parcellations, the homogeneity metric (Eq. (2)) was 

computed for each participant separately before a paired-sample t-test (dof = 744 for 
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GSP, dof = 204 for NKI) was performed. Statistical test could not be performed for the 

HCP data because the HCP group-averaged connectivity matrix was utilized.	

 

We note that a cortical parcellation with more parcels will on average perform better on the 

proposed evaluation metrics. The reason is that a cortical parcellation with more parcels will 

have smaller parcels on average. Smaller parcels are likely to be more functionally and 

connectionally homogeneous. Similarly, more parcels lead to more boundary vertices, and 

would therefore enjoy better (lower) architectonic and visuotopic Hausdorff distance (on 

average. Therefore, when comparing parcellations, it is important to control for the number of 

parcels as discussed in the next section. 

 

Comparison with Other Parcellations  

To evaluate the quality of our parcellation procedure, the gwMRF model was applied 

to the GSP training set (N = 744). The setting of various “free” parameters in the gwMRF 

model can be found in Supplementary Methods S6. The resulting gwMRF parcellations were 

compared to four publicly available parcellations (Craddock et al. 2012; Shen et al. 2013; 

Glasser et al. 2016; Gordon et al. 2016) using criteria described in the Parcellation Evaluation 

Metrics section. Three of the parcellations were generated using fully automatic algorithms 

from rs-fMRI (Craddock et al. 2012; Shen et al. 2013; Gordon et al. 2016), while one 

parcellation was generated from the application of a semi-automatic algorithm to multimodal 

data, including rs-fMRI, relative myelin mapping and task-fMRI (Glasser et al., 2016). The 

semi-automatic algorithm required an anatomist to manually select multimodal gradients that 

fitted prior anatomical knowledge of cortical areas. The Gordon and Glasser parcellations 

consisted of 333 and 360 parcels respectively. Parcellations of multiple resolutions were 

available for Craddock et al. (2012) and Shen et al. (2013). Since it has been estimated that 

there are between 300 to 400 human cortical areas (Van Essen et al. 2012a), the Shen and 

Craddock parcellations with 300 and 400 parcels respectively were considered.  

There were several issues worth elaborating when comparing brain parcellations. The 

first issue was the number of parcels 𝐿. As discussed in the previous section, as the number of 

parcels increases, the parcellation will on average perform better in all the proposed 

evaluation metrics. To control for the number of parcels 𝐿, the gwMRF parcellation procedure  

was run with different number of parcels to match the four publicly available parcellations. In 

the case of the Gordon parcellation, there were vertices between parcels not assigned to any 

parcellation label, which generally increased the performance of the parcellation on all 
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evaluation metrics. Therefore, boundary vertices with the worst connectional homogeneity in 

the GSP training set were removed from the gwMRF parcellation to match the number of 

unlabeled vertices in the Gordon parcellation.  

The second important issue is that the parcellations were in different coordinate 

systems. Gordon and Glasser parcellations were in fsLR surface space, Shen and Craddock 

parcellations were in MNI volumetric space, and the gwMRF parcellations were in fsaverage 

space. Similarly, the evaluation data were in different coordinate systems. The architectonic, 

visuotopic and task fMRI data were in fsLR surface space. The GSP rs-fMRI data were in 

fsaverage space, the HCP rs-fMRI data were in fsLR surface space, while the NKI rs-fMRI 

data were in MNI152 volumetric space. For evaluation, the different parcellations were 

transformed to the coordinate system where the evaluation data resided. For example, to 

evaluate connectional homogeneity using the GSP test set (which resided in fsaverage surface 

space), the Gordon, Glasser, Shen and Craddock parcellations were transformed to fsaverage 

surface space. As another example, to evaluate alignment with architectonic and visuotopic 

boundaries (which resided in fsLR surface space), the Shen, Craddock and gwMRF 

parcellations were transformed into fsLR space. The nonlinear transformations between fsLR 

and fsaverage spaces, as well as between fsaverage and MNI spaces are detailed elsewhere 

(Buckner et al. 2011; Van Essen et al., 2012a; 

http://sumsdb.wustl.edu/sums/directory.do?id=8291757&dir_name=Inter-

atlas_deformation_maps). 

The two issues (number of parcels and coordinate systems) actually interacted because 

transforming a parcellation to a target coordinate system might affect the resulting number of 

parcels. For example, the Shen and Craddock parcellations included subcortical structures. 

Mapping their parcellations to fsaverage (or fsLR) space reduced the number of parcels, 

resulting in 236 and 348 parcels for the Shen and Craddock parcellations respectively. For 

comparisons in fsaverage (or fsLR) space, the gwMRF parcellation algorithm was run to 

ensure the same number of parcels as the Shen and Craddock parcellations. On the other hand, 

when comparing the gwMRF parcellations to the Shen or Craddock parcellation in MNI 

space, a masking procedure ensured the parcellations covered the same aspects of the cerebral 

cortex. This masking procedure modified the number of parcels, resulting in 243 and 360 

parcels for the Shen and Craddock parcellations respectively. For comparisons in MNI space, 

the gwMRF parcellation algorithm was run to ensure the same number of parcels as the Shen 

and Craddock parcellations.  
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Transforming the Shen and Craddock parcellations to the surface spaces was 

technically challenging. Despite the highly accurate mapping between MNI and fsaverage 

space developed in Buckner et al. (2011), the transformed parcellations in surface space 

tended to have rough borders resulting in reduced functional homogeneity. To alleviate such 

biases, the parcellation boundaries were smoothed on the surface space. The post-processing 

procedure served to improve the performance of the transformed parcellations and the 

resulting parcellations appeared visually appealing (Figure S1). Nevertheless, all biases could 

not be fully removed and so a parcellation created and evaluated in coordinate system X 

would have inherent advantages in its native space over parcellations created in a different 

coordinate system and then projected to coordinate system X. Therefore the results should be 

interpreted with care.  

 

Stability of gwMRF Parcellations with 400, 600, 800 and 1000 Areas 

 The gwMRF parcellation algorithm was applied to the GSP training and test sets 

independently. Parcellations with 400, 600, 800 and 1000 areas were obtained. The setting of 

various “free” parameters in the gwMRF model can be found in Supplementary Methods S6. 

To visually appreciate agreement between training and test parcellations, boundaries of both 

parcellations were overlaid on fsLR inflated surfaces. Quantitative agreement between the 

training and test parcellations was assessed based on the percentage of vertices assigned to the 

same parcels.  

 

Cerebral Cortex Parcellation of 1,489 participants 

  The gwMRF parcellation algorithm was applied to the full GSP dataset (N = 1,489) to 

generate a population atlas of cerebral cortical parcellation, which we have made publicly 

available 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal). Given the hierarchical organization of the cerebral cortex, we do not 

believe that a single-resolution parcellation will be optimal across all applications. 

Consequently, we generated parcellations with 400, 600, 800 and 1000 areas. The 

parcellations are available in fsaverage and fsLR surface spaces, as well as MNI152 

volumetric space. 

 

Network structure of gwMRF parcellations  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2017. ; https://doi.org/10.1101/135632doi: bioRxiv preprint 

https://doi.org/10.1101/135632
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

 To investigate whether the parcellations preserved the community structure of the 

original data, the parcellations were clustered into 7 and 17 networks using a similar 

procedure to Yeo et al. (2011) applied to the full GSP dataset. For a 𝐿-area parcellation 

(where 𝐿 is 400, 600, 800 or 1000), an average time course for each parcel and each subject 

was computed. For each subject, an 𝐿 x 𝐿 correlation matrix was then computed using the 

averaged time courses. Similar to Yeo et al. (2011), each correlation matrix was binarized (by 

keeping only the top 10% of the correlation entries) and averaged across the 1489 subjects. 

The resulting binarized and averaged correlation matrix was clustered into 7 and 17 networks 

using the von Mises-Fisher mixture model and compared with the networks from Yeo et al. 

(2011).  

 

Further characterization of the 400-area parcellation 

The 400-area parcellation was further characterized by juxtaposing the parcels against 

boundaries of architectonic and visuotopic areas, as well as visualizing its relationship with 

task activation and connectional homogeneity. We also compared the distribution of parcel 

volumes against the four previously published parcellations.  
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Results 
Local gradient and global similarity approaches capture different aspects of architectonic 

boundaries 

 Figure 1 overlays the boundaries of histologically defined areas 3 and 44 (Amunts et 

al. 1999; Geyer et al. 1999; Fischl et al. 2008; Van Essen et al. 2012a) on the parcels 

generated from three different approaches. The local gradient approach corresponded to the 

333-area Gordon parcellation (Gordon et al., 2016). The gwMRF fusion approach 

corresponded to the application of the gwMRF parcellation procedure to the GSP training set 

with 333 parcels (see Methods). The global similarity approach corresponded to the gwMRF 

algorithm with the pairwise term in the objective function removed (i.e., the local gradients 

have no influence on the resulting parcellation), with all other parameters the same as the 

gwMRF fusion parcellation. 

 

------------------------------------------------------------------ 

Insert Figure 1 About here 

------------------------------------------------------------------ 

 

Compared with the global similarity approach, parcels generated by the local gradient 

approach agreed better with area 3 boundary (bottom row of Figure 1). Geodesic (average 

Hausdorff) distance was 4.7mm for the local gradient approach compared with 5.1mm for the 

global similarity approach. Lower distance indicates better agreement. The “bleeding” of 

cortical parcels across the central sulcus could not be easily avoided without taking into 

account the local gradients. On the other hand, parcels generated by the local gradient 

approach overestimated the posterior boundary of area 44, while the global similarity 

approach underestimated the posterior and anterior portions of area 44 (top row of Figure 2). 

Geodesic distance was 5.8mm for the local gradient approach and 6.6mm for the global 

similarity approach. By fusing the local and global approaches, the resulting parcellation 

agreed well with both areas 3 and 44 with geodesic distances of 3.9mm and 4.2mm 

respectively. 

  

Compared with other fully automatic approaches, the gwMRF model yielded parcellations 

with comparable architectonic alignment 

 Figure S1 shows four publicly available parcellations (Craddock, Shen, Gordon and 

Glasser) and corresponding gwMRF parcellations with matching number of parcels. Figure 
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S2 shows the geodesic distances between the boundaries of ten histologically defined 

architectonic areas (Geyer et al. 1996, 1999, 2000, 2001; Amunts et al. 1999, 2000, 2004; 

Geyer 2004; Malikovic et al. 2007) and the boundaries of parcellations generated by the 

gwMRF model and four publicly available parcellations. Lower distance indicates better 

agreement (details in Methods).  

Across ten histological areas, the gwMRF parcellations achieved comparable 

architectonic distance with Gordon (p = 0.076 uncorrected), better distance than Craddock (p 

= 0.049 uncorrected), better distance than Shen (p = 2.7e-5 uncorrected) and worse distance 

than Glasser (p = 0.042 uncorrected).  

Relative to the gwMRF parcellation, the Glasser parcellation performed especially 

well for certain early sensory and late motor areas (areas 17, 18, hOc5, 3, 4). Relative to the 

Glasser parcellation, the gwMRF parcellation performed especially well for early 

somatosensory area 2 and was slightly better in putative language areas 44 and 45. The 

Glasser parcellation utilized a semi-automatic approach requiring an anatomist to manually 

select specific multimodal information that matches prior knowledge of areal boundaries. The 

variable differences across architectonic areas might reflect the priorities of the anatomist.  

