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If the brain is inherently Bayesian, then behavior should show the signatures of 

Bayesian computation from an early stage in life without the need for learning. 

Children should integrate probabilistic information from prior and likelihood 

distributions to reach decisions and should be as statistically efficient as adults. 

To test this idea, we examined the integration of prior and likelihood information 

in a simple position estimation task comparing children aged 6-11 years and 

adults. During development, estimation performance became closer to the 

statistical optimum. Children use likelihood information as well as adults but are 

limited in their use of priors. This finding suggests that Bayesian behavior is not 

inherent but learnt over the course of development.  
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The behavior of adults under uncertainty is well described by Bayesian 

inference, in that adult humans weigh different sources of information according to 

their relative uncertainty. Behavior is consistent with Bayesian computations in 

sensorimotor behavior (Berniker, Voss, & Kording, 2010; Kording & Wolpert, 2004), 

perception (Knill & Richards, 1996; Mamassian & Goutcher, 2001), cognition and 

reasoning tasks (Battaglia, Hamrick, & Tenenbaum, 2013; Tenenbaum & Griffiths, 

2001), and cue combination across and within sensory modalities (Ernst & Banks, 

2002; Hillis, Watt, Landy, & Banks, 2004). Adult humans seem to integrate 

information in a way predicted by Bayesian statistics. 

These numerous findings of Bayesian behavior have led to the theory that the 

underlying neural computations are inherently Bayesian. For example, it has been 

argued that the activity of neural populations reflects probabilistic population codes 

that directly implement Bayesian computations (Beck et al., 2008; Ma, Beck, Latham, 

& Pouget, 2006; Ma, Beck, & Pouget, 2008; Pitkow & Angelaki, 2017). However, 

findings of Bayesian behavior are not sufficient to support this claim. Bayesian 

behavior simply represents optimal behavior under uncertainty and there are ways of 

generating optimal behavior that do not explicitly implement Bayesian computation 

(Mandt, Hoffman, & Blei, 2017; Rao, 2004). Therefore, previous research has not 

fully established whether the neural code is inherently Bayesian. 

If neural circuits are evolved to implement Bayesian computations, then 

behavior should always show Bayesian signatures, including during development. 

Therefore, children too should act in accordance with the rules of Bayesian 

integration. Specifically, they should weigh information according to its relative 

uncertainty in simple tasks.  

Indeed, a good number papers ask how Bayesian children are. Some work on 

looking times in infants is consistent with early optimal integration of information 

(Téglás, Tenenbaum, & Bonatti, 2011) and it has been shown that young children are 

able to use probabilistic information to infer causality in order to perform actions 

(Gopnik & Wellman, 2013; Kushnir & Gopnik, 2007; Sobel, Tenenbaum, & Gopnik, 

2004). However, in the former case measurements are indirect and in the latter case 

predictions can only be qualitative. Work on the development of cross-modal cue 

combination the shows that older children do not integrate information, but instead 

process information from each modality separately up to the age of approximately 9-

11 years (Gori, Del Viva, Sandini, & Burr, 2008; Nardini, Bedford, & Mareschal, 
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2010; Nardini, Jones, Bedford, & Braddick, 2008). Therefore, based on previous 

research, it is unclear whether the behavior of children is consistent with use of 

Bayesian inference. 

Here we investigate whether integration of current with past information to 

perform actions under uncertainty is present in young children or is acquired over the 

course of development. In our paradigm, we examine the use of probabilistic 

information to perform a simple sensorimotor estimation task, previously used in 

adults to examine integration under uncertainty (Berniker et al., 2010; Kording & 

Wolpert, 2004; Vilares, Howard, Fernandes, Gottfried, & Kording, 2012). Visual 

targets were drawn from a prior distribution and participants were shown uncertain 

sensory information about each target. We found that all age groups learned to use the 

uncertainty of sensory information. However, children did not exploit the uncertainty 

of the prior to perform estimations, as adults did, with this gradually emerging during 

development. 

 

Methods 

Experimental details 

We aimed to examine probabilistic inference during sensorimotor estimation 

in a child population. Our task was designed to examine use of probabilistic 

information during sensorimotor estimation (Fig. 1a, Acuna, Berniker, Fernandes, & 

Kording, 2015; Berniker et al., 2010; Vilares et al., 2012). Previous findings indicate 

that adults weigh information according to its reliability and learn priors in a manner 

which resembles Bayesian integration during sensorimotor estimation. For the 

purposes of the current study, we adapted the experimental protocol for child 

participants, by using a concept that was engaging to children, using simplified 

instructions, and by reducing the number of trials. 

