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Despite a growing body of research suggesting that task-based functional magnetic resonance
imaging (fMRI) studies often suffer from a lack of statistical power due to too-small samples,
the proliferation of such underpowered studies continues unabated. Using large independent
samples across four distinct tasks, we demonstrate the impact of sample size on reproducibility,
assessed at different levels of analysis relevant to fMRI researchers. We find that typical sample
sizes produce results that have a low degree of reproducibility, and even samples much larger
than typical (e.g., N = 100) produce results that are far from perfectly reproducible. Thus, our
results join the existing line of work advocating for larger sample sizes. Moreover, because we
test sample sizes over a fairly large range and use intuitive metrics of reproducibility, our hope
is that our results help catalyze a major shift in how task-based fMRI research is carried out

across the entire field.
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Introduction

Recent years have seen the arrival of a “reproducibility
crisis” in science, both in science at large (Baker et al., 2016;
Munafd et al., 2017; “Replication studies offer much more
than technical details”, 2017), and perhaps even more acutely
in the psychological sciences (Open Science Collaboration,
2015). Some of the reasons behind this crisis—including
flawed statistical procedures, career incentive structures that
emphasize rapid production of “splashy” (i.e., unlikely) re-
sults while punishing “failed” studies, and biases inherent in
the publication system—have been articulated carefully in
previous work, again both generally (Szucs, 2016; Barnes,
Tobin, Johnston, MacKenzie, & Taglang, 2016; Wicherts et
al., 2016), and for fMRI in particular (Carp, 2012; Button et
al., 2013; Poldrack et al., 2017; Szucs & loannidis, 2017).
Among these problems, the most frequently identified, and
possibly the most easily remedied, is lack of statistical power
due to too-small samples. Indeed, the field of fMRI has seen
recommendations against large samples (e.g., Friston, 2012;
cf. Ingre, 2013), and even when larger sample sizes are ac-
knowledged as desirable, what constitutes “large enough”
has often been an ad-hoc process of developing unempirical
rules of thumb.

Of course, this lack of power is driven in large part
by the great expense associated with collecting fMRI data

(Mumford & Nichols, 2008). Even relatively small stud-
ies can cost several tens of thousands of dollars, and the
funding system throughout much of the world is not gen-
erally set up to enable the routine collection of large (e.g.,
N > 100) samples. However, aside from these financial con-
siderations, there are two other reasons researchers may per-
sist in collecting small samples. The first is that while tools
exist that allow researchers to do prospective power analyses
for fMRI studies (Mumford & Nichols, 2008; Durnez et al.,
2016), researchers may struggle to understand these tools,
because defining power in an fMRI context involving hun-
dreds of thousands of statistical tests is conceptually distant
from defining power in a typical behavioral context, where
there might be on the order of ten such tests. Relatedly,
meaningfully defining “effect size” is conceptually straight-
forward in a behavioral context, but much less so in an fMRI
context.

The second possible non-financial reason that researchers
continue using small samples is because a number of stud-
ies have shown that fMRI has reasonably good test-retest re-
liability (Bennett & Miller, 2010; Gonzalez-Castillo & Ta-
lavage, 2011; Plichta et al., 2012; Bennett & Miller, 2013).
It is possible that researchers take this to mean that large
samples are not necessary, particularly if the researcher uses
design optimization approaches to increase power at the in-
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2 REPRODUCIBILITY OF TASK-BASED FMRI

dividual level (Liu, Frank, Wong, & Buxton, 2001; Wager
& Nichols, 2003; Liu & Frank, 2004). However, test-retest
reliability is not only not synonymous with replicability, but
it is in some ways antithetical. This is because typical mea-
sures of test-retest reliability, e.g. the intra-class correlation
(ICC), rely on variability across individuals. However, repli-
cability is reduced by individual variability, particularly with
small samples. While it is true that a measure with low test-
retest reliability will have low replicability (in the limit, all
individual maps are pure noise, and if there are suprathresh-
old voxels in the group average map, they likewise represent
non-reproducible noise), it does not follow that high test-
retest reliability guarantees replicability at the level of group-
average maps. Nor is it the case that variability between in-
dividuals in terms of brain activity is so minor that we can
disregard it when considering the relationship between test-
retest reliability and replicability; on the contrary, research
has demonstrated that variability between individuals can
swamp group-average task-related signal (Miller et al., 2002,
2009; Miller, Donovan, Bennett, Aminoff, & Mayer, 2012;
Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015).

Our goal in the present study is to provide empirical es-
timates of fMRUI’s replicability in terms of the levels of re-
sults that are useful in the field (i.e., multi-voxel patterns or
cluster-based results, rather than, e.g., peak t-statistic values).
Our specific focus is on the role of sample size (i.e., number
of participants) on replicability, although we do examine the
influence of other factors that should affect replicability, in-
cluding design power (Turner & Miller, 2013). We also em-
phasize that our results, far from being relevant only to re-
searchers whose specific interest is in studying reproducibil-
ity (e.g., Evans, 2017), are applicable to all researchers who
are interested in using fMRI to produce valid and mean-
ingful neuroscientific discoveries. In fact, we use N ~ 30
as our standard for a “typical” fMRI sample size, which
is in line with empirical estimates by Szucs and Ioannidis
(2017) (median sample size of fMRI studies in 2015 = 28.5)
and Poldrack et al. (2017) (75th percentile of sample size
in cognitive neuroscience journals published between 2011—
2014 = 28). To preview our results, we provide an easily-
interpretable demonstration of the facts laid out by Button
et al. (2013) and Szucs and Ioannidis (2017): An examina-
tion of multiple measures of reproducibility computed across
multiple levels of analysis demonstrates that replicability of
fMRI studies with a sample size anywhere near 30 is strik-
ingly low.

Method

We carried out a series of analyses across four distinct
tasks. Because these analyses had the same form across all
four tasks, we describe here the details of those analyses, and
leave the description of the details specific to each task to the
Supplemental Materials. We refer to the four tasks through-

out this report as A, B, C, and D, because our interest is not
in the identity of these tasks per se.