 

Compared with other fully automatic approaches, the gwMRF model yielded parcellations 

with comparable visuotopic alignment 

 Figure S3 shows the geodesic distances between the boundaries of 18 visuotopically-

mapped retinotopic areas from a previous study (Abdollahi et al. 2014) and the boundaries of 

parcellations generated by the gwMRF model and four publicly available parcellations. Lower 

distance indicates better agreement (details in Methods).  

Across 18 visuotopic areas, the gwMRF parcellations achieved lower visuotopic 

distance than Gordon (p = 8.7e-3 uncorrected), comparable distance with Craddock (p = 0.37 

uncorrected), comparable distance with Shen (p = 0.21 uncorrected) and worse distance than 

Glasser (p = 1.8e-6 uncorrected). As noted above, the Glasser parcellation utilized an 

approach that semi-automatically selected specific multimodal information to match prior 

knowledge of areal boundaries. 

 

Compared with other approaches, the gwMRF model yielded parcellations with higher 

functional homogeneity 

 Figure 2 compares the functional inhomogeneity of parcellations generated by the 

gwMRF model with four publicly available parcellations. Using the HCP task-fMRI data (N = 
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745), functional inhomogeneity was measured by computing standard deviation of fMRI task 

activation (z-scores) within each parcel, and then averaged across all parcels and contrasts of 

a cognitive domain (details in Methods). Comparisons between the subplots (e.g., Figures 2A 

and 2B) are not meaningful because the number of parcels is different across the parcellations.  

 

------------------------------------------------------------------ 

Insert Figure 2 About here 

------------------------------------------------------------------ 

 

The gwMRF model generated parcellations that were significantly more functionally 

homogeneous than Gordon (p ≈ 0), Craddock (p ≈ 0), Shen (p ≈ 0) and Glasser (p = 4.8e-229) 

with average improvements of 4.7% (Gordon), 2.7% (Craddock), 2.3% (Shen), and 0.8% 

(Glasser). It is worth mentioning that the Glasser parcellation enjoyed inherent advantage in 

this evaluation because the parcellation was partially derived from this dataset, as well as 

defined in the same surface space (fsLR) as the dataset.  

 

Compared with other approaches, the gwMRF model yielded parcellations with higher 

connectional homogeneity 

 Figure 3 compares the connectional homogeneity of parcellations generated with the 

gwMRF model with four publicly available parcellations. Using rs-fMRI data from the (A) 

GSP (N = 745) in fsaverage space, (B) HCP (N = 820) in fsLR space and (C) NKI (N = 205) 

in MNI space, connectional homogeneity was measured by averaging pairwise correlations 

within a parcel and across the cortex (details in Methods). We note that for the same 

parcellation, the number of parcels might be slightly different across coordinate systems due 

to masking and filtering operations (see Methods).  

 

------------------------------------------------------------------ 

Insert Figure 3 About here 

------------------------------------------------------------------ 

 

The gwMRF model generated parcellations that were significantly more 

connectionally homogeneous than Gordon (NKI: p = 9.4e-111, GSP: p ≈ 0), Craddock (NKI: 

p = 3.1e-59, GSP: p ≈ 0), Shen (NKI: p = 2.8e-28, GSP: p ≈ 0) and Glasser (NKI: p = 6.3e-

110, GSP: p ≈ 0). No p value was computed for the HCP dataset because the HCP group-
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averaged dense connectivity matrix was utilized (so there was no access to connectional 

homogeneity computed in individual subjects). However, given that the HCP dataset was 

larger than the other two datasets, it is probably safe to assume that improvement in 

connectional homogeneity was statistically significant.  

Across the datasets, the gwMRF model generated parcellations with average 

improvements of 8.0% (Gordon), 4.5% (Shen), 4.6% (Craddock) and 7.7% (Glasser). It is 

worth mentioning that the Glasser parcellation enjoyed inherent advantage for the HCP 

dataset because the Glasser parcellation was partially derived from this dataset and defined in 

the same surface space (fsLR) as the rs-fMRI data.  

We also note that across all three datasets, the 333-area gwMRF parcellation was more 

connectionally homogeneous than the 360-area gwMRF parcellation even though more 

parcels should generally lead to higher homogeneity. This discrepancy arose because for the 

333-area parcellation, border vertices were unlabeled to match the Gordon parcellation (see 

details in Methods), thus artificially boosting connectional homogeneity. Another interesting 

observation was that the Craddock parcellation enjoyed superior connectional homogeneity 

with respect to the Glasser parcellation in the GSP and NKI datasets even though the number 

of Craddock parcels was less than or equal to the number of Glasser parcels.  

A final observation was that homogeneity computed in MNI space (Figure 3C) 

appeared significantly lower than homogeneity computed in surface spaces (Figures 3A and 

3B), consistent with observations from previous studies (Zuo et al. 2013; Jiang and Zuo 

2016). One major reason was probably because the NKI data was not smoothed, but another 

reason might be the significantly better registration accuracy achieved by a surface coordinate 

system (Fischl et al. 1999, 2008; Yeo et al. 2010). The surface coordinate system is a natural 

choice for this work because of our focus on the cerebral cortex. However, volumetric 

coordinate systems (e.g., MNI) are invaluable for analyzing subcortical structures.   

 

Stability of parcellations across GSP training and test sets 

 Cerebral cortex parcellations with 400, 600, 800 and 1000 parcels were estimated 

separately from the GSP training and test sets. Percentage overlaps between the training and 

test parcellations were 81%, 76%, 75% and 69% respectively, suggesting stability better than 

or equal to previous parcellations (e.g., 71% reported by Gordon et al. 2016). Visual 

inspection of parcellation boundaries suggests relatively good agreement between the training 

and testing parcellations (Figure S4), especially for parcellations with fewer parcels.  
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Cerebral Cortex Parcellations of 1489 participants 

Cerebral cortex parcellations with 400, 600, 800 and 1000 parcels were computed 

using the full GSP dataset (N = 1489) and shown in Figure S5. These parcellations were 

computed in fsaverage6 space, but the parcellations are publicly available in fsaverage, fsLR 

and MNI152 space 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal). 

Figure 4 (first row) shows the 7-network and 17-network parcellations from Yeo et al. 

(2011). Figure 4 (second row) shows the 400-area cerebral cortex parcellation where the color 

of each parcel was assigned based on its spatial overlap with the original 7-network and 17-

network parcellations. The 400-area parcellation were clustered (details in Methods) using a 

similar approach to Yeo et al. (2011), revealing 7 and 17 networks (Figure 4 last row) that 

were visually very similar to the original networks (Figures 4 first row). 

 

------------------------------------------------------------------ 

Insert Figure 4 About here 

------------------------------------------------------------------ 

 

Therefore the gwMRF cerebral cortex parcellations largely preserved the community 

or network structure of the original dataset, although there were some small differences. For 

example, the default network (red) in the 7-network solution (Figure 4 last row) comprised 

more precuneus parcels compared with the optimal assignment (Figure 4 second row). 

Similarly, the salience/ventral attention network (violet) in the 17-network solution (Figure 4 

last row) comprised less precuneus parcels compared with the optimal assignment (Figure 4 

second row). Similar results were obtained with the 600-area, 800-area and 1000-area 

parcellations (Figures S6, S7 and S8).  

 

Comparison of 400-area Parcellation with Architectonic and Visuotopic Areas 

Figure 5 overlays parcels of the 400-area parcellation on the boundaries of 

histologically defined architectonic areas 3, 4, 2, hOc5 and 17 on the left cerebral cortical 

hemisphere (Fischl et al. 2008; Van Essen et al. 2012a). Other architectonic areas (including 

those on the right hemisphere) are shown in Figure S9.  

 

------------------------------------------------------------------ 
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Insert Figure 5 About here 

------------------------------------------------------------------ 

 

There were generally good correspondences between parcellation boundaries and 

architectonic areas, especially for areas 3, 4, 2 and area 17 in both hemispheres. However, it 

was also clear that the parcellation fractionates primary areas into sub-regions. In the case of 

somatomotor areas 3, 4 and 2, the fractionation might correspond to somatotopic 

representations of different body parts, consistent with motor task activations (Figure 6) and 

previous functional connectivity parcellations (Yeo et al. 2011; Glasser et al. 2016). The 

parcellation also appeared to fractionate area 17 along the eccentricity axis, since the parcels 

were oriented orthogonal to the calcarine sulcus.  

 More muted correspondence with other architectonic areas was observed. For 

example, the parcel that maximally overlapped with area hOc5 appeared to extend beyond the 

architectonic boundaries in both hemispheres. Similarly, the parcels overlapping with area 18 

appeared to extend beyond its dorsal boundary with area 19, but appeared to match well to its 

boundary with area 17 and its ventral boundary with area 19. The parcellation was unable to 

capture the dorsal aspect of area 1. 

Figure S10 overlays boundaries of the 400-area parcellation on 18 visuotopically-

mapped retinotopic areas (Abdollahi et al. 2014). There was generally good agreement 

between parcellation boundaries and retinotopic boundaries. This is especially true for 

retinotopic area V1 (which should theoretically correspond to architectonic area 17), which 

appeared to be further fractionated based on visual eccentricity. Other than the V1/V2 

boundary, where there were corresponding parcel borders (ignoring the additional eccentricity 

boundaries), correspondences between parcel boundaries and other retinotopic regions were 

not immediately obvious. For example, multiple parcels spanned across both V2 and V3, 

which might reflect eccentricity organization within V2 and V3. Intriguingly, LO1 and LO2, 

which are in the same visual field map clusters (Wandell et al. 2007), appeared to be grouped 

together, although also fractionated, possibly also based on visual eccentricity organization 

(c.f. Figure 8C of Abdollahi et al., 2014). Overall, parcels in visual cortex might reflect supra-

areal organization (Buckner and Yeo 2014) in addition to areal boundaries.   

 

 Comparison of 400-area Parcellation with Task Activations and rs-fMRI 

Figure 6 overlays the motor and language task activations from the HCP on the 400-

area parcellation boundaries. The z-maps were averaged over 833 to 852 subjects (depending 
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on the contrast) provided by the HCP (Barch et al. 2013). Other task contrasts with different 

thresholds can be found in Figures S11A to S11E. In general, a single contrast elicited task 

activations that cut across parcellation boundaries even with relatively high threshold (e.g., 

parietal portion of language contrast in Figure S11A). This is perhaps not surprising because a 

given task contrast likely involves a diverse set of cognitive processes supported by multiple 

cortical areas. Even if the task manipulation manages to elicit a single cognitive process, this 

cognitive process could be implemented across numerous cortical areas (Poldrack 2006; 

Barrett and Satpute 2013; Yeo et al. 2015a).   

 

------------------------------------------------------------------ 

Insert Figure 6 About here 

------------------------------------------------------------------ 

 

Figure S12 shows the functional inhomogeneity of individual parcels of the 400-area 

parcellation for different task contrasts. Visual inspection of Figures S11 and S12 suggests a 

complex relationship between the magnitude of activation (Figure S11) and functional 

inhomogeneity (Figure S12). To quantify this phenomenon, scatterplots of parcel activation 

magnitude (absolute value of average z-scores) against parcel functional inhomogeneity 

(Figure S13) suggest that higher activation magnitude was correlated with functional 

inhomogeneity. Therefore functional inhomogeneity (Figures 2, S12) is mostly driven by 

strong activation or de-activation. 