Participants were 16 children (8 males) aged 6-8 years (M=6.94, SD=0.77), 17 

children (8 males) aged 9-11 years (M=10.06, SD=0.75), and 11 adults (5 males) aged 

over 18 years (M=27.27, SD=5.31). The data of four participants aged 5 years were 

excluded due to difficulty in using a computer mouse. The data of two additional 

participants were excluded due to looking away from the screen during the 

experiment. 

In a quiet room, participants sat in front of a 52 cm wide, 32.5 cm high 

computer monitor. Before starting the experiment, we presented participants with the 
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instructions that someone behind them was throwing candy into a pond, represented 

by the screen; and that their aim was to estimate where the candy target landed and 

catch as many candy as possible over the course of the experiment. Candy targets 

were drawn from a Gaussian distribution centered at the middle of the screen, 

𝛮(𝜇,𝜎!!).  On each trial, they were presented with an uncertain “splash” stimulus for 

one second and were told that the splash was caused by a hidden candy target. The 

splash was n=4 samples from a Gaussian likelihood distribution that was centered on 

target location 𝛮(𝑠,𝜎!!). Participants provided an estimate of the candy target’s 

location on the horizontal axis using a vertical bar that extended from the top to the 

bottom of the screen. The net appeared at the same time as the splash at a random 

location on screen. Participants had 6 seconds to respond. After providing a response, 

they were shown the true candy location.  

One simple strategy for performing sensorimotor estimation under uncertainty 

is to consistently judge target location at the center of the splash – i.e. full reliance on 

the likelihood. This strategy works well when the likelihood distribution is narrow, 

because the closely-spaced points of the splash are an accurate indicator of target 

location (Fig. 1b, left). However, full reliance on the likelihood would cause a 

participant to miss targets more frequently as the likelihood distribution widens (Fig. 

1b, right). When sensory information is unreliable, rather than relying on the 

likelihood completely, we maximize performance by giving more weight to our prior 

belief on target location. More generally, the best or optimal strategy involves 

weighing sources of information according to their relative precision. 

Formally, weighing sources of information according to their relative 

precision corresponds to Bayesian inference. An optimal Bayesian observer combines 

noisy sensory information from the likelihood, 𝛮(𝑠,𝜎!!/𝑛) with their learned prior, 

𝛮(𝜇,𝜎!!) , resulting in a posterior distribution over target location, 

𝑁  !
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+ !
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!/!
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+ !

!!
!/!
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!!!
+ !
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. The mean of the posterior is a mean of 

the prior and centroid of the likelihood, c, weighted by their precisions. From this 

posterior distribution, an estimation, 𝑠, is computed. Therefore, the optimal reliance 

on the likelihood is a function of prior and likelihood uncertainties, 𝜎!!/(𝜎!! + 𝜎!!/𝑛). 

We can manipulate the prior and likelihood variance and measure their influence on 
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participants’ reliance on the likelihood, in order to investigate probabilistic 

information during sensorimotor estimation. 

To investigate how children use probabilistic information during sensorimotor 

estimation, we manipulated the variances of prior distribution and likelihood 

distributions. We used a Gaussian prior distribution with a mean at the center of the 

screen and standard deviation of .03 (Narrow Prior) or .1 (Wide Prior) in units of 

screen width. The likelihood distribution was centered on target location and could 

have a standard deviation of .05 (Narrow Likelihood), .1 (Medium Likelihood), or .25 

(Wide Likelihood) in units of screen width. There were six conditions: Narrow Prior – 

Narrow Likelihood, Narrow Prior – Medium Likelihood, Narrow Prior – Wide 

Likelihood, Wide Prior – Narrow Likelihood, Wide Prior – Medium Likelihood, and 

Wide Prior – Wide Likelihood.  

The experiment consisted of four blocks, each lasting 120 trials, preceded by a 

practice block lasting 10 trials. Trials were blocked by prior condition, with all 

likelihood conditions being presented in randomized order within one block. The 

prior over target location switched from block to block with a randomly chosen 

starting condition for each participant (i.e., narrow-wide-narrow-wide or wide-

narrow-wide-narrow).  