Participants

Participants were recruited from the Urbana-Champaign
community as part of two separate intervention studies, each
of which included a pre-intervention MRI session with two
different fMRI tasks (for a total of four fMRI tasks). Both
studies were approved by the University of Illinois Urbana-
Champaign Institutional Review Board; all participants in
both intervention experiments provided informed consent.
All participants were right-handed, had normal or corrected-
to-normal vision without color blindness, reported no previ-
ous neurological disorders, injuries, or surgeries, reported no
medications affecting central nervous system function, were
not pregnant, had no head injuries or loss of consciousness
in the past two years, and were proficient in English. All
participants received monetary compensation for participa-
tion. Only data provided at the pre-intervention time point
(i.e., prior to the start of any intervention or experimental
conditions) are included in the present analyses.

A total of 301 participants were recruited for and provided
data in the first intervention study (Study 1). For the two
fMRI tasks A and B, an identical set of 279 participants had
complete data in both and are included in all analyses.

A total of 227 participants were recruited for and provided
data in the second intervention study (Study 2). Task C in-
cludes a sample of 214 participants with complete data, and
Task D includes 200 participants (of the 214 included in Task
C) with complete data.

Scanning procedure

All participants in both Studies 1 and 2 were scanned on
the same Siemens 3T Magnetom Trio. Study 1 participants
were scanned with a 32-channel head coil; Study 2 partici-
pants were scanned with a 12-channel head coil. High reso-
lution anatomical data were obtained using a high resolution
3D structural MPRAGE scan: 0.9 mm isotropic, TR = 1900
ms, TI =900 ms, TE = 2.32 ms, with a GRAPPA accelera-
tion factor of 2. Functional MRI BOLD data were collected
using the Siemens echo-planar imaging sequence. Tasks A,
B, and D used the following parameters: TR = 2000 ms, TE
= 25 ms, flip angle = 90°, 92 x 92 matrix with 2.5 mm in-
plane resolution, 38 slices parallel to AC-PC with a 3.0 mm
slice thickness and 10% slice gap. Task C used the same
parameters, with the exception of the following: TR = 2360
ms, 45 slices with a 2.5 mm slice thickness. The number
of repetitions varied for each task depending on the task du-
ration (see Supplemental Materials for details). Finally, a
gradient field map was collected for use in BO unwarping
matching the EPI parameters.
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Preprocessing

Every run from each task was preprocessed identically us-
ing FSL’s (http://www.fmrib.ox.ac.uk/fsl) FEAT (FMRI Ex-
pert Analysis Tool, version 6.00) software package. Pre-
processing included motion correction using MCFLIRT
(Jenkinson, Bannister, Brady, & Smith, 2002), BET brain
extraction (Smith, 2002), spatial smoothing with a 6 mm
FWHM kernel, grand-mean intensity normalization, pre-
whitening with the FILM tool (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012) and a high pass filter
with a cutoff of (1/90) Hz. EPI images were additionally
unwarped using the gradient field maps collected with the
functional runs. The high-resolution structural scan was reg-
istered to the MNI152-T1-2mm standard brain via FLIRT
(Jenkinson & Smith, 2001; Jenkinson et al., 2002) and fur-
ther refined using the non-linear FNIRT tool (§mm warp res-
olution; Andersson, Jenkinson, Smith, et al., 2007). Trans-
formation of each functional scan to the MNI standard brain
was accomplished using a two-step process to improve align-
ment first by registering each EPI to the high-resolution
structural scan with the FSL BBR tool (Greve & Fischl,
2009), and then applying the non-linear warp generated from
the high-resolution scan to the functional scan.

GLM analysis

For a complete description of each task, task events, and
contrasts, see Supplemental Materials. Briefly, Task A in-
cluded 7 experimental events; Task B included 10 events;
Task C included 7 events; Task D included 4 events. Pre-
dicted BOLD signals were generated for each event via con-
volution with a double gamma HRF (phase = 0). Six regres-
sors derived from the motion parameters were included as
regressors of no interest in each low-level model to mitigate
the effects of motion in the data. The temporal derivative of
each event was also included and the same temporal filtering
that was applied to the preprocessed data was also applied to
the model. A primary contrast of interest was identified for
each task, defined by the cognitive effect that the task was de-
signed to capture (i.e., the contrast an experimenter running
any of these particular tasks would be primarily interested
in). The contrast of interest was estimated in each subject in
a mid-level analysis by combining all runs in a fixed-effects
model. Following that, group-level statistical results for each
task/contrast were generated using a mixed-effects model via
FSL’s FLAMEI1 tool (Woolrich, 2008).

Pseudo-replicate analysis

To estimate the reproducibility of group-level results, we
took the following approach. First, we split our full sample
of N participants into two randomized, non-overlapping sets
(“P” and “Q”) of length N/2. Next, we chose a sample size
ke {16,25,36,49,64,81,100(,121)} for which we sought to

estimate the reproducibility, and used FSL’s FLAME] tool to
generate group-level statistical maps using the first k partici-
pants in both groups P and Q. Then, for each of a number of
similarity measures, we computed the similarity between the
P and Q group-level maps. Finally, we repeated the preced-
ing steps across all in-range values of &, and for 500 random
sorts in groups P and Q.

This same process was carried out for every task; for Tasks
C and D, all sorts were done independently, while for Tasks
A and B (which comprised an identical set of participants),
the same 500 sorts were applied to both tasks. For the pur-
poses of presentation, we show the average reproducibility
estimate across all four tasks for each sample size, along
with the average within-task (and within-sample size) stan-
dard deviation, though we also include the curves for each
task. Although we present error bars for all of our analyses,
note that, as with all resampling-based analysis methods, our
results suffer from complex interdependence that makes it
difficult to draw strong inferences about differences between
tasks. That is, the variance among the 500 simulated replica-
tions of a given task in our approach may underestimate the
variance that would be observed given 500 true, completely
independent replications of the task. Moreover, there is no
analytic solution that would let us correct for this underes-
timation, if in fact it exists. Therefore, all error bars should
be interpreted as being qualitative or illustrative, rather than
as guides for whether differences are significant. To that end,
we use standard deviations rather than standard errors or con-
fidence intervals in our presentation of the results.

Similarity statistics

The similarity statistics that we used to operationalize re-
producibility were chosen to reflect different levels of focus.
Broadly, there were three levels, which from most to least
granular were voxel, cluster, and peak. We describe the mea-
sure(s) associated with each level in turn below. Through-
out our analyses, we present results in an “exact replication”
frame—that is, our results provide an empirical demonstra-
tion of what a researcher could expect if she were to re-run a
study exactly, down to the sample size of the original study.
Our gold standard would be to present results that reflect how
well a study’s results capture “ground truth” as a function
of sample size. Unfortunately, as is generally the case, the
ground truth for the experimental contrasts we have included
here is unknown.