Figure 7 shows the connectional homogeneity of each parcel of the 400-area 

parcellation in the GSP and HCP datasets. Although the gwMRF model achieved better 

connectional homogeneity than other parcellations (Figure 3), not all parcels were equally 

homogeneous (Figure 7). The spatial variation in homogeneity was consistent across the GSP 

and HCP datasets despite differences in scanners, acquisition protocols and preprocessing 

strategies. More specifically, parcels in the ventral temporal lobe and orbital frontal cortex 

were of lower homogeneity, probably due to lower signal-to-noise ratio (SNR) in those 

regions.  

Connectional homogeneity was higher in the HCP dataset (0.78) compared with the 

GSP dataset (0.58), even though the parcellation was derived from the GSP dataset. The 

difference might arise from the multiband protocol and longer acquisition time in the HCP 

data, which might result in higher SNR and therefore connectional homogeneity. In addition, 

the HCP utilized a function-based inter-subject registration algorithm (Robinson et al. 2014), 
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which might reduce inter-subject variability and therefore increased connectional 

homogeneity. Finally, the HCP preprocessing utilized a Wishart roll-off denoising, which 

might implicitly introduce more smoothing than the 6mm fwhm smoothing applied to the 

GSP data.  

 

------------------------------------------------------------------ 

Insert Figure 7 About here 

------------------------------------------------------------------ 

 

Volume distribution of the 400-area parcellation 

 Figure S14 illustrates distributions of parcel volume of the 400-area parcellation, and 

four previously published parcellations (Craddock, Shen, Glasser, Gordon). The volumetric 

ratios of the largest parcel to the smallest parcel were 16 (gwMRF), 3.8 (Craddock), 3.8 

(Shen), 45 (Glasser) and 443 (Gordon). The volumetric ratios of the 90th percentile parcel to 

the 10th percentile parcel were 3.2 (gwMRF), 1.7 (Craddock), 1.6 (Shen), 5.7 (Glasser) and 

8.3 (Gordon).   
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Discussion 
We developed a gradient-weighted Markov Random Field (gwMRF) model that 

integrated the local gradient and global similarity approaches to brain parcellation. Cerebral 

cortical parcellations generated by the gwMRF model were compared with three rs-fMRI 

parcellations derived from fully automatic algorithms (Craddock et al., 2012, Shen et al., 

2013; Gordon et al., 2016) and a multimodal parcellation derived from a semi-automatic 

method (Glasser et al., 2016). Compared with the fully automatic parcellations, the gwMRF 

parcellations had similar agreement with the boundaries of architectonic and visuotopic areas. 

Compared with the Glasser parcellation, the gwMRF parcellation had worse alignment with 

architectonic and visuotopic boundaries, which might reflect manual selection of multimodal 

information by an anatomist in the Glasser parcellation to match prior knowledge of areal 

boundaries. Parcellations generated by the gwMRF model enjoyed superior functional and 

connectional homogeneity compared to all other parcellations. Furthermore, the parcellations 

recapitulated the network structure of the original vertex-wise fMRI data.  

 

Fusion model generates parcellations that align with architectonic areas 

 The local gradient approach for delineating cortical areas with rs-fMRI was first 

proposed by the pioneering work of Cohen et al. (2008). Although the approach has been 

largely applied to rs-fMRI (Nelson et al. 2010; Hirose et al. 2012; Wig et al. 2014b; Laumann 

et al. 2015; Gordon et al. 2016; Xu et al. 2016), recent work has also applied this approach to 

multimodal data (Glasser et al., 2016). It has been suggested that the gradient approach is 

uniquely suited for delineating histologically defined cortical areas (Wig et al., 2014b; 

Gordon et al., 2016) compared with global clustering approaches (e.g., mixture models, 

spectral clustering).  

More specifically, an influential paper (Wig et al., 2014b) demonstrated that the local 

gradient approach was able to delineate area 17 unlike global approaches, such as the infomap 

algorithm (Power et al., 2011) or the mixture model (Yeo et al., 2011). However, the 

comparison was imperfect because both Power et al. (2011) and Yeo et al. (2011) parcellated 

the cerebral cortex into less than twenty spatially distributed networks, corresponding to 

roughly one hundred parcels. Since there might be 300 to 400 human cortical areas based on 

extrapolation from monkey data (Van Essen et al. 2012a), it should not be surprising that 

relatively low resolution parcellations (Power et al., 2011; Yeo et al., 2011) were unable to 

fully differentiate cortical areas.  
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Indeed our experiments suggested that the global similarity approach could produce 

parcellation boundaries that closely match the boundaries of area 17. On the other hand, the 

global similarity approach was unable to differentiate between areas 3 and 4 because of strong 

RSFC between the two areas (Figure 1). This strong functional connectivity might result from 

signal bleeding across the central sulcus, but might also have its origins in strong anatomical 

connections between the primary somatosensory and motor areas (Jones 1986). On the other 

hand, the local gradient approach was unable to capture the boundaries of area 44 unlike the 

global similarity approach (Figure 1).  

Based on visual inspection, gwMRF parcellations obtained by fusing both local 

gradient and global similarity approaches were able to capture architectonic boundaries better 

than either approach (Figures 1, 5 & S9), although the numerical results are not statistically 

different (Figure S2). Overall, parcellations generated by the gwMRF fusion model had 

comparable architectonic alignment with parcellations derived from fully automatic 

approaches (Craddock et al. 2012; Shen et al. 2013; Gordon et al. 2016). The semi-automatic 

parcellation (Glasser et al., 2016) had better alignment with boundaries of areas 17, 18, hOc5, 

3, 4, but worse alignment with boundaries of areas 2, 6, 44 and 45. The variable differences 

might reflect priorities of the anatomist who manually selected among competing multimodal 

information. 

 

Fusion model generates parcellations that align well with visuotopic areas 

 Alignment with visuotopically defined retinotopic areas (Abdollahi et al., 2014) was 

considered. As illustrated in Figure 5, parcellations generated by the gwMRF model have 

comparable visuotopic alignment with parcellations from fully automatic approaches 

(Craddock et al. 2012; Shen et al. 2013; Gordon et al. 2016), but worse alignment than the 

semi-automatic multimodal approach (Glasser et al., 2016).  

Visual inspection (Figure S8) suggested that the parcellation boundaries were 

reasonably aligned with retinotopic boundaries, especially V1. However, there is generally no 

one-to-one mapping between parcels and retinotopic areas. For example, V1 appeared to be 

further fractionated based on visual eccentricity. This fractionation likely extended to other 

retinotopic areas in the visual cortex, suggesting that parcels in visual cortex might reflect 

supra-areal (e.g., visual eccentricity) organization in addition to areal boundaries (Buckner 

and Yeo, 2014).  

It is worth noting that the retinotopic and architectonic boundaries were themselves 

not in complete alignment. For example, architectonic area 18 did not seem to correspond 
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well to retinotopic area V2 or V3. Similarly hOc5 appeared to correspond to multiple 

retinotopic areas (MT and pMST). Therefore we did not expect perfect matching between rs-

fMRI parcellation boundaries with architectonic and retinotopic boundaries. Nevertheless, the 

performance of the multimodal parcellation (Glasser et al., 2016) suggested significant room 

for improvements.  

 

Fusion model generates parcellations that are functionally homogeneous 

Functional homogeneity of a parcellation was evaluated using task-fMRI. One 

important consideration was the choice of task contrast to evaluate functional homogeneity. A 

stricter contrast might provide access to a purer cognitive construct, but it is unlikely any of 

the HCP task contrast tapped into a single cognitive function that activated only a single 

cortical area. Previous work has approached this issue by evaluating the fraction of task-

activated vertices that fell within rs-fMRI parcels as opposed to the boundaries between 

parcels (Laumann et al. 2015). Their approach made sense in the context of their 

implementation of the local gradient approach, which introduced non-uniformly thick borders 

between rs-fMRI parcels (Gordon et al., 2016). Because there was a need to threshold the task 

activation, multiple thresholds were considered (Laumann et al. 2015).  

Here we avoided the need to threshold task activation by simply computing the 

standard deviation of task activation z-values within each parcel (Figure 2). A lower standard 

deviation would indicate a parcel is more functionally homogeneous. This approach did not 

require the task contrast to only recruit a single cognitive function or activate a single cortical 

area. Instead, high functional homogeneity could be achieved as long as activation strength 

was uniform within each cortical area, which was reasonable since we were trying to isolate 

neurobiological atoms within the cerebral cortex. If task activations were not uniform within a 

parcel, this would imply functional heterogeneity within the parcel, suggesting that the parcel 

was not a neurobiological atom. Since the functional inhomogeneity measure did not require 

the task contrast to isolate a single cognitive process, we decided to utilize all contrasts across 

all seven cognitive domains, rather than having to justify certain contrasts over others (Figure 

2).  

Given the strong link between task-fMRI and rs-fMRI (Smith et al. 2009; Mennes et 

al. 2010; Cole et al. 2014; Krienen et al. 2014; Bertolero et al. 2015; Yeo et al. 2015a; Tavor 

et al. 2016), and since the gwMRF model produced parcellations that were the most 

connectionally homogeneous (previous section), it was perhaps not surprising that the 

gwMRF parcellations were also the most functionally homogeneous (Figure 2). Like in the 
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case of connectional homogeneity, we note that the HCP task-fMRI data were collected from 

a different scanner with a different acquisition protocol and processed in a different way from 

the GSP data used to derive the gwMRF parcellations. 

Intriguingly, functional inhomogeneity varied across cognitive domains (Figure 2) 

with the working memory task exhibiting greater inhomogeneity than the other tasks. Possible 

mundane reasons might include variation in task design and overall task duration across 

cognitive domains. However, the relatively larger inhomogeneity of the working memory task 

was consistent with previous work exploring the areal organization of a highly sampled 

individual (see Figure 3 of Laumann et al., 2015). 

 

Fusion model generates parcellations that are connectionally homogeneous 

One potential use of rs-fMRI parcellations is for reducing the dimensionality of fMRI 

data in future studies (Eickhoff et al., 2017). For example, it is common to average the fMRI 

time courses within each parcel of a brain parcellation and use the resulting average time 

courses to compute functional connectivity matrices for studying mental disorders (Fair et al. 

2013; Baker et al. 2014), individual subject differences (Finn et al. 2015; Yeo et al. 2015b), 

graph theoretic analyses (Salvador et al. 2005; Supekar et al. 2008; Bullmore and Sporns 

2009; Meunier et al. 2009; Guye et al. 2010; He and Evans 2010; Wang et al. 2010; Zalesky 

et al. 2010a; Fornito et al. 2013) or neural mass modeling (Ghosh et al. 2008; Honey et al. 