We introduced a number of modifications to engage child participants in the 

task. Participants were shown how much candy they had won on screen and 

participants won a "bonus" piece of candy for every ten candy they caught. Sounds 

were presented to signal successfully catching a target and missed responses when 

they did not respond within the 6-second time window. Step-by-step instructions were 

shown to participants on screen before the experiment, to ensure that all participants 

received the same instructions. Participants were told that their payment was based on 

the number of candy that they caught.  

Ethical approval was provided by the NU IRB #20142500001072 

(Northwestern University, USA). Participants signed a consent form before 

participation. For participants aged under 18 years, a parent provided consent for their 

child to take part and completed the Developmental Coordination Disorder 

questionnaire (Wilson et al., 2009), a modified Vanderbilt questionnaire to assess for 

ADHD (Wolraich et al., 2003), and the Behavior Assessment System for Children, 

BASC-3, parent rating scales (Reynolds, 2004). After the participant had completed 

the game, we administered the child mini-mental state evaluation to obtain an 
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approximate assessment of cognitive ability (Ouvrier, Goldsmith, Ouvrier, & 

Williams, 1993). No data was excluded on the basis of neuropsychological test 

results. 

 
Figure 1. (a) Experimental protocol. Participants were shown a visual cue (likelihood) with 
experimentally controlled uncertainty (splash), created by a hidden target (candy) drawn from 
a prior distribution. Participants were told that the splash was created by candy falling into a 
pond. Participants were prompted to place a vertical bar (net) where the hidden target fell, and 
were then shown feedback on target location. (b) Relying on the likelihood. A simple strategy 
would be to rely entirely on likelihood information by pointing at its centroid on each trial. 
While this strategy is close to optimal when the likelihood is precise or narrow (black bar, left 
panel), this strategy is less successful when the likelihood is wider (black bar, right panel), as 
samples from the likelihood become a less reliable indicator of target location and the optimal 
estimate shifts closer to the prior mean. The optimal strategy involves weighing prior and 
likelihood information according to their relative uncertainties (c) Experimental design. In 
order to quantify integration of the prior and likelihood, we measured reliance on the 
likelihood (Estimation slope) under different conditions of prior variance and likelihood 
variance. The prior could be narrow or wide, and the likelihood could be narrow, medium, or 
wide.  
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Data analysis 

We were interested in the integration of probabilistic information from a prior 

distribution and sensory information from the likelihood in sensorimotor estimations. 

To investigate this, we examined whether samples from the likelihood distribution, 

𝑋 = {𝑥!, 𝑥!, 𝑥!, 𝑥!}, were combined with information about the prior distribution, 

𝛮(𝜇,𝜎!!), when producing an estimate of target location, 𝑠. We quantified this for 

each condition using the extent to which participants relied on the likelihood, given 

by the linear relationship between the centroid of the splash, 𝑐 = 𝑥!/𝑛!
! , and their 

estimate on each trial, 𝑠. We performed a linear regression with estimations, 𝑠, as 

dependent variable and the likelihood centroid, 𝑐, as the independent variable, which 

resulted in a measure of reliance on the likelihood, which we term the Estimation 

slope (ES). We assumed that participants accurately learned the mean of the prior, and 

set the intercept to 0. If participants relied only on the likelihood to generate their 

estimate, then they should point close to the centroid of the splash, 𝑐, on all trials, 

leading to an Estimation slope ≈ 1. If instead participants ignore the likelihood and 

instead only use their learnt prior, then their estimates should not depend on the 𝑐, 

leading to an Estimation slope ≈ 0. Therefore, from participants’ estimations we 

obtain a measure of their reliance on the likelihood or prior. 

The theoretical variance of the likelihood and prior used in the experiment 

provide optimal values for the Estimation slope, i.e. how much participants should 

rely on the likelihood. For an optimal Bayesian observer, sources of information are 

weighed according to their relative reliabilities, 𝐸𝑆!"# = 𝜎!! (𝜎!! +
!!
!

!
 ). Therefore, in 

order to quantify how optimal participants were, we can compare Estimation slope 

quantified from participant's data with the optimal Estimation slope, 𝐸𝑆!"# , by 

computing the absolute difference, |𝐸𝑆 − 𝐸𝑆!"#|  in each condition, and then 

averaging this across conditions, which provided a Distance to the optimal score for 

each participant. 

We wanted to know how sensitive participants were to the prior and likelihood 

variance. We therefore devised separate measures to quantify how much participants 

distinguished between prior conditions and between likelihood conditions. The 

sensitivity to the prior was simply the difference between the Estimation slopes across 

prior conditions, which was then summed across likelihood conditions: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑜 𝑝𝑟𝑖𝑜𝑟 = 𝐸𝑆!" !" − 𝐸𝑆!" !" + 𝐸𝑆!" !" − 𝐸𝑆!" !"  