Previous investigations in a similar vein have used either a
meta-analytic approach or results from “large-enough” sam-
ples to approximate ground truth. However, meta-analyses
suffer from well-established biases against small (but puta-
tively nonetheless significant) results, and are moreover ill-
suited to address some of the levels we focus on here. Like-
wise, to preview our results, although we have access to large
samples by the standards of many neuroimaging studies, they
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are not large enough to establish a reliable ground truth.
More to the point, because of differences between tasks in
terms of power and maximum available sample sizes, these
ground truth maps would reflect different levels of “truthi-
ness” across tasks, which would further confuse interpreta-
tion of these results. However, we do use results from the
full sample in our “voxel-level (thresholded)” analyses, as
described in more detail below.

We also describe the method associated with each mea-
sure for determining the measure’s null distribution. To aid
readers in placing our results in the appropriate context, we
generated results expected under two distinct null hypothe-
ses for each of our measures. In every case, one of these null
hypotheses was simple in both concept and implementation,
while the other was more complex and meant to represent a
more realistic null hypothesis. We refer to these as the “sim-
ple” and “realistic” null hypotheses, but the terms “weak”
and “strong” or “liberal” and “conservative” could also be
applied. While we based our realistic null approaches on
reasonable assumptions, the simple null results serve as an
absolute lower bound for those readers who feel that our re-
alistic null approaches represent too high a bar. In the main
text, we compromise and present results averaged across the
two null approaches (which we refer to as the “hybrid” null);
individual null results are available in the Supplemental Ma-
terials.

Voxel-level reproducibility (intensity). Arguably, the
goal in fMRI is to accurately capture the activity in every
single voxel. Indeed, many analysis methods are predicated
on just such an assumption (e.g., MVPA, RSA, or encoding
models), and many techniques for improving data acquisi-
tion or preprocessing are aimed at getting ever-finer spatial
resolution (which we presume would be wasted effort if re-
searchers’ goal was merely to approximate the spatial loca-
tion of activity, or equivalently, the activity associated with
a given location). Therefore, the first level of reproducibility
on which we focused was the reproducibility of voxel-wise
intensities.

To quantify similarity, we used the Pearson correlation,
which ranges from —1 (inverse SPMs, invariant to scale) to
1 (identical SPMs, invariant to scale). Although the Pear-
son correlation is not a measure of reliability, it does give
us an indication of how similar the between-voxel patterns
of activity are across SPMs. (Our results are qualitatively
unchanged if a measure not based on covariance, e.g., eta,
is used instead of the Pearson correlation.) To generate this
measure, we computed the similarity between the vectorized
unthresholded group-level SPMs, after applying a common
mask to remove voxels that were zero (i.e., outside of the
group FOV) in either SPM.

The simple null distribution for both metrics were con-
structed by generating SPMs of white noise spatially
smoothed to match the observed smoothness in our real

SPMs, and rescaled to equate the robust min and max (i.e.,
2" and 98™ percentile, respectively). For each task and sam-
ple size, we generated the observed histogram of estimated
FWHMs (using FSL’s smoothest command) as well as ob-
served histograms of robust mins and maxes. We then pa-
rameterized these histograms and drew 1000 samples from
the resulting parametric normal distributions. Finally, we
generated 1000 maps of pure A (0, 1) noise, smoothed each
map with the corresponding sampled FWHM (using FSL’s
fslmaths utilities) and rescaled to match the sampled robust
min and max.

The realistic null distribution for both of these was con-
structed to reflect the strict interpretation of “reproducible”
we stated for this level. In particular, we generated a set
of R null maps separately for every task, sample size, and
bootstrap iteration (with the caveat that Tasks A and B relied
on the same set of null maps). The null maps were gener-
ated using a novel “voxel drift” resampling algorithm: for a
given SPM, every voxel’s position was resampled probabilis-
tically according to that SPM’s empirical FWHM (with the
caveat that every voxel had to shift from its original position).
Then, given this set of R null maps and the counterpart true
map (i.e., if Q had been chosen for this voxel drift resam-
pling procedure, the P map would be left unchanged), each
statistic was computed for the comparison of the true map
with all R null maps. Finally, to be able to give a “chance”
performance curve, we recorded the 95" percentile of each
statistic across these R calculations. This null hypothesis can
be stated as, “The location of a particular voxel is random to
within roughly FWHM mm.”

Voxel-level reproducibility (thresholded). Without
abandoning the notion of describing reproducibility at the
voxel level, it is nonetheless possible to relax the definition
of what is being reproduced somewhat—i.e., from raw
intensity value to a binary “active”/*inactive” classification.
To this end, we carried out a second set of analyses at the
voxel level, using thresholded, binarized maps. As alluded
to earlier, we used full-sample results in these analyses.
Specifically, we thresholded each of the full-sample SPMs
at liberal and conservative thresholds using FSL’s cluster-
based thresholding (see next section for additional details
on cluster-based thresholding), and used these thresholded
maps in order to estimate the “true” proportion of voxels that
should be suprathreshold for each task.

With these per-task proportions suprathreshold, we sim-
ply applied proportion-based thresholding of the group-level
SPMs (two-tailed) in order to match the full sample propor-
tion suprathreshold. Conceptually, this is distinct from the
cluster-based thresholding used in the subsequent sections,
in that the voxels which end up suprathreshold are not guar-
anteed to meet any particular cutoff for significance, either at
the voxel level or familywise. Thus, the quantity that is held
constant across group-level maps P and Q is not the theoret-
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ical Type I or II error rates of each map, but simply the num-
ber of suprathreshold voxels. Our metric of reproducibility
for these thresholded maps was the Jaccard statistic, which
is simply the ratio of the intersection of a pair of thresholded
maps divided by their union. This statistic ranges from O (no
overlap) to 1 (perfect overlap).

The simple and realistic null results were generated using
the same approaches outlined for the intensity-based voxel-
level analyses, with the added steps of thresholding (two-
tailed) the null maps at the same target proportion and com-
puting the Jaccard overlap between the pair of one null and
one true map. As above, this procedure was repeated 1000
times and the 95" percentile was taken.