2009; Deco et al. 2013; Zalesky et al. 2014; Betzel et al. 2016). For the dimensionality 

reduction to be meaningful, the representative time course of a parcel should be similar to all 

time courses within the parcel (Zuo and Xing 2014; Eickhoff et al., 2017). Our results suggest 

that gwMRF parcellations exhibit significantly better functional connectivity homogeneity 

than parcellations derived from local gradient (Gordon et al., 2016; Glasser et al., 2016) or 

global similarity (Craddock et al., 2012; Shen et al., 2013) approaches (Figure 3). Therefore 

the gwMRF parcellations might be a useful dimensionality reduction tool for the fMRI 

community.  

We note that the gwMRF parcellations were derived from the GSP data acquired from 

Siemens Tim Trio scanners and preprocessed using a pipeline involving whole brain signal 

regression in FreeSurfer fsaverage space (Holmes et al. 2015). The improvement in functional 

connectivity homogeneity (Figure 3) was replicated in datasets collected from different 

scanners and acquisition protocols (HCP and NKI), preprocessing pipelines (ICA-FIX and 

CompCor) and coordinate systems (fsLR and MNI). Furthermore, while the GSP and HCP 

datasets consisted of young healthy adults, the NKI dataset consisted of participants ranging 
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from ages 6 to 85, suggesting that the gwMRF parcellations generalized well to different 

populations, and were suited for studies across different stages of the human lifespan. 

Finally, even though connectional homogeneity was high, there was spatial variation 

in homogeneity (Figure 7) with parcels in low SNR regions (ventral temporal lobe and 

orbitofrontal cortex) being of lower homogeneity. The lower SNR might potentially decrease 

parcellation accuracy within these regions. Future work might explore if post-hoc correction 

of reliability and SNR could improve parcellation quality (Mueller et al. 2015). 

 

Towards multi-feature and multimodal parcellations 

Despite the generally good match between the gwMRF parcellations and boundaries 

of architectonic and retinotopic areas, there was significant room for improvement. For 

example, the 400-area parcellation did not conform well to the boundaries of architectonic 

area hOc5, as well as the boundaries between areas 3a and 3b or areas 4a and 4p. Similarly, 

the 400-area parcellation did not conform well to many retinotopic boundaries but might 

instead reflect supra-areal (e.g., visual eccentricity) organization. These results suggested that 

the fusion of local gradient and global similarity approaches to rs-fMRI was insufficiently 

sensitive to the boundaries of certain cortical areas.  

However, rs-fMRI might not necessarily be intrinsically insensitive to these 

boundaries. For example, a recently developed rs-fMRI approach (Glasser et al. 2016) 

exploited the fact that cortical regions representing the same visual field locations are 

anatomically (Cragg 1969; Zeki 1969; Van Essen and Zeki 1978; Maunsell and Van Essen 

1983) and functionally (Yeo et al. 2011; Wang et al. 2012; Striem-Amit et al. 2015) 

connected. This elegant approach (together with manual intervention) allowed the exquisite 

delineation of visual areas, resulting in better agreement with retinotopic boundaries than 

gwMRF parcellations (Figure S3). Future work could potentially integrate this topographic rs-

fMRI method with approaches used in the current work.  

Contributions from other modalities might be necessary (Toga et al., 2006; Eickhoff et 

al., 2011; Bzdok et al., 2013; Wang et al., 2015a; Glasser et al., 2016) if there were certain 

biological boundaries where rs-fMRI is truly intrinsically insensitive. For example, the 

relative myelin mapping technique allowed beautiful delineation of somatomotor areas 4a, 4p, 

3a, 3b, 1 and 2 (Glasser and Van Essen 2011; Glasser et al. 2016), while the boundaries 

between areas 4a and 4p, as well as between areas 3a and 3b, were not visible with the 

standard application of local gradient to RSFC (see Figure 2 of Gordon et al., 2016). 
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Therefore fusion of myelin mapping with rs-fMRI might potentially improve brain 

parcellation.  

One challenge of multimodal integration is the resolution of multimodal conflicts. In 

the seminal semi-automatic multimodal parcellation (Glasser et al., 2016), the anatomist 

explicitly ignored strong RSFC gradients within somatomotor cortex and strong intra-V1 

gradients based on prior neuroanatomical knowledge about sensory and motor cortical areas. 

However, while prior knowledge is abundant and reliable for sensory-motor cortex, prior 

knowledge is weak for the human association cortex, which has undergone significant 

evolutionary expansion and changes over the millions of years of evolution separating 

humans from macaques (Preuss 2004; Van Essen and Dierker 2007; Hill et al. 2010; Buckner 

and Krienen 2013). As such it is unclear how well the accuracy of Glasser parcellation (which 

was extremely impressive in sensory-motor cortex as seen in Figures S2D and S3) extended 

to association cortex (Yeo and Eickhoff, 2016). Indeed, the advantage of the Glasser 

parcellation largely disappeared for cortical areas 44 and 45 (Figure S2D), which are thought 

to be involved in language processing (Nishitani et al. 2005; Davis et al. 2008). Consequently, 

there is a need to develop methods that can automatically select among competing gradients. 

An advantage of utilizing fully automatic methods is that good parcellation performance 

within sensory-motor cortex might be assumed to extend to association cortex, assuming no 

fundamental difference between sensory-motor and association cortices, which might not 

necessarily be true (Buckner and Krienen 2013).  

There are other costs to trading off between conflicting modalities. For example, while 

the Glasser parcellation achieved extremely good alignment with architectonic and visuotopic 

boundaries (Figures 2 and 5), it had significantly worse functional and connectional 

homogeneity (Figures 3 and 4), even though the Glasser parcellation was partially derived 

from the HCP task-fMRI and rs-fMRI used to evaluate functional and connectional 

homogeneity. On average, the Glasser parcellation exhibited 7.7% worse connectional 

homogeneity than the gwMRF parcellation and even had worse connectional homogeneity 

than the Craddock parcellation in the GSP and NKI datasets (Figure 4).  

The reason was that our comparisons controlled for the number of parcels and 

therefore the Glasser parcellation “wasted” precious parcels distinguishing cortical areas with 

indistinguishable RSFC. For example, the Glasser parcellation differentiated between areas 3a 

and 3b, even though the tongue representations in areas 3a and 3b had very similar rs-fMRI 

and task-fMRI properties. On the other hand, by treating area 3a as a single parcel and area 3b 
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as a single parcel, the Glasser parcellation “lost” the opportunity to differentiate among body 

representations (e.g., hand and tongue) with distinctive rs-fMRI and task-fMRI properties.  

We note that there are functional differences between areas 3a and 3b – area 3b is 

thought to be involved in somatic sensation (Iwamura 1998), while area 3a is thought to be 

involved in proprioception (Krubitzer et al. 2004). However, given that there are only subtle 

differences between the two areas as measured by rs-fMRI and task-fMRI, differentiating the 

two areas does not seem very useful if the goal is to reduce the dimensionality of fMRI data. 

Conversely, differentiating the hand and tongue representations would be extremely useful 

when modeling behavioral tasks with button presses. Further discussion of this issue can be 

found in Eickhoff et al. (2017). 		

 

Shape, size and lateralization of parcels 

 Compared with local gradient approaches (Gordon et al., 2016; Glasser et al., 2016), 

global similarity approaches (Craddock et al., 2012; Shen et al., 2013) appeared to generate 

rounder parcels (Figure S1) with more uniform sizes (Figure S13). One possible reason is that 

global similarity approaches are explicitly optimizing for homogeneous parcels and are 

therefore more sensitive to fMRI smoothness. Another possible reason is that global similarity 

approaches (Craddock et al., 2012; Shen et al., 2013; Ryali et al., 2013; Honnorat et al., 2015) 

often require an additional regularization objective to ensure spatially connected parcels, 

although it is worth noting that local gradient approaches implicitly constrain parcels to be 

spatially connected, such as by the use of the watershed algorithm (Gordon et al., 2016). By 

fusing local gradient and global similarity approaches, and by weakening the spatial 

connectedness objective during the optimization procedure, the gwMRF model generated 

parcels of intermediate roundness and size distribution (Figures S1, S13).  

 From the neuroscience perspective, traditionally defined cortical areas can be quite 

irregular (Van Essen et al., 2012a). In terms of size, Van Essen et al. (2012a) found that the 

ratio of the largest and smallest cortical areas was roughly 200, which is closest to the Gordon 

parcellation. In terms of shape, cortical areas can range from relatively round areas (e.g., area 

44) to narrow, long areas (e.g., area 3). The 400-area gwMRF parcellation split V1 into visual 

eccentricity bands and areas 3 into somatotopic sub-regions. While these splits were 

biologically meaningful, they also increased parcel uniformity. Since V1 is one of the largest 

cortical areas (Van Essen et al., 2012a), splitting V1 resulted in parcels with more uniform 

sizes. Similarly, splitting the long and thin cortical area 3 into somatotopic sub-regions 
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resulted in parcels that were rounder. However, this explanation might not extend to non-

topographically organized cortical areas.  

 Given that gwMRF and Gordon parcellations achieved similar alignment with 

architectonic and visuotopic boundaries, gwMRF parcellations might represent the spatial 

layout of traditional cortical areal boundaries almost as well as gradient based approaches. On 

the other hand, given that gwMRF parcellations enjoyed superior functional and connectional 

homogeneity, gwMRF parcellations might be more useful than gradient-based parcellations 

when utilized as a dimensionality reduction tool for new fMRI data. 

 Finally, the gwMRF parcellations were derived for each hemisphere separately, 

although the local RSFC gradients were computed based on whole brain RSFC. Because of 

the spatial connectedness term in the gwMRF objective function, applying the procedure to 

both hemispheres should in theory yield similar parcellations. While functional systems (e.g., 

default and dorsal attentional networks) are known to span across both hemispheres, well-

known functional lateralization within the cerebral cortex (e.g., Corbetta and Shulman, 2002) 

also suggests that a bilateral functional system might include an asymmetric distribution of 

parcels (Figure 4). Indeed, visual inspection of the local RSFC gradients (Figure 2 of Gordon 

et al., 2016) suggested that certain gradients were present in one hemisphere but not the other. 

Consequently, the gwMRF and Gordon parcellations were both asymmetric, consistent with 

most parcellation procedures in the literature (Craddock et al., 2012; Shen et al., 2013; 

Honnorat et al., 2015). One major exception was the recent multimodal parcellation, where 

the anatomists explicitly ignored asymmetric gradient information (Glasser et al., 2016). 

 

“Optimal” resolution of brain parcellation 

 A number of metrics has been proposed in the connectivity based parcellation 

literature to estimate or justify the number of brain parcels (Yeo et al. 2011; Eickhoff et al. 

2015). There is also a wide range of machine learning techniques that seek to estimate the 

number of modules in a clustering problem, including Bayesian information criterion (BIC; 

Fraley & Raftery 1998) and stability analysis (Lange et al. 2004). However, these approaches 

are unlikely to estimate a truly optimal number of clusters because of approximations 

necessary to compute the metrics (Fraley and Raftery 1998). In many cases (e.g., stability 

analysis), the estimated number of clusters might partially reflect the size of the dataset, 

reducing confidence that the estimation reflected biology.  

 Furthermore the brain is hierarchically organized (Churchland and Sejnowski 1988) 

from molecules (1Å) to synapses (1µm) to neurons (100µm) to areas (1cm) to systems 
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(10cm). Even at the millimeter resolution of MRI, hierarchical organization can be observed. 