+(𝐸𝑆!" !" − 𝐸𝑆!" !") 

Similarly, the sensitivity to the likelihood was the difference between 

Estimation slopes across likelihood conditions for a fixed prior condition, summed 

across prior conditions: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑜 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝐸𝑆!" !" − 𝐸𝑆!" !" + 𝐸𝑆!" !" − 𝐸𝑆!" !"  

+ 𝐸𝑆!" !" − 𝐸𝑆!" !" + (𝐸𝑆!" !" − 𝐸𝑆!" !") 

To examine subject-specific biases, in the form of an overall tendency to use 

the likelihood only or prior only regardless of the experimental condition, we 

computed a Bias score for each participant, which was simply the Estimation slope 

averaged across all conditions. This allowed us to examine use of simple response 

strategies. 

To quantify the uncertainty of our estimation of Estimation slope, Distance to 

optimal, Sensitivity to prior, Sensitivity to likelihood, and Bias, we performed 

bootstrapped estimation by resampling the data with replacement 1000 times and 

performing the fit for each resampled data set. Since the data did not meet the 

requirements for parametric statistical tests, we performed non-parametric tests on the 

data: Kruskal-Wallis tests to examine main effects, Mann-Whitney U tests to examine 

differences between groups, and Wilcoxon signed-rank tests for comparison of 

individual samples with chance level, Bonferroni-corrected for the number of 

comparisons. 

 

Results 

We wanted to investigate the development of Bayesian integration. To do so, 

we examined whether children aged 6-11 years old and adults could learn to use 

uncertainty of different sources of information (prior and likelihood) during 

sensorimotor estimation (Fig. 1). We examined use of probabilistic information 

during development by quantifying participants’ task performance, reliance on the 

likelihood, the degree to which they deviated from the statistical optimum and their 

sensitivity to the prior variance and likelihood variance condition. 
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Figure 2. Performance of candy-catching task. The proportion of correct responses 
(p(correct)), where the net overlapped with the target, is shown as a function of age group. 
p(correct) for individual participants is shown in gray overlaid with the mean for each age 
group (error bars = 95% CI) in blue. p(correct) increases with age with significant differences 
between age groups (Table 1). 
 

It was first important to establish that the all age groups understood and 

carried out the task, with performance above chance level of 2%. We therefore 

compared the proportion of candy targets caught, p(correct), to chance level for each 

age group (Fig. 2). The performance of all age groups exceeded chance level, as 

tested by a non-parametric Wilcoxon signed rank tests with Bonferroni-corrected p-

values (6-8 y: median score = .14, W = 0, p = .0013; 9-11 y: median score = .17, W = 

0, p = .0008; 18+ y: median score = .20, W = 0, p = .0100). This shows that all age 

groups understood and carried out the candy-catching task. Therefore, differences 

between age groups cannot be attributed to a lack of understanding of the task. 

Next, we asked if performance improves during development. Performance 

increases significantly with age (Kruskal-Wallis test, H(2) = 25.97, p < .0001), with 

significant differences between age groups (Bonferroni-corrected Mann-Whitney U 

tests, Table 1). Possible contributors to the improvement in performance include a 

systematic difference between participants’ behavior and optimal behavior that 

decreases during development, and motor or decisional noise. Here, we were 

primarily interested in the integration of prior and likelihood information into 

participants’ decisions, and therefore focused on the former possibility. 
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Figure 3. Estimation data. (a) Estimation data overlaid with linear fit for a representative 
participant aged 11 years old. The net position as a function of the centroid of the likelihood 
is shown for each trial (points). The fitted Estimation slope (blue line) and the optimal 
Estimation slope (dashed red line) are displayed. Each panel displays estimation data for one 
condition, as defined by prior and likelihood width. (b) The median bootstrapped Estimation 
slope is shown as a function of age group (error bars = 95% confidence intervals). The 
optimal Estimation slope values are shown (dashed red line).  
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In order to investigate sensorimotor estimation under uncertainty, we 

manipulated the variance of the prior and likelihood and measured the Estimation 

slope in each condition. In order to quantify the Estimation slope, we estimated the 

relationship between the centroid of the likelihood on each individual trial, 𝑐, and 

estimation, 𝑠. Full reliance on the likelihood indicates a close relationship between 

estimations and the likelihood, Estimation slope = 1. Full reliance on the prior 

indicates a lack of relationship between estimations and the likelihood, Estimation 

slope = 0. To estimate the Estimation slope from the data, we performed linear 

regression on the data of individual participants for each condition, as defined by the 

prior width and likelihood width. The fitting procedure provides reasonable fits to the 

data for individuals (shown for an 11-year old, Fig. 3a), and across the entire data set 

(Fig. 3b). This allows us to quantify the nature of prior/likelihood integration for each 

participant. 