Cluster-level reproducibility. While the ultimate or
idealized goal of fMRI would seem to be voxel-level repro-
ducibility, the common currency of today’s analytic land-
scape is generally the cluster (or as a special case, the peak;
see next section). Therefore, the second level of repro-
ducibility on which we focused was at the cluster level. Here,
we chose to focus simply on the binary distinction between
sub- and supra-threshold that forms the basis of cluster-based
approaches (along with others). Although cluster-based ap-
proaches are widely used, it is less clear exactly what it
means to reproduce a cluster. Existing methods for conduct-
ing inferential statistics on clusters (e.g., Gaussian random
field theory, Worsley, Taylor, Tomaiuolo, & Lerch, 2004;
or permutation, Nichols & Holmes, 2002) refer to the null
probability of observing a cluster of a given size (or possi-
bly mass; Zhang, Nichols, & Johnson, 2009) conditioned on
an initial threshold level, but do not address the question of
exactly where this cluster appears.

Certainly, the spatial resolution at the cluster-level is
coarser than at the voxel-level—researchers generally do not
expect that every single supra-threshold voxel in a given clus-
ter would be supra-threshold under replication, and likewise
with sub-threshold voxels. Durnez, Moerkerke, and Nichols
(2014), from which we take inspiration for our peak-based
approach, employed a liberal definition in their cluster-based
methods: a cluster is “replicated” if a single voxel from a
given cluster is suprathreshold in replication. For our ap-
plication, such a definition is far too generous, so we once
again used Jaccard overlap. To generate clusters, we used
FSL’s cluster-based thresholding on every group-level SPM,
once at a liberal threshold and once at a more conservative
threshold.

We note as well some researchers might view cluster repli-
cation as a question of proximity; although Jaccard overlap is
not a measure of proximity, it will generally track with prox-
imity (i.e., as two clusters get closer together, their Jaccard
overlap will increase). The exception to this is in the case
of clusters which have zero intersection; a proximity-based
measure would distinguish between a proximal pair of (non-
intersecting) clusters and a distal pair, while both would have

a Jaccard overlap of 0. In the interest of simplicity, as well
as conceptual rigor when it comes to defining replication, we
eschew such proximity-based measures.

Given the “fuzzier” localization inherent at the cluster
level, it makes little sense to use the voxel drift resampling
procedure we outlined above in this context. On the other
hand, completely unconstrained drift (i.e., simply matching
the number of supra-threshold voxels) is certainly too lax,
and also fails to respect the spatial correlation inherent in
cluster-thresholded maps (which will change the shape of the
null distribution). Therefore, we used a simple procedure to
generate null clusters: for a given task, we constructed the
corpus of all clusters from all analyses across the other three
tasks. To match a given true image with a corresponding
null image, we drew random clusters from this corpus, while
imposing the constraint that the proportion of suprathreshold
voxels in the null map be within +0.01 of the proportion in
the corresponding true image. (Note that these clusters are
independent, though they may be spatially similar to the ex-
tent that these contrasts rely on common processes. Given
the ubiquity of subtraction logic in neuroimaging, we view
the possibility that these clusters will be similarly located as a
feature of this approach, rather than a bug.) The realistic null
was computed as the Jaccard overlap between the generated
map and the true map. The simple null was computed almost
identically to that described in the previous section: each null
smoothed map was thresholded (one tailed) to match the pro-
portion of suprathreshold voxels from the corresponding true
image, and the Jaccard overlap between the two was com-
puted.

Peak-level reproducibility. The last analysis we report
focuses on the level of peaks. Although clusters form the
foundation of the majority of thresholding-based analyses
used today, these clusters are typically reported simply in
terms of the location and intensity of their peaks. In fact,
some recent work has developed the statistical framework
for understanding the behaviors of peaks, and how this can
be used in, e.g., power analyses (Mumford & Nichols, 2008;
Durnez et al., 2014). For the present purposes, we do not
need to know the distributional characteristics of peaks, nor
do we need to use the sophisticated estimation procedures de-
scribed by Durnez et al. (2014). Therefore, we use the same
cluster-extent (Gaussian random field theory) thresholding
approach as for the cluster-level analyses. That is, whereas
Durnez et al. (2014) use a peak-based secondary threshold
when considering peaks as topological features, we use an
extent-based secondary threshold. However, as in Durnez et
al. (2014), this results in a set of surviving peaks and a set of
non-surviving peaks.

In contrast to the previous levels, we consider two types
of replication at the peak level. The first is the same as in
Durnez et al. (2014): a peak is considered replicated if it is
suprathreshold under replication (i.e., part of any surviving
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cluster). This is a fairly generous definition of replication,
but much less so than their cluster-level approach (i.e., non-
zero overlap between clusters). Although we cannot interpret
results in terms of false positives or false negatives, we can
nonetheless examine the replication success of surviving and
non-surviving peaks separately. (We additionally provide an
analysis of the relationship between peak z values and re-
producibility for surviving peaks in the Supplemental Ma-
terials.) Therefore, for each of these two sets, we compute
the proportion of peaks in one map that are suprathreshold in
the complementary map. And unlike all previous measures,
this measure is asymmetric—the proportion of P peaks that
are suprathreshold in Q need not be equal to the proportion
of Q peaks suprathreshold in P—so we calculated it in both
directions and then averaged the results to arrive at the final
value.

We used the same two approaches described in the pre-
ceding section to generate realistic and simple null distribu-
tions. That is, for the realistic null, we used the same maps of
independently-generated clusters to determine whether each
peak was supra- or sub-threshold. For the simple null, we
used the smoothed null maps, thresholded to match propor-
tion, to classify peaks.

Measurables

Our expectation was that sample size would be the largest
driver of reproducibility, irrespective of how it was mea-
sured. However, we also expected variability between our
tasks (which would be unexplainable by k), as well as vari-
ability within a task for a given k (which would be unex-
plainable both by k and by task-level variables). Therefore,
we carried out an analysis in an attempt to find other easily-
measured variables that might explain these two types of
variability. Although our primary goal is descriptive—that
is, to identify the relationships present in our data—we used
a modeling approach that in principle should allow general-
ization.