For example, large-scale networks (e.g., default, dorsal attention, etc) comprise multiple 

cortical areas. Given the heterogeneity of cortical areas (Kaas 1987; Amunts and Zilles, 

2015), cortical areas can be further subdivided. For example, the primary motor area can be 

divided into distinct body representations, such as the hand and mouth. The hand 

representation can in turn be subdivided into wrist and individual fingers. 

 Consequently, it is unclear if there is a correct number of brain parcels or if cortical 

areas are necessarily the optimal resolution for cortical parcellations. For example, Glasser et 

al. (2016) and Gordon et al. (2016) extracted V1 as a single parcel, while our 400-area 

parcellation divided V1 into parcels based on their visual eccentricity. Similarly, Gordon et al. 

(2016) and our 400-area parcellation divided somatomotor cortex into parcels, presumably 

based on body representations. The different portions of area 3a represent distinct body parts 

and might therefore be considered as distinct computational units (Yeo and Eickhoff, 2016). 

As such, one could argue that separating the different somatotopic regions might be useful for 

future computational modeling. For example, it might be useful to differentiate between the 

hand and foot motor regions when modeling a behavioral task with button presses. As an 

additional example, differentiating between central and peripheral V1 might be useful when 

modeling a task involving peripheral visual distractors.  

 Furthermore, one might expect that different resolution parcellations might be useful 

for different applications. For example, if the effect of interest is highly focal (or diffuse), 

then a higher (or lower) resolution parcellation might be more effective (Jones et al. 2005; 

Zalesky et al. 2010b). Therefore we generated cortical parcellations consisting of 400, 600, 

800 or 1000 parcels.  

 

Confounds when comparing brain parcellations 

 Comparing brain parcellations generated from different labs is difficult. A major 

confounding factor is the number of parcels. One approach to mitigating this issue is the use 

of a null model to statistically test whether a brain parcellation performs better than random 

parcellations with the same number of parcels, as well as distribution of parcel sizes and 

shapes (Gordon et al. 2016). Here we employed the more explicit approach of matching the 

number of parcels when comparing parcellations.     

 Another major confounding factor not widely acknowledged in the literature is the 

comparisons of parcellations generated from different data or coordinate systems. Here we 

employed multimodal data from multiple scanners, acquisition protocols and preprocessing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2017. ; https://doi.org/10.1101/135632doi: bioRxiv preprint 

https://doi.org/10.1101/135632
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 34	

strategies across different coordinate systems, thus increasing confidence that our 

parcellations would generalize well to data collected from a different scanner preprocessed in 

a different way.  

Projecting a parcellation to a coordinate system different from where it was derived 

can significantly deteriorate the parcellation quality. For example, parcellations generated by 

our fusion model achieved dramatically better connectional homogeneity compared with the 

Shen (7.6%) and Craddock (7.2%) parcellations in fsaverage space. The improvements 

persisted but decreased to 1.0% and 1.8% respectively in MNI space.  

Finally, our comparisons were largely limited to three publicly available rs-fMRI 

parcellations (Craddock et al., 2012; Shen et al., 2013; Gordon et al., 2016) and one 

multimodal parcellation (Glasser et al., 2016). More comprehensive comparisons with other 

approaches (Arslan et al., 2017), as well as parcellations from different modalities, such as 

diffusion MRI (Fan et al., 2016) or histology (Eickhoff et al., 2005; Ding et al., 2016) are left 

to future work. 

 

Limitations and future work 

The cerebral cortex forms spatially organized connections with subcortical structures 

(Jones 1985; Haber 2003; Strick et al. 2009). Here, we limited our parcellations to the 

cerebral cortex although the gradient maps we utilized took into account cortico-subcortical 

connectivity (Gordon et al., 2016). While our approach is in principle applicable to 

subcortical structures, accurate parcellation of the entire brain in a single step is non-trivial 

because of significant SNR difference between the cerebral cortex and subcortical structures. 

As such, subcortical structures might be more effectively parcellated separate from the 

cerebral cortex, as is performed in many studies (Di Martino et al., 2008; Zhang et al., 2008; 

Krienen and Buckner, 2009; Buckner et al., 2011; Choi et al., 2012; Dobromyslin et al., 2012; 

but see Craddock et al., 2012; Shen et al., 2013). For example, fMRI signals from the adjacent 

visual cortex tend to bleed into adjacent cerebellar regions that form close anatomical loops 

with the motor cortex, but not the visual cortex (Strick 1985; Schmahmann and Pandya 1997). 

Therefore additional regression steps were necessary to remove these confounds (Buckner et 

al., 2011).  

The cerebral cortical parcellations we derived were obtained by averaging data across 

many participants. Given well-known individual differences in brain functional organization 

(Mueller et al. 2013; Laumann et al. 2015; Glasser et al. 2016; Gordon et al. 2017), the group 

level parcellations derived in this work might not be an optimal fit to individual subjects. The 
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issue might be exacerbated for higher-resolution parcellations (e.g., 1000-area parcellation) 

because the smaller group-level parcels are more likely to be mismatched to the intrinsic 

organization of individual subjects. Therefore subject-specific brain network (Hacker et al. 

2013; Gordon et al. 2016; Harrison et al. 2015; Varoquaux et al., 2011; Wang et al. 2015b) or 

areal estimation (Laumann et al. 2015; Glasser et al. 2016) might be potentially important for 

understanding individual differences in behavior and disorder. The extension of the gwMRF 

model to individual subjects is left for future work.   

 

Conclusion 

 We developed an rs-fMRI parcellation algorithm that exploited local gradients in 

resting-state functional connectivity, while maximizing similarity of rs-fMRI time courses 

within a parcel. The resulting cerebral cortex parcellations were functionally and 

connectionally homogeneous, and were in good agreement with certain architectonic and 

visuotopic boundaries. Multi-resolution parcellations are provided as reference atlases for 

future characterization with other modalities, graph theoretic analysis and neural mass 

modeling 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Scha

efer2018_LocalGlobal). 
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Area 44 

Area 3 

Figure 1. Parcels (blue) from 333-area parcellations using global similarity, local 
gradient and gwMRF approaches overlaid on histological (red) boundaries of areas 44 
and 3. The local gradient approach overestimates the posterior boundary of area 44. 
On the other hand, the “bleeding” of cortical parcels across the central sulcus (area 3) 
could not be easily avoided without taking into account local gradients. Parcels from 
the gwMRF fusion approach agree well with both areas.  
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Figure 2. Functional inhomogeneity measured by standard deviation of fMRI task activation within 
each parcel, and averaged across all parcels and contrasts of each cognitive domain (N=745). 
Lower standard deviation indicates higher functional homogeneity. Our approach generated 
parcellations more functionally homogeneous than (A) Gordon (p ≈ 0), (B) Shen (p ≈ 0), (C) 
Craddock (p ≈ 0) and (D) Glasser (p = 4.8e-229). It is worth mentioning that the Glasser parcellation 
was partially derived from this dataset. 
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Figure 3. Connectional homogeneity as measured by rs-fMRI computed on the (A) GSP test set (N 
= 745) in fsaverage space, (B) HCP dataset (N = 820) in FSLR space, and (C) NKI dataset (N = 
205) in MNI space. The gwMRF fusion approach generated parcellations that achieved better 
connectional homogeneity than all other parcellations across all three datasets (p < 2.8e-28 for all 
comparisons). There is no error bar for the HCP data because the HCP group-average dense 
connectivity matrix was utilized. It is worth mentioning that the Glasser parcellation was partially 
derived from the HCP dataset.  
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Figure 4. Network structure is preserved in the 400-area parcellation. First row shows 7 and 17 
networks from Yeo et al. (2011). Second row shows each gwMRF parcel assigned a network color 
based on spatial overlap with networks from Yeo et al. (2011). Last row shows community structure of 
gwMRF parcellation after clustering. Observe striking similarity between second and third row, 
suggesting that network structure of the original resolution data is preserved in the 400-area 
parcellation. Results for 600-area, 800-area and 1000-area parcellations can be found in Figures S6, 
S7 and S8. 
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Figure 5. Parcels (blue) of the 400-area cerebral cortex parcellation overlaid on 
histological (red) boundaries of left hemisphere (A) area 3, (B) area 4, (C) area 2, (D) 
hOc5 and (E) area 17. Other histological areas are found in Figure S9.   

(A) Area 3 (B) Area 4 (C) Area 2 (D) hOc5 (E) Area 17 
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Figure 6. Group-average task activation maps of (A) tongue motion (tongue – average motor), 
(B1) right finger tapping (right finger – average motor), (B2) left finger tapping (left finger – 
average motor), and (D) language task (story – math) from the HCP dataset overlaid on 
boundaries (black) of 400-area cerebral cortex parcellation. Other task activation maps with 
different thresholds can be found in Figures S11A to S11E.  
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Figure 7. Functional connectivity homogeneity of each parcel of 400-area cerebral cortex 
parcellation based on (A) GSP and (B) HCP datasets. Overall homogeneity for the GSP and 
HCP datasets were 0.58 and 0.78 respectively. Note that the parcellation was derived from 
the GSP dataset. However, acquisition and processing differences might lead to higher 
homogeneity in the HCP dataset.   

(A) (B) 

0.6 0.0 0.8 0.0 r r 
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Figure S1A. Craddock and Shen parcellations (left) and gwMRF parcellations with matching 
number of parcels (right). 

Craddock gwMRF 

gwMRF Shen 
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Figure S1B. Gordon and Glasser parcellations (left) and gwMRF parcellations with matching 
number of parcels (right). 

Gordon gwMRF 

gwMRF Glasser 
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Figure S2. Distance to architectonic boundaries as measured by average Hausdorff distance (mm). 
Lower distance indicates better agreement. The gwMRF fusion approach generated parcellations that 
achieved (A) comparable architectonic distance with Gordon (p = 0.076 uncorrected), (B) better distance 
than Shen (p = 2.7e-5 uncorrected), (C) better distance than Craddock (p = 0.049 uncorrected), and (D) 
worse distance than Glasser (p = 0.042 uncorrected). It is worth mentioning that the Glasser parcellation 
required an anatomist to manually select specific multi-modal information matching prior knowledge of 
cortical areas. We note that the parcellations comprised 333, 348, 236 and 360 parcels in subplots A, B, 
C and D respectively. Therefore comparisons between subplots are not meaningful because more 
parcels lead to more boundary vertices, and therefore lower geodesic distances (on average).  
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Figure S3. Distance to visuotopic boundaries (Abdollahi et al., 2014) as measured 
by average Hausdorff distance (mm). Lower distance indicates better agreement. 
The gwMRF parcellations achieve (A) lower visuotopic distance than Gordon (p = 
8.7e-3), (B) similar distance to Craddock (p = 0.37), (C) similar distance to Shen (p 
= 0.21), and (D) worse distance than Glasser (p = 1.8e-6). It is worth mentioning 
that the Glasser parcellation required an anatomist to manually select specific multi-
modal information matching prior knowledge of cortical areas. Like before, 
comparisons between the subplots are not meaningful because the number of 
parcels is different across the parcellations. 
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Figure S4. Agreement between gwMRF parcellations estimated from GSP training and test 
sets. (A) 400-area, (B) 600-area, (C) 800-area, (D) 1000-area. Red lines indicate boundaries 
of GSP training set parcellation. Blue lines indicate boundaries of GSP test set parcellation. 
White lines indicate overlapping parcellation boundaries between the two datasets.  
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Figure S5. Cerebral cortex parcellations with (A) 400 (B) 600 (C) 800 and (D) 
1000 parcels based on the entire GSP dataset of 1489 subjects. 