 

 

Figure 4. Estimation slope as a function of prior and likelihood for different age groups. The 
average Estimation slope is shown for all conditions and age groups, with error bars 
displaying the 95% CI and the optimal Estimation slope in each condition shown by red 
diamonds. The youngest age group distinguish between likelihood conditions (NL, ML, WL), 
but distinguish less between prior conditions (NP, WP). With age, there is a shift toward 
optimal weighing and greater use of the prior variance. 
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We were interested in whether sensorimotor integration of prior and likelihood 

improves during development. We, therefore, examined the relationship between the 

Estimation slope measured from the data and the optimal Estimation slope, 𝐸𝑆!"#, i.e. 

the reliance on the likelihood that would maximize performance given the 

experimentally-imposed variance parameters. There is a shift toward the optimal 

Estimation slope during development in each condition (Fig. 3b). We formally 

examined the shift toward the statistical optimum using a distance-to-optimal score, 

which was the absolute distance from the statistical optimum in each condition 

averaged across conditions, leading to one score per participant (Fig. 5a). A Kruskal-

Wallis test demonstrated a significant effect of age on Distance to optimal, (H(2) = 

21.32, p < .0001), with significant differences between all age groups (Table 2). 

Therefore, sensorimotor estimation shifts toward an optimal integration of prior and 

likelihood during development. 

Two possible contributors to the shift toward the optimal are participants’ use 

of the prior and their use of the likelihood in computing estimations. We therefore 

examined the sensitivity to the prior variance, which quantifies the degree to which 

participants distinguished between the narrow and wide prior conditions: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑜 𝑝𝑟𝑖𝑜𝑟 = 𝐸𝑆!" !" − 𝐸𝑆!" !" + 𝐸𝑆!" !" − 𝐸𝑆!" !" + 𝐸𝑆!" !" −

𝐸𝑆!" !" . We also examined the sensitivity to the likelihood, which quantifies the 

degree to which participants distinguished between the likelihood conditions: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑜 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝐸𝑆!" !" − 𝐸𝑆!" !" + 𝐸𝑆!" !" − 𝐸𝑆!" !" +  

𝐸𝑆!" !" − 𝐸𝑆!" !" + (𝐸𝑆!" !" − 𝐸𝑆!" !") . Together, these two measures 

account for use of probabilistic information during the task. 

We examined how sensitivity to the likelihood and prior change over the 

course of development. We found no evidence for an effect of age on Sensitivity to 

likelihood (Fig. 5b, H(2) = 5.21, p =.0739). Sensitivity to likelihood was significantly 

above zero in all age groups (6-8 y: median = .10, W = 1, p = .0016; 9-11 y: median = 

.13, W = 0, p = .0009; 18+ y: median = .17, W = 0, p = .0100), showing that children 

aged 6-8 years had already learned to distinguish between likelihood conditions. 

There was a significant effect of age on Sensitivity to prior (Fig 5c, H(2) = 19.13, p 

<.0001), with significant differences between age groups, except between 9-11 year 

olds and adults (Table 3). For children aged 6-8 years, Sensitivity to prior was not 

significantly above 0 (median = .03, W = 35, p = .2638). Sensitivity to prior was 

significantly above 0 in children aged 9-11 years (median = .27, W = 0, p = .0009) 
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and in adult participants (median = .33, W = 0, p = .0100).  Therefore, there is an 

increase in participants’ sensitivity to the prior condition during development, and the 

ability to use the prior emerges at 9-11 years. During the task, children used 

likelihood information when it provides precise information on target location, and 

also learn to use the likelihood less when this source of information is uncertain. 

However, use of prior information is not fully developed in the child populations 

tested here.  The ability to fully incorporate the prior into decisions increases over the 

course of development. 

 

 

Figure 5. Relationship with statistical optimum, sensitivity to prior and likelihood as a 
function of age. (a) Distance to the optimal Estimation slope is shown for