Before we describe this approach in detail, we note that
we cannot use standard regression techniques to derive in-
ferential statistics for our regressors, because our observa-
tions are non-independent (i.e., the correlation between any
P and Q group-level maps reflect contributions from specific
participants, all of whom will almost surely be members of
other P or Q groups). Moreover, the influence of this non-
independence varies across sample sizes, because the av-
erage number of participants in common between any two
groups across iterations at a sample size of, say, 16, will be
much lower than the average number of participants in com-
mon between groups at a sample size of 100.

The modeling approach we used included several
steps. First, because of the aforementioned fact that non-
independence exerts the greatest influence for the largest
sample size, we removed the 500 observations from each task

corresponding to the largest sample size (either 100 or 121).
Next, we removed the task effects from the outcome variable
as well as all predictor variables (this was done to simplify in-
terpretability of R? values; the Frisch-Waugh-Lovell theorem
ensures that including a categorical regressor for task would
yield identical beta estimates), z-scored all variables, and fit
a full model. We used this fit to identify how many variables
to retain (a value we refer to as m below) in subsequent steps
by examining the plot of beta estimates for an obvious elbow,
and also to establish the common within-task effect of each
regressor.

We then used a double-cross-validation approach to ver-
ify that the variables we selected generalized across tasks.
At the first cross-validation loop, we held out a single task
as a test set; at the second cross-validation step, we held out
each of the remaining tasks in turn, fit a model on the re-
maining two tasks with all regressors (demeaned by task),
and used the regression estimates to select the m best vari-
ables. Next, we combined the three tasks that had not been
held out (now without task effects removed), selected the m
variables that had occurred most frequently across the second
cross-validation loop (using absolute normalized beta value
to break ties when necessary; this second CV was required
to avoid circularly using the test data for model selection
and validation), fit the model including these m variables
for the three tasks, and used the estimated betas to predict
the (un-task-demeaned) outcome variable using the (un-task-
demeaned) m variables from the hold-out task. We compare
root mean squared error (RMSE) against the (biased) stan-
dard deviation of the outcome variable and the RMSE from
a null model including only an intercept term to assess per-
formance. We also examine regressor prevalence and beta
estimate stability.

We chose correlation as the outcome measure of interest
for our analysis of the influence of various data properties
because it is generally smoother (less stochastic) than the
other measures. However, we demonstrate in the Supple-
mental Materials that the models fit to correlation generalize
to the other measures, so the qualitative pattern of our results
does not depend on the choice of outcome measure.

Results

We present the result from each of the three levels of anal-
ysis described in the Methods—voxel, cluster, and peak—in
separate sections below. Each section includes the true ob-
served results for the measure used at that level in terms of
the impact of sample size and task on that measure, as well
as null results from the hybrid null (i.e., the average of the
simple and realistic null methods). In a separate section, we
explore the relationship between various measurable proper-
ties of the data and the voxel-level reproducibility results.

For all Figures throughout the first three sections below,
note that we plot results as lines for clarity, but computed our
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Figure 1. Replicability results for voxel-level (unthresholded) analyses. Average observed (41 standard deviation) shown in
black (dark gray); average hybrid null (1 standard deviation) shown in medium gray (light gray). Individual task curves for
tasks A—D shown in blue, red, green, and purple respectively. See also Figure S1.

measures only for the discrete sample sizes marked on each
x-axis. Note too that the x-axis uses a compressive (square
root) scale.

Voxel-level results

Our first analysis assessed the reproducibility of voxel-
wise patterns of raw SPM values, which we measured using
Pearson correlation of unthresholded P and Q maps. The re-
sults of this analysis are shown in Figure 1, which illustrates
the results for the average across the four tasks, alongside
the average of the hybrid null results across the four tasks.
The results using eta” rather than Pearson correlation are pre-
sented in Figure S1.

There is no universally accepted value for this sort of re-
producibility that would allow us to identify a minimum rec-
ommended sample size. However, we note that the smallest
(measured) sample size for which the average R? surpassed

0.5 was 64, which is more than double our standard for a
typical sample size.

The results of our second voxel-level analysis, of binary
thresholded SPM reproducibility (using Jaccard overlap of
maps thresholded using a conservative threshold), are illus-
trated in Figure 2. Results using a liberal threshold are pre-
sented in Figure S2. For these maps, we thresholded to
match the proportion of suprathreshold voxels to the ob-
served proportion suprathreshold for each taskOs thresh-
olded full-sample analysis. That is, differences between
tasks in terms of power lead to differences in terms of the
proportion suprathreshold, which in turn largely explains the
differences between tasks in these four curves. Even at a
sample size of 121, the average Jaccard overlap across tasks
fails to surpass 0.5.


https://doi.org/10.1101/136259
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136259; this version posted May 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

8 REPRODUCIBILITY OF TASK-BASED FMRI

0.8

L | 1

16 25 36 49

64 81 100 121

Figure 2. Replicability results for voxel-level (thresholded conservatively) analyses. See Figure 1 for legend. See also Figure

S2.

Cluster-level results

The second level at which we considered replicability was
at the cluster level. For this analysis, we thresholded each
P and Q map using FSL’s cluster thresholding tool, and
computed the Jaccard overlap between the resulting bina-
rized thresholded maps. Figure 3 presents the results of our
cluster-level analyses in terms of mean Jaccard overlap as a
function of sample size for each task using the conservative
threshold. Results using a liberal threshold are shown in Fig-
ure S3. Unsurprisingly, average Jaccard overlap at a sample
size of 16 is very near 0, because these SPMs are often null
(i.e., contain no suprathreshold voxels), and even when both
maps in a pair are non-null, the clusters overlap minimally.
However, even at a sample size of 49—the lowest sample
size for which fewer than 1% of all SPMs across all tasks are
null—the mean overlap is less than 0.3.

Peak-level results

The final level of replicability we considered was at the
level of cluster peaks. For this analysis, we assessed how
frequently the peak voxel of each cluster was suprathresh-
old in its corresponding pseudo-replicate. We used a sin-
gle peak per cluster (i.e., we ignored local maxima), but we
did subdivide peaks into those that survived the GRFT-based
correction for multiple comparisons, which we refer to as
the suprathreshold peaks, and those that did not, which are
the subthreshold peaks. The results from these two disjoint
sets are shown separately: Figure 4 illustrates the results for
suprathreshold peaks, while Figure 5 shows the results for
subthreshold peaks, both using a conservative threshold. Re-
sults using liberal thresholds are shown in Figures S4-S5.