(A) 

(B) 

(C) 

(D) 
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Figure S6. Network structure is preserved in the 600-area parcellation. First row shows each 
gwMRF parcel assigned a network color based on spatial overlap with networks from Yeo et al. 
(2011). Second row shows community structure of gwMRF parcellation after clustering. Observe 
striking similarity between first and second rows, suggesting that network structure of the original 
resolution data is preserved in the 600-area parcellation.  
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Figure S7. Network structure is preserved in the 800-area parcellation. First row shows each 
gwMRF parcel assigned a network color based on spatial overlap with networks from Yeo et al. 
(2011). Second row shows community structure of gwMRF parcellation after clustering. Observe 
striking similarity between first and second rows, suggesting that network structure of the original 
resolution data is preserved in the 800-area parcellation.  
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(B) 

(D) 

Figure S8. Network structure is preserved in the 1000-area parcellation. First row shows each 
gwMRF parcel assigned a network color based on spatial overlap with networks from Yeo et al. 
(2011). Second row shows community structure of gwMRF parcellation after clustering. Observe 
striking similarity between first and second rows, suggesting that network structure of the original 
resolution data is preserved in the 1000-area parcellation.  
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Figure S9A. Parcels (blue) of the 400-area cerebral cortex parcellation 
overlaid on (red) boundaries of histologically defined areas 

(C) Right area 3  (B) Right area 44 (A) Left area 44 

(E) Right area hOc5 

(K) Right area 17 

(D) Right area 4  

(L) Right area 18 (M) Left area 18 

(G) Left area 1 (H) Right area 1 (I) Left area 45 (J) Right area 45 

(E) Right area 2 
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Figure S9B. Parcels (blue) of the 400-area cerebral cortex parcellation overlaid on (red) 
boundaries of histologically defined areas 

(O) Left area 6 (P) Right area 6 
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Figure S10. 18 Visuotopic areas (Abdollahi et al., 2014) overlaid on 
(black) boundaries of the 400-area cerebral cortex parcellation.  
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Figure S11A. Group-average task activation maps of (A) emotion (faces - fixation), (B) gambling 
(punishment - fixation), (C) relational (matching - fixation), (D) social (theory of mind - random) 
and (E) working memory (2 back body - fixation), (F) language (story – math), (G) tongue motion 
(tongue – average motor), (H) right finger tapping (right finger – average motor) from the HCP 
dataset overlaid on (black) boundaries of 400-area cerebral cortex parcellation.  
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Figure S11B. Group-average task activation maps of (A) emotion (faces - fixation), (B) gambling 
(punishment - fixation), (C) relational (matching - fixation), (D) social (theory of mind - random) 
and (E) working memory (2 back body - fixation), (F) language (story – math), (G) tongue motion 
(tongue – average motor), (H) right finger tapping (right finger – average motor) from the HCP 
dataset overlaid on (black) boundaries of 400-area cerebral cortex parcellation.  
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Figure S11C. Group-average task activation maps of (A) emotion (faces - fixation), (B) gambling 
(punishment - fixation), (C) relational (matching - fixation), (D) social (theory of mind - random) 
and (E) working memory (2 back body - fixation), (F) language (story – math), (G) tongue motion 
(tongue – average motor), (H) right finger tapping (right finger – average motor) from the HCP 
dataset overlaid on (black) boundaries of 400-area cerebral cortex parcellation.  
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Figure S11D. Group-average task activation maps of (A) emotion (faces - fixation), (B) gambling 
(punishment - fixation), (C) relational (matching - fixation), (D) social (theory of mind - random) 
and (E) working memory (2 back body - fixation), (F) language (story – math), (G) tongue motion 
(tongue – average motor), (H) right finger tapping (right finger – average motor) from the HCP 
dataset overlaid on (black) boundaries of 400-area cerebral cortex parcellation.  
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Figure S11E. Group-average task activation maps of (A) emotion (faces - fixation), (B) gambling 
(punishment - fixation), (C) relational (matching - fixation), (D) social (theory of mind - random) 
and (E) working memory (2 back body - fixation), (F) language (story – math), (G) tongue motion 
(tongue – average motor), (H) right finger tapping (right finger – average motor) from the HCP 
dataset overlaid on (black) boundaries of 400-area cerebral cortex parcellation.  
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Figure S12. Functional inhomogeneity of each parcel (as measured by standard deviation of task 
activation z-scores) of the 400-area parcellation averaged across all HCP participants. (A) 
emotion (faces - fixation), (B) gambling (punishment - fixation), (C) relational (matching - fixation), 
(D) social (theory of mind - random) and (E) working memory (2 back body - fixation), (F) 
language (story – math), (G) tongue motion (tongue – average motor), (H) right finger tapping 
(right finger – average motor).  
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Figure S13. Scatterplot of each parcel’s task activation magnitude (absolute value of average z-scores) 
versus its functional inhomogeneity (as measured by standard deviation of z-scores) averaged across all 
HCP participants. Each cross in the scatterplot represents a parcel of the 400-area gwMRF parcellation. 
(A) emotion (faces - fixation), (B) gambling (punishment - fixation), (C) relational (matching - fixation), (D) 
social (theory of mind- random) and (E) working memory (2 back body - fixation), (F) language (story – 
math), (G) tongue motion (tongue – average motor), (H) right finger tapping (right finger – average motor). 
In general, stronger (positive or negative) activation is correlated with higher functional inhomogeneity.  
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Figure S14. Parcel volume distributions for (A) gwMRF 400-area parcellation, (B) Craddock 
400-area parcellation, (C) Shen 150-area parcellation, (D) Glasser 360-area parcellation and 
(E) Gordon 333-area parcellation. Volume of each parcel is computed as the number of 
voxels in 2mm MNI space. Ratio of largest and smallest parcels (A) 16 (B) 3.8 (C) 3.8 (D) 45 
(E) 443 
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Schaefer et al.  Local-Global Cortical Parcellation 
 

 
1 

Local-Global Parcellation of the Human Cerebral Cortex  

From Intrinsic Functional Connectivity MRI 

 

Supplementary Material 
This supplementary material is divided into Supplementary Methods and Supplementary Results 

to complement the Methods and Results sections in the main text, respectively.  

 

Supplementary Methods 

This section provides additional mathematical and implementation details of the gwMRF 

parcellation procedure. Section S1 provides mathematical details about the gwMRF 

objective function. Section S2 summarizes the algorithm for optimizing the gwMRF 

objective function. Section S3 explains why time series normalization and concatenation 

is equivalent to Pearson’s correlation of time series for each subject followed by 

averaging across subjects. Section S4 provides derivation of the algorithm summarized in 

Section S2. Section S5 describes a computational trick to dramatically speed up the 

algorithm in Section S2, while decreasing memory usage. Section S6 provides details on 

how parameters of the gwMRF objective function are set.  

 

S1. Mathematical Model 

In this section, we describe the gradient-weighted MRF (gwMRF) model for group-wise 

parcellation of the cerebral cortex. We assume a common surface coordinate system, where the 

cerebral cortex is represented by left and right hemisphere spherical meshes (i.e., FreeSurfer 

fsaverage surface meshes). Each mesh consists of a collection of vertices and edges connecting 

neighboring vertices into triangles (https://en.wikipedia.org/wiki/Triangle_mesh).  

Let 𝑞! denote the 𝑛-th vertex, 𝑁 denote the total number of vertices, and 𝒩!! denote the 

neighboring vertices of 𝑞! (as defined by the cortical meshes). Associated with each vertex 𝑞! is 

a 3×1 vector 𝑠! consisting of its 3-dimensional coordinates on the spherical mesh and 

preprocessed fMRI time course for each participant.  

The fMRI time course of each participant at each vertex was normalized to be of zero 

mean and standard deviation of one. For participants with two runs, each run was normalized 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2017. ; https://doi.org/10.1101/135632doi: bioRxiv preprint 

https://doi.org/10.1101/135632
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schaefer et al.  Local-Global Cortical Parcellation 
 

 
2 

separately. For each vertex 𝑞!, the normalized time courses of all runs of all subjects were 

concatenated into a long (column) vector and normalized to unit norm. The resulting normalized 

time course is denoted as 𝑦!. This normalization procedure is motivated by the fact that the 

resulting inner product between two time courses 𝑦! and 𝑦! is equivalent to computing Pearson 

product-moment correlation coefficient for each participant and then averaging across the 

participants (more details in Supplementary Methods S3).  

To summarize, the input data consisted of normalized fMRI time courses 𝑦!, . . . ,𝑦!  

denoted as 𝑦!:! and 3-dimensional spherical coordinates 𝑠!:!. Our goal is to estimate a 

population-level parcellation label 𝑙! at each vertex 𝑞!, where 𝑙! ∈ {1,… , 𝐿}. The complete 

parcellation 𝑙!, . . . , 𝑙!  is denoted as 𝑙!:!. The following gwMRF model specifies the joint 

probability distribution of labels 𝑙!:!, time courses 𝑦!:! and spatial positions 𝑠!:!: 

 

𝑝 𝑙!:! ,𝑦!:! , 𝑠!:! =  
1
𝑍  exp{−𝑉!"#$ 𝑙!:! − 𝑈!"#$%" 𝑙!:! ,𝑦!:! − 𝑈!"#$%#& 𝑙!:! , 𝑠!:! },    1   

 

where 𝑍 is a normalization term to ensure 𝑝 𝑙!:! ,𝑦!:! , 𝑠!:!  is a valid probability distribution. 

𝑉!"#$ 𝑙!:!  consists of pairwise potentials incorporating the local gradient approach, 

𝑈!"#$%" 𝑙!:! ,𝑦!:!  consists of unary potentials encoding the global similarity approach and 

𝑈!"#$%#& 𝑙!:! , 𝑠!:!  consists of unary potentials ensuring parcels remain spatially connected. 

More specifically, 𝑉!"#$ 𝑙!:!  penalizes neighboring vertices with different labels, but 

the penalties are weighted so that there is lower penalty in the presence of local gradients in 

RSFC (hence the name gradient weighted MRF): 

 

𝑉!"#$ 𝑙!:! = 𝛥 𝑙!, 𝑙! 𝑐 𝑒!!"#$% !!, !!  −𝑒!!
!∈𝒩!!

!

!!!

,       (2) 

 

where 𝛥 𝑙!, 𝑙!  is equal to one if 𝑙! ≠ 𝑙! and zero otherwise. 𝐺𝑟𝑎𝑑(𝑞!, 𝑞!) is the RSFC 

gradient magnitude between vertices 𝑞! and 𝑞!, with higher values indicating stronger gradients. 

In this work, we utilize the state-of-the-art gradients computed by Gordon et al. (2016), where 

𝐺𝑟𝑎𝑑(𝑞!, 𝑞!) ranges from zero to one. 𝑘 and 𝑐 are tunable parameters both greater than zero. If 
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𝑙! = 𝑙!, the penalty is always zero. If 𝑙! ≠ 𝑙! and 𝐺𝑟𝑎𝑑 𝑞!, 𝑞! = 0 (i.e., zero gradient), then 

the penalty is 𝑐(1− 𝑒!!). As 𝐺𝑟𝑎𝑑(𝑞!, 𝑞!) increases from zero to one, the penalty decays 

exponentially to zero. Therefore 𝑘 controls the exponential decay rate, while 𝑐 controls the 

overall magnitude of the penalty and therefore the weight of the local gradients relative to the 

other terms in the MRF.  

 The global connectivity similarity approach is encoded by 𝑈!"#$%" 𝑙!:!,𝑦!:!  defined as 

 

𝑈!"#$%" 𝑙!:!,𝑦!:! = 𝑢!"#$%" 𝑙!,𝑦!; 𝜇!:! , 𝜅!:!

!

!!!

 = − log𝑝 𝑦! 𝑙!; 𝜇!! , 𝜅!!),        (3)
!

!!!

 

 

where 𝑝 𝑦! 𝑙!; 𝜇!! , 𝜅!!) follows a von Mises-Fisher distribution: 

 

𝑝 𝑦! 𝑙!;  𝜇!! , 𝜅!!)  =  𝑧 𝜅!! exp 𝜅!!  𝑦!!  𝜇!! ,        (4)       

 

and µ!! and κ!! are the mean direction and concentration parameter of the 𝑙!-th von Mises-Fisher 

distribution and 𝑧(𝜅!!) is a normalization constant. As will be made clear (see Supplementary 

Methods S2), we can think of 𝜇! as the mean time course of parcel 𝑙, normalized to unit norm. 

Therefore if 𝑦! is similar to µ! (i.e., 𝑦!!𝜇! is big), then vertex 𝑞! is more likely to be assigned to 

parcel 𝑙. 𝑈!"#$%" 𝑙!:!,𝑦!:!  is the analogue of the von Mises-Fisher mixture model employed in 

Yeo et al. (Yeo et al. 2011), and thus encodes the global connectivity similarity approach.  

 With just 𝑉!"#$ and 𝑈!"#$%", many parcels will be spatially distributed due to strong long-

range RSFC. Requiring parcels in a MRF framework to be spatially connected (with minimal 

other assumptions) is non-trivial (Nowozin and Lampert 2010; Honnorat et al. 2015). Here, 

spatial connectedness is imposed by 𝑈!"#$%#& defined as 

𝑈!"#$%#& 𝑙!:!, 𝑠!:! = 𝑢!"#$%#& 𝑙!, 𝑠!; 𝑣!! , 𝜏!!

!

!!!

 = − log𝑝 𝑠! 𝑙!; 𝜈!! , 𝜏!!),        (5)
!

!!!

 

 

where 𝑝 𝑠! 𝑙!; 𝜈!! , 𝜏!!) follows a von Mises-Fisher distribution: 
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𝑝 𝑠! 𝑙!; 𝜈!! , 𝜏!!) =  𝑧 𝜏!! exp 𝜏!!  𝑠!!  𝜈!! ,        (6)       

 

where 𝜈!! is the mean spatial direction of parcel 𝑙! and 𝜏!:! are tunable parameters greater than 

zero. As will be made clear (see Supplementary Methods S2), we can think of 𝜈! as the mean 

spatial coordinates of parcel 𝑙 normalized to unit norm (i.e., sphere). Therefore if vertex 𝑞! is 

spatially close to the mean spatial location of parcel 𝑙 (i.e., 𝑠!!𝜈! is big), then vertex 𝑞! is more 

likely to be assigned to parcel 𝑙. Consequently, for large enough values of 𝜏!:!, the parcels will 

be spatially connected. This approach is significantly less computationally expensive than 

competing approaches (Nowozin and Lampert 2010; Honnorat et al. 2015). However, a serious 

problem is that large values of 𝜏!:! lead to round parcels, which are not biologically realistic. For 

example, we expect cortical areas in the cingulate to be long and narrow (Vogt 2009). To avoid 

this issue, the optimization procedure (see Supplementary Methods S2) starts with large values 

of 𝜏!:!, and then iteratively decreases 𝜏!:!, thus ensuring spatially connected parcels that are not 

constrained to be round.  

 

S2. Model Inference 

Given observed time courses 𝑦!:!, spatial positions 𝑠!:! and for a fixed set of parameters 

𝑐, 𝑘 and 𝜏!:!, we seek to estimate {𝑙!:! , 𝜇!:! , 𝜅!:! , 𝜈!:!} using the maximum-a-posteriori (MAP) 

principle: 

 

𝑎𝑟𝑔𝑚𝑎𝑥
!!:!,!!:!,!!:!,!!:! 

log  𝑝 𝑙!:! , 𝜇!:! , 𝜅!:! , 𝜈!:!  𝑦!:! , 𝑠!:!; c, k ,𝜏!:!) .        (7) 

 

The optimization is achieved by coordinate descent. At each iteration, we use the current 

estimates of {𝜇!:!, 𝜅!:!, 𝜈!:!} to estimate labels 𝑙!:! using graph cuts (Delong et al. 2010). We 

then use the estimates of labels 𝑙!:! to infer {𝜇!:!, 𝜅!:!, 𝜈!:!}:  

 

𝜇! =
𝑦!!

!!! 𝛿 𝑙!, 𝑙
𝑦!!

!!! 𝛿 𝑙!, 𝑙
                                                                            8  

𝜅! =  
𝑀 − 2 𝛤!
1− 𝛤!!

+  
𝑀 − 1 𝛤!
2 𝑀 − 2 ,where 𝛤! =

1
𝑁 𝛿 𝑙!, 𝑙 𝑦!!𝜇!

!

!!!

      9  
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𝜈! =  
𝑠!!

!!! 𝛿 𝑙!, 𝑙
𝑠!!

!!! 𝛿 𝑙!, 𝑙
  ,                                                                          (10) 

 

where 𝛿 𝑙!, 𝑙  is one if 𝑙! = 𝑙, and is zero otherwise, ∙  corresponds to the 𝑙!-norm and 𝑀 is the 

length of 𝑦!. Therefore the estimate of 𝜇! is the average time course of vertices constituting 

parcel 𝑙, normalized to be unit norm. Similarly, the estimate of 𝜈! is the average spatial locations 

of vertices constituting parcel 𝑙, normalized to be unit norm. Detailed derivations are provided in 

Supplementary Methods S4. The algorithm proceeds by initializing {𝜇!:!, 𝜅!:!, 𝜈!:!} and then 

iterating graph cuts (to estimate 𝑙!:!) and Eqs. (8) to (10) until convergence. Supplementary 

Methods S5 describes a trick to reduce memory requirements of the algorithm and speed it up by 

almost two orders of magnitude. For future reference, we refer to this algorithm as the MAP1 

algorithm.  

 As discussed in the previous section, large values of 𝜏!:! lead to spatially connected 

parcels that are unrealistically round. To resolve this issue, for a fixed set of parameters 𝑐 and 𝑘, 

we first set 𝜏!:! to a sufficiently large constant to ensure parcels are spatially connected. After the 

MAP1 algorithm converges, we repeatedly divide the 𝜏 of each parcel by five and re-run the 

MAP1 algorithm using the previous estimate of {𝜇!:!, 𝜅!:!, 𝜈!:!} as initialization. If decreasing 

𝜏 causes some parcels to become spatially distributed, we repeatedly quintuple the 𝜏 of each 

spatially distributed parcel (while keeping the 𝜏 of each spatially connected parcel constant) and 

re-run the MAP1 algorithm until all parcels are again spatially connected. The whole process of 

reducing and doubling 𝜏 is repeated until 𝜏!:!= 0 or we detect a repeated setting of 𝜏!:!. For 

future reference, we refer to this algorithm as the MAP2 algorithm. While there is no theoretical 

guarantee, we find that the 𝜏’s of almost all parcels are driven to zero in practice. Visual 

inspection also suggests that the resulting parcels are not constrained to be round.   

 Finally, for a fixed set of parameters 𝑐 and 𝑘, and a large initial setting of 𝜏!:!, we 

randomly initialize {𝜇!:!, 𝜅!:!, 𝜈!:!}, and run the MAP2 algorithm until convergence. This is 

repeated with multiple random initializations of {𝜇!:!, 𝜅!:!, 𝜈!:!}. Random initialization is 

achieved by setting 𝜇!:! and 𝜈!:! to be the time courses and spatial locations of 𝐿 randomly 

selected vertices respectively. 𝜅!:! is initialized to be 12,500. The parcellation with the highest 

likelihood (Eq. (1) excluding 𝑈!!"#$"%) is selected as the final solution. For future reference, we 
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refer to this algorithm as the MAP3 algorithm. The MAP3 algorithm is utilized in all subsequent 

experiments and evaluation. 

In this work, the parcellation is performed separately for the left and right hemispheres. 

The number of labels 𝐿 is already discussed in the Methods section of the main text. The setting 

of parameters 𝑐 and 𝑘, initial setting of 𝜏!:!, and the number of random initializations are 

discussed in Supplementary Methods S6.  

  

S3. Data Normalization 

 In this work, the fMRI time course of each participant at each vertex is normalized with 

mean of zero and standard deviation of one. For each vertex, the normalized time courses of all 

runs of all subjects are concatenated into a long (column) vector and normalized to unit norm. 

Assuming the fMRI data of each participant is of length 𝑇, then this section demonstrates that the 

inner product between two normalized time courses is the same as computing Pearson product-

moment correlation coefficient for each participant and then averaging across the participants. 

  Let 𝑎!" and 𝑏!" be the fMRI signals of subject 𝑠 at time 𝑡 at two vertices. The Pearson 

product-moment correlation coefficient between the two time courses is given by 

𝜌! =
1
𝑇 (𝑎!" − 𝑎!)( 𝑏!" − 𝑏!)!

1
𝑇 (𝑎!" − 𝑎!)! !  1

𝑇 (𝑏!" − 𝑏!)! !

,              (11) 

where 𝑎! and 𝑏! are the mean of 𝑎!" and 𝑏!" respectively (for each subject 𝑠). Suppose 𝑎!" and 

𝑏!" have been normalized to mean zero and standard deviation one (for each subject 𝑠), then Eq. 

(11) becomes 

𝜌! =
1
𝑇 𝑎!"𝑏!"

!

.                           (12) 

The mean correlation across participants is given by 

𝜌 =
1
𝑆𝑇 𝑎!"𝑏!"

!!

,                 (13) 

which can be written as  

𝜌 =
𝑎!"
𝑆𝑇 

𝑏!"
𝑆𝑇 !!

.               (14) 
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If we concatenate 𝑎!" and 𝑏!" across all subjects and timepoints, and denote the resulting time 

courses as 𝑒! and 𝑓! respectively, then Eq. (14) is equivalent to  

𝜌 =
𝑒!
𝑆𝑇 

𝑓!
𝑆𝑇 

=  𝑒!𝑓! 
!"

!!!

!"

!!!