Note that for Figure 5, because these are peaks that were
selected against by our multiple testing correction, lower val-
ues are better, in contrast to all the previous plots. High val-
ues would potentially reflect overly conservative threshold-
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Figure 3. Replicability results for cluster-level (thresholded conservatively) analyses. See Figure 1 for legend. See also Figure

S3.

ing, such that many replicable peaks failed to survive.

Measurables results

Our initial modeling suggested that there were at most
four variables that contributed to the model fits. In the case
of the full model, these variables were: sample size, the av-
erage of the mean between-subjects similarity across P and
Q, the difference between the mean between-subjects simi-
larity across P and Q, and the average of the mean precision
for P and Q. Table 1 presents the standardized beta estimates
for each of these variables, along with the unique variance
accounted for by each (i.e., above and beyond the other three
in a model including only these four variables). Note that
because we removed task effects, we reduced the influence
of variables that showed differences in range across tasks and
exaggerated the influence of variables that did not vary across
tasks.

Having estimated m to be four, we carried out a double-

cross-validation, wherein we assessed how reliably each re-
gressor (from the full set of regressors) was selected as be-
ing one of the four to be included in the cross-validation
models, as well as how stable each beta estimate was for
each regressor. Three variables (sample size, average of
the mean between-subjects similarity, and average of the
mean precision) were selected at every cross-validation fold,
and a fourth variable (average of the standard deviation of
between-subjects similarities) was selected in three of four
folds (in the fourth fold, the average of the standard devia-
tion of the precision was selected instead). Given the consis-
tency across folds, we present the results for the four most
frequently occurring regressors in Table 2.

In addition to these regressor-specific results, we calcu-
lated the RMSE of the predicted outcomes for the left-out
task for each fold, and compare this against the (biased) stan-
dard deviation of the true outcomes, as well as the RMSE
of the predicted outcomes from a null model including only
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Figure 4. Replicability results for suprathreshold peak-level (thresholded conservatively) analyses. See Figure 1 for legend.

See also Figure S4.

Table 1

Results of regression analysis predicting replicability from several variables. Model included only these four variables, and

included all four tasks with task effects removed from X and y.

Variable Standardized beta 100 x AR?
Sample size 0.751 56.41
Average of mean between-subject similarity 0.100 1.09
Difference of mean between-subject similarity —0.081 0.71
Average of mean precision 0.070 0.04

an intercept term. The four-variable model RMSE ranged
from 0.08-0.233 (mean = 0.141). The (biased) standard de-
viation ranged from 0.099-0.156 (mean = 0.134). Finally,
the intercept-only model RMSE ranged from 0.146-0.270
(mean = 0.213). Note that the biased standard deviation cor-
responds to an unrealistic model that is allowed to know the
mean predicted outcome, so the fact that our four-variable
models perform approximately as well is impressive.

Considering both sets of results together—the task-
demeaned model with all data (excluding largest sample
size results from each task) and the non-demeaned cross-
validation models predicting each task based on the other
three—it is clear that the two most robust variables are sam-
ple size and average of mean between-subject similarity. The
latter also has a consistent standardized beta across the two
analyses, but the former shows a markedly smaller aver-
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Figure 5. Replicability results for subthreshold peak-level (thresholded conservatively) analyses. See Figure 1 for legend. See

also Figure S5.

Table 2

Results of double-CV analysis. The mean beta was computed only over folds for which that variable was included. As a
coarser measure of stability, we also present how often, when the beta was included, it had the same sign as the mean.

Mean standardized beta
(when included in model)

Variable

# folds sign(beta) matches sign
of mean / # folds included

Sample size

Average of mean between-subject similarity
Average of SD of between-subject similarity
Average of mean precision

0.133 4/4
0.081 4/4
—0.007 3/3
—+0.000 2/4

age standardized beta in the cross-validation analysis. The
reason for this can be understood as a result of the differ-
ences in demeaning between the two analyses: in the full
model, the differences between tasks in terms of mean out-
come have been removed, so the curves in Figure 1 will all
largely overlap, and sample size will play a relatively con-
sistent role. In the non-demeaned analysis, however, sam-

ple size is a much weaker predictor of outcome because the
tasks differ so widely due to other factors. In other words,
the variability across tasks for a given sample size is a much
larger fraction of the variability across sample sizes in the
non-demeaned analysis, which translates to lower predictive
utility. Nonetheless, the consistency in terms of sign con-
firms that for these two variables, the same mechanism is at
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work at the within- and between-task levels.

Discussion

Despite the development of various tools meant to allow
researchers to do prospective power analyses (Mumford &
Nichols, 2008; Durnez et al., 2014), such tools are appar-
ently used only infrequently by researchers. Several previous
studies have suggested that neuroimaging studies suffer from
a marked, possibly fatal, lack of statistical power (Button et
al., 2013; Szucs & Ioannidis, 2017). However, Type II errors
are not the only problem plaguing neuroimaging, as other
studies have demonstrated that certain widely used false-
positive correction methods underestimate true false positive
rates (Eklund, Nichols, & Knutsson, 2016), and multiple test-
ing correction has been a topic of substantial investigation
throughout the history of neuroimaging (Bennett, Miller, &
Wolford, 2009).

This previous work has uncovered persistent and troubling
problems with standard neuroimaging approaches, particu-
larly as it regards the use of appropriately well-powered (i.e.,
large) samples. However, no prior work has operationalized
reproducibility in the concrete, intuitive ways we have here,
nor has any prior work systematically examined the impact
of sample size and other dataset properties on such measures
of the reproducibility of task-based fMRI.

Our results demonstrate that, regardless of whether one
conceptualizes reproducibility as being about patterns at the
level of voxels, clusters, or peaks, our estimates of repro-
ducibility at typical sample sizes are startlingly low, partic-
ularly when considered in the context of our realistic null
results. For instance, the mean between-group Pearson cor-
relation across our four tasks for a sample size of 49 (which
is well above the mean or median sample sizes reported in
Poldrack et al., 2017 and Szucs & loannidis, 2017 over the
last several years) is a middling 0.68, compared with an ex-
pected mean of 0.56 using our realistic null. Even if one
finds our realistic null too stringent, the observed mean tells
us that over 50% (53.3%, to be precise) of the variance in
voxel intensities between two independent (exact replication)
samples of size 49 is unexplained. Such a lack of repro-
ducibility is likely to be concerning to researchers who rely
on methods that assume a high degree of spatial specificity
(e.g., MVPA). And this same pattern holds true, often to an
even greater extent, across our other measures. Furthermore,
our results represent a best case scenario for reproducibility
(at any of our tested sample sizes for any of our tasks) be-
cause we drew samples from the same broad population, we
collected all data at one site and one scanner, the experimen-
tal methodology and materials were exactly identical for all
subjects, and all fMRI data processing was completed using
identical processing pipelines on the same computers using
the same software. In other words, for any single iteration
in our bootstrap method, all pseudo-replicates could be clas-

sified as “exact” replications. Deviations from any of these
criteria would likely introduce variability in the data collec-
tion and processing streams, yielding lower observed repro-
ducibility.

What can explain this pattern of results? Clearly, there
are two possible sources of noise in a group-average re-
sult: within-subject variance and between-subject variance.
Increasing sample size reliably reduces the impact of both
sources of noise. However, our analyses of how several
easily-measured properties of each data set impacted re-
producibility revealed small but consistent roles for sev-
eral other factors, most notably the mean between-subject
similarity, averaged across our pseudo-replicate groups. In
fact, between-subject similarity was consistently important
in another way as well, as either the difference between the
means (in the full model) or the average standard devia-
tion within groups (in our cross-validation analysis) emerged
across analyses. Both of these capture the influence of sam-
ple heterogeneity.

The idea of inter-individual consistency has been explored
previously, and it is not altogether uncommon for researchers
to publish maps demonstrating how consistent their results
were across participants (e.g., Seghier & Price, 2016). How-
ever, our results demonstrate just how substantial an effect in-
dividual differences plays. A long line of research has high-
lighted this extraordinary variability, and argued for taking
advantage of this variability, or at least acknowledging and
attempting to control for it (Miller et al., 2002; Van Horn,
Grafton, & Miller, 2008; Miller et al., 2009, 2012). Our re-
sults confirm these earlier observations that individual iden-
tity is a powerful driver of patterns of brain activity. More-
over, to the degree that our scanned samples were more ho-
mogeneous than the population at large (as is generally the
case of scanned samples that largely comprise undergradu-
ates or members of the campus community), it is reasonable
to expect that the influence of individual differences would
be even larger in any study that used truly representative sam-
pling.

It is possible that our results do a poor job of capturing
the average reproducibility that should be expected across
the field at large. However, we do not believe this to be the
case, for three reasons. First, our results for our tasks A and
B, which included an identical set of participants and exactly
matched pseudo-replicate groups, span a fairly wide range of
reproducibility values. Second, these tasks are well-known
(accruing a weighted average of 35.5 citations per year since
publication using Google Scholar’s citation counts, retrieved
3/21/17), and cover a number of cognitive domains of gen-
eral interest to researchers in cognitive neuroscience. And
third, our results are consistent with earlier work demon-
strating the woeful inadequacy of “typical” (N ~ 30) sample
sizes. Although there is no simple way to map our results
onto these earlier studies, the general conclusion is much the


https://doi.org/10.1101/136259
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136259; this version posted May 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

REPRODUCIBILITY OF TASK-BASED FMRI 13

same.

Although our results clearly point to the insufficiency of
typical sample sizes, it would be inappropriate for us to try
to use our findings to identify a universal “minimum” sample
size that could be adopted across the field. This is because
our results do not represent how well sample sizes approx-
imate “ground truth” but rather the expected replicability at
each sample size. Moreover, although our tasks cover a rea-
sonable range of effect sizes (as demonstrated by the differ-
ent reproducibility estimates across tasks), any universal rec-
ommendation would have to be made for the smallest “mean-
ingful” effect size, which is not an agreed-upon quantity in
the field, and which is probably smaller than the smallest ef-
fect size we observed. Instead, we point readers to existing
tools for conducting prospective power analyses, and hope
that future research will develop similar tools that make use
of the replicability measures we have employed here.

Our hope is that whereas earlier work pointing out the
ubiquity of underpowered studies may have been seen by
the average researcher as too abstract or technical to worry
about, the present results are straightforward enough that
researchers have no choice but to confront the fact that
“typical” sample sizes cannot be trusted to produce repro-
ducible results, irrespective of how reproducibility is mea-
sured. Thus, our results add to the growing consensus call-
ing for a paradigm shift in the field, away from small-scale
studies of hyper-specific processes to large-scale studies de-
signed to address multiple theoretical questions at once. Al-
ternatively, methods which are transparent about treating
individuals as unique—for instance, individual differences
approaches (Van Horn et al., 2008) or encoding methods
(Naselaris, Prenger, Kay, Oliver, & Gallant, 2009)—likely
deserve more attention for their potential to overcome at least
one part of the problem with small samples (i.e., individual
variability).

Conclusion

Reproducibility is the foundation of scientific progress.
Unfortunately, for a variety of reasons, many scientific
fields are currently gripped by a crisis of irreproducibility
(Baker et al., 2016). While some of the causes of this cri-
sis are deeply interwoven into the academic landscape—
incentives related to publication, funding, and tenure—the
most straightforward solution relates to statistical power. Re-
searchers in fMRI may have believed that they were ade-
quately addressing concerns about power by using carefully
optimized designs and rule-of-thumb “large enough” sample
sizes (Friston, 2012; Liu et al., 2001). Indeed, the success
of quantitative meta-analysis methods (e.g., activation like-
lihood estimation; Eickhoff, Bzdok, Laird, Kurth, & Fox,
2012), alongside reports of moderate test-retest reliability
for task-based fMRI (Bennett & Miller, 2010), may have
reinforced the sense that power in task-based fMRI was a

solved problem. However, meta-analytic approaches work
precisely by relaxing specificity about spatial location (and
in many cases, about design features including task, contrast,
or putative cognitive processes); likewise, test-retest reliabil-
ity is only weakly related to reproducibility. Despite empir-
ical work demonstrating that typical fMRI sample sizes are
inadequate, there seems to be little motivation to change the
status quo (Button et al., 2013; Szucs & loannidis, 2017).
Our results unambiguously demonstrate that reproducibility
(as measured at multiple levels of analysis) is strikingly low
at “typical” sample sizes, thus serving to highlight and ex-
tend these previous results. The solution to this problem may
be arduous for researchers and funding agencies, for instance
requiring a paradigm shift away from incremental research
using bespoke experiments with small samples. However,
if our goal is the advancement of scientific understanding,
the status quo—thousands of underpowered and minimally-
reproducible papers published annually—clearly cannot con-
tinue.
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Supplemental Materials
Task descriptions (design and analysis)

The design of each task was based closely on a previously-
published instantiation of each task. Here, we provide the
basic details of each task, and explicitly highlight any points
at which the design or analysis deviated from its previously-
published antecedent.