,               (15) 

where 𝑒! and 𝑓! are unit norm signals obtained by dividing 𝑒! and 𝑓! by 𝑆𝑇. To see this, recall 

that 𝑎!" and 𝑏!" have been normalized to mean zero and standard deviation one (for each subject 

𝑠). Therefore the 𝑙!-norm of 𝑎!" and 𝑏!" (for each subject 𝑠) is equal to 𝑇. This means that the 

𝑙!-norm of the concatenated time courses 𝑒! and 𝑓! is equal to 𝑆𝑇. Dividing 𝑒! and 𝑓! by 𝑆𝑇 

results in unit norm signals 𝑒! and 𝑓!. Therefore the mean correlation across subjects 𝜌 is equal to 

the inner product of the unit norm time courses  𝑒! and 𝑓! (Eq. (15)). 

 In this work, the GSP dataset consisted of subjects with one or two runs. Each run is 

separately normalized to a mean of zero and a standard deviation of one. Mathematically, this 

means that subjects with two runs are weighted more than subjects with one run, which might 

make sense given that subjects with more data should enjoy better signal to noise ratio. Given the 

large dataset (N = 1,489), we think it is unlikely that the final parcellation will reflect the 

idiosyncrasies of any particular subject. Furthermore, the evaluation metrics were computed for 

each subject and then averaged. Therefore any concerns about the uneven weighting would not 

affect the evaluation.   

 

S4. MAP Estimation 

This section derives the MAP1 algorithm (Supplementary Methods S2). Recall that given 

observed time courses 𝑦!:!, spatial positions 𝑠!:! and for a fixed set of parameters 𝑐, 𝑘 and 𝜏!:!, 

we seek to estimate 𝑙!:! , 𝜇!:! , 𝜅!:! , 𝜈!:! using maximum-a-posteriori (MAP) principle as stated in 

Eq. (7) in Supplementary Methods S2: 

 

𝑎𝑟𝑔𝑚𝑎𝑥
!!:!,!!:!,!!:!,!!:! 

log  𝑝 𝑙!:! , 𝜇!:! , 𝜅!:! , 𝜈!:!  𝑦!:! , 𝑠!:!; c, k ,𝜏!:!).         (16) 

 

Assuming a uniform prior on 𝜇!:! , 𝜅!:! , 𝜈!:! we can write Eq. (16) as 
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argmax
!!:!,!!:!,!!:!,!!:! 

log  𝑝 𝑙!:! ,𝑦!:! , 𝑠!:!  𝜇!:! , 𝜅!:! , 𝜈!:!, c, k ,𝜏!:!).    (17) 

 

We can then plug in Eq. (1) and write 

 

argmax
!!:!,!!:!,!!:!,!!:! 

log
1
𝑍  exp{−𝑉!"#$ 𝑙!:! − 𝑈!"#$%" 𝑙!:! ,𝑦!:! − 𝑈!"#$%#& 𝑙!:! , 𝑠!:! } .     (18) 

 

The partition function 𝑍 is a function of the fixed parameters 𝑐, 𝑘 and 𝜏!:!, and so can be dropped 

from the optimization defined in Eq. (18). In addition, by plugging Eqs. (2) to (6) into Eq. (18), 

we get 

argmax
!!:!,!!:!,!!:!,!!:! 

− 𝛥 𝑙!, 𝑙! 𝑐 𝑒!!"#$% !!,!!  −𝑒!!
!∈𝒩!!

!

!!!

+  log 𝑧 𝜅!! +
!

!!!

𝜅!" 𝑦!!  𝜇!!

!

!!!

+ log 𝑧 𝜏!! +
!

!!!

𝜏!!  𝑠!!  𝜈!!  
!

!!!

.     (19) 

 

The global optimum of Eq. (19) is NP-hard to estimate. We optimize Eq. (19) by coordinate 

descent, which guarantees convergence to a local optimum.  

 At each iteration, we fix the current estimates of {𝜇!:!, 𝜅!:!, 𝜈!:!}, and optimize Eq. (19) 

to estimate labels 𝑙!:!. By flipping the sign of Eq. (19), the maximization problem becomes a 

minimization problem: 

 

argmin
!!:! 

𝛥 𝑙!, 𝑙! 𝑐 𝑒!!"#$% !!,!!  −𝑒!!
!∈𝒩!!

!

!!!

−  log 𝑧 𝜅!! −
!

!!!

𝜅!" 𝑦!!  𝜇!!

!

!!!

− log 𝑧 𝜏!! −
!

!!!

𝜏!!  𝑠!!  𝜈!!  
!

!!!

.     (20) 

 

The pairwise potentials in Eq. (20) are submodular. However, the unary potentials are negative, 

so graph cuts (Delong et al. 2010) cannot be directly applied because the resulting max-cut sub-

problem is intractable since the graph has both positive and negative weights. Therefore to apply 
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graph cuts, we add a positive constant 𝐶 to all the unary potentials so all the weights become 

positive.  Additionally, we divide by the number of vertices 𝑁 to avoid a numerical overflow: 

 

argmin
!!:! 

1
𝑁 𝛥 𝑙!, 𝑙! 𝑐 𝑒!!"#$% !!,!!  −𝑒!!

!∈𝒩!!

!

!!!

−  
1
𝑁 log 𝑧 𝜅!! −

1
𝑁

!

!!!

𝜅!" 𝑦!!  𝜇!!

!

!!!

−
1
𝑁 log 𝑧 𝜏!! −

1
𝑁

!

!!!

𝜏!!  𝑠!!  𝜈!!  
!

!!!

+ 𝐶.     (21) 

 

Eq. (21) can be directly optimized using graph cuts (Delong et al. 2010). 

We then fix the current estimates of labels 𝑙!:! and optimize Eq. (19) to estimate 

{𝜇!:!, 𝜅!:!, 𝜈!:!}. For fixed label estimates 𝑙!:!, optimization of Eq. (19) for {𝜇!:!, 𝜅!:!, 𝜈!:!} is 

equivalent to the maximum likelihood estimation of the von Mises-Fisher distributions. By using 

the constraints that 𝜇!!𝜇! = 1, 𝑣!!𝑣! = 1 and 𝜅 > 0, and differentiating Eq. (19) with respect to 

𝜇! , 𝜅! and 𝜈!, and setting the derivatives to zero, we get the following update equations (Lashkari 

et al. 2010):  

 

𝜇! =
𝑦!!

!!! 𝛿 𝑙!, 𝑙
𝑦!!

!!! 𝛿 𝑙!, 𝑙
                                                                            22  

𝜅! =  
𝑀 − 2 𝛤!
1− 𝛤!!

+  
𝑀 − 1 𝛤!
2 𝑀 − 2 ,where 𝛤! =

1
𝑁 𝛿 𝑙!, 𝑙 𝑦!!𝜇!

!

!!!

      23  

𝜈! =  
𝑠!!

!!! 𝛿 𝑙!, 𝑙
𝑠!!

!!! 𝛿 𝑙!, 𝑙
  ,                                                                          (24) 

 

where 𝛿 𝑙!, 𝑙  is one if 𝑙! =  𝑙, and is zero otherwise, and ∙  corresponds to the 𝑙!-norm. 

Therefore the MAP1 algorithm proceeds by initializing {𝜇!:!, 𝜅!:!, 𝜈!:!} and then iterating 

between Eq. (21) and Eqs. (22) to (24) until convergence.  

 

S5. Speeding Up the MAP1 Algorithm  

 This section describes an implementation trick that speeds up the MAP1 algorithm by a 

factor of approximately 80 for the full GSP dataset. The resulting implementation enjoys 
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computational and memory complexities independent of the number of fMRI time points and the 

number of subjects. Recall that the fMRI data consists of normalized time course 𝑦! at each 

vertex 𝑞!. By utilizing Eq. (22), observe that  

 

𝑦!!𝜇! = 𝑦!!
𝑦!!

!!! 𝛿 𝑙!, 𝑙
𝑦!!

!!! 𝛿 𝑙!, 𝑙
=  

𝑦!!𝑦!!
!!! 𝛿 𝑙!, 𝑙

𝑦!!𝑦!𝛿(𝑙!, 𝑙)𝛿(𝑙! , 𝑙)!
!!!

!
!!!

  ,           25  

 

implying that the inner product between time course 𝑦! and mean direction 𝜇! can be computed 

with just the inner products of the input time courses.   

 Recall that the MAP1 algorithm iterates between Eq. (21) and Eqs. (22) to (24) until 

convergence. The fMRI time courses {𝑦!,⋯ ,𝑦!} and mean cluster directions {𝜇!,⋯ , 𝜇!} appear 

in Eq. (21) and Eq. (23) only in the form 𝑦!!𝜇! for different values of 𝑛 and 𝑙. Eq. (25) implies 

that Eq. (21) and Eqs. (23) can be computed with just the inner products of the fMRI time 

courses without needing the actual time courses themselves. Therefore our actual implementation 

of the MAP1 algorithm iterates between Eq. (21), Eq. (23) and Eq. (24), without explicitly 

computing Eq. (22). Instead of passing in the normalized fMRI time courses, representable by a 

matrix 𝑌 =  [𝑦!  ⋯  𝑦!] of dimensions 𝑇 × 𝑁, the inner product matrix 𝐴 =  𝑌!𝑌 was 

precomputed and passed in as an input to the algorithm. The matrix A is of size 𝑁 × 𝑁, so we 

achieved substantial savings because 𝑁 = 40962 for each fsaverage6 spherical mesh and 𝑇 is 

308,640 for the full GSP dataset.  

 

S6. Implementation Details of the gwMRF Model 

 There are four “free” parameters in the gwMRF model. The number of parcels 𝐿 is 

already discussed in the Methods section of the main text. This section provides more details on 

how the local gradient weight 𝑐 (Eq. (2)), exponential decay parameter 𝑘 (Eq. (2)) and the initial 

weight of the spatial connectedness term 𝜏!:! (Eq. (4)) are set. 

 For comparison with other publicly available parcellations, the MAP3 algorithm 

(Supplementary Methods S2) was applied to the GSP training set (N = 744). The number of 

parcels 𝐿 was set to match the number of parcels in the publicly available parcellation. We 

explored the local gradient weight 𝑐 from 25,000 to 500,000 and the exponential decay 

parameter 𝑘 from 1 to 30. Based on visual inspection of the parcellations and functional 
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connectivity homogeneity in the GSP training set, the gradient weight 𝑐 and exponential decay 

parameter 𝑘 were set to 1e5 and 15 respectively for all comparisons. The initial weight of the 

spatial connectedness term 𝜏!:! was set to be 5e6. The MAP3 algorithm was run with 500 

random initializations. 

 Parcellations at multiple resolutions (400, 600, 800 and 1,000 areas) were generated from 

the full GSP dataset for public distribution, as well as from the GSP training and test sets for 

stability analyses. With the change in the number of parcels, the relative weights of the various 

terms in the gwMRF model (Eq. (1)) needed to be modified. Therefore we could not use exactly 

the same parameters as before. Based on visual inspection of the resulting parcellations, the 

gradient weight 𝑐 was set to 150,000 for the 400-area parcellation and 300,000 for 600 or more 

parcels. The exponential decay parameter 𝑘 was set to 15 for 400-area parcellation and 7.5 for 

600 or more parcels. The initial weight of the spatial connectedness term 𝜏!:! was set to be 5e8. 

MAP3 algorithm was run with 1000 random initializations.  
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