Task A. See Cho et al. (2010) for full details regarding
the paradigm. This was a task of analogical reasoning, with
a 2 x 2 design in which relational complexity (the number of
to-be-attended stimulus traits, 1 or 3) was crossed factorially
with interference level (the number of irrelevant dimensions
that lead to an incorrect response, 0 or 1). In our adapta-
tion of their design, we included three functional runs, each
of which contained 54 trials. These trials were modeled by
seven (RT-duration) regressors: four defined per the 2 x 2 de-
sign described above; another two for invalid trials (relational
complexity 1 or 3); and a final regressor for error trials. Our
primary contrast of interest compared relational complexity
1 with relational complexity 3, collapsing across interference
levels. On average per run, this contrast included 18.5 trials
(standard deviation across participants = 1.3 trials) versus
17.1 trials (standard deviation = 2.4 trials).

Task B. See Witt and Stevens (2013) for full details re-
garding the paradigm. This was a task of set switching. Par-
ticipants were always tasked with counting the number of
unique levels of a given relevant dimension; the relevant di-
mension changed (as indicated by a printed cue above the
stimulus) every 1-6 trials. Trials varied in terms of: switch
vs. non-switch (as well as number of preceding non-switch
trials for switch trials); stimulus complexity (1, 2, or 3 vary-
ing dimensions with multiple levels); and response complex-
ity (1, 2, or 3 potential valid response options across all di-
mensions). As in Witt and Stevens (2013), there were two
functional runs, each with 81 trials. These trials were mod-
eled with ten (RT-duration) regressors: two for switch/non-
switch; six parametric regressors (orthogonalized with re-
spect to the switch/non-switch EVs) encoding separately for
switch and non-switch trials stimulus complexity, response
complexity, and number of preceding non-switch trials; and
two regressors to model error and post-error trials. Our pri-
mary contrast of interest compared switch and non-switch
trials. On average per run, this contrast included 31.0 trials
(standard deviation = 5.6 trials) versus 32.7 trials (standard
deviation = 5.0 trials).

Task C. See Gray, Chabris, and Braver (2003) for full
details regarding the paradigm. This was a 3-back work-
ing memory task. Participants saw multiple short series of
consecutive stimuli, during which they had to respond to
items that had appeared exactly three items earlier (“tar-
gets”). These were intermixed with new items, as well as
items that had appeared either two, four, or five items earlier

(“lures”). As in Gray et al. (2003), there were two functional
runs (one using faces, the other using words, order counter-
balanced across participants), each of which included four
blocks of 16 trials (plus five jitter fixation trials per block).
Trials were modeled with seven regressors: two each (cor-
rect/incorrect) for targets, lures, and non-lures; and one for
missed trials. Our primary contrast of interest compared cor-
rect targets and correct lures. On average per run, this con-
trast included 10.1 trials (standard deviation = 2.7 trials) ver-
sus 12.8 trials (standard deviation = 2.3 trials).

Task D. See Hannula and Ranganath (2008) for full de-
tails regarding the paradigm. This was a task of relational
memory. Participants viewed displays of four 3D objects on
a3 x 3 grid, and had to indicate whether a test grid, displayed
rotated after a short delay, matched the original layout. These
test grids could be of three types: “match,” in which all
items retained their original relative positions; “mismatch,”
in which one item moved out of position; or “swap,” in which
two items swapped positions. Each trial was comprised of an
encoding period, a delay period, and a test period. There
were five functional runs, each of which included 15 trials.
These trials were modeled with a simplified set of four re-
gressors: one each for correct encoding+delay periods (col-
lapsed across trial types), match test periods, and non-match
test periods (collapsing across “mismatch” and “swap” tri-
als); and one for all periods of all incorrect trials. Our pri-
mary contrast of interest compared correct match and non-
match test periods. On average per run, this contrast included
3.9 trials (standard deviation = 0.7 trials) versus 5.7 trials
(standard deviation = 1.9 trials).

Peak height reproducibility analysis

For our peak analyses, in contrast to our other analy-
sis approaches, it is possible to construct a disaggregated
statistic—that is, to define reproducibility on a peak-by-peak
basis, rather than only mapwise. This allows us to look in a
more fine-grained manner at the relationship between effect
size, reproducibility, and sample size. To this end, we col-
lated each peak z value with whether that voxel was repro-
duced (i.e., was suprathreshold in the counterpart map), sep-
arately for each sample size but combining across all tasks.
We then fit a separate logistic regression model for each sam-
ple size. We then used the sim function (part of the arm
package in R) to graphically display uncertainty around the
model fits, which is especially pronounced for values of peak
z outside of the range observed for a given sample size. Note
that this approach treats task as a fixed effect, and more-
over, weights tasks proportional to the number of total peaks
across all maps for a given sample size. Note too that, as
with the main peak analysis reported in the manuscript, a
low p(reproduced) is heavily influenced by the sparsity of
the counterpart map. The results of this analysis are shown
in Figure S6.
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Figure S1. Replicability results for voxel-level (unthresholded) analyses. Panes show results for tasks A—-D. Each pane
presents the observed replicability for that task in the same color as used in Figure 1 (1 standard deviation), along with the
corresponding strong (in light gray) and weak (in dark gray) null results. (a) Correlation; (b) eta’.
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Figure S2. Replicability results for voxel-level analyses. See Figure S1 for legend. (a) Conservative threshold; (b) Liberal

threshold.
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Figure S4. Replicability results for suprathreshold peak-level analyses. See Figure S1 for legend. (a) Conservative threshold;

(b) Liberal threshold.
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Figure S5. Replicability results for subthreshold peak-level analyses. See Figure S1 for legend. (a) Conservative threshold;

(b) Liberal threshold.
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Figure S6. Replicability as a function of peak z value and sample size. (a) Conservative threshold; (b) Liberal threshold.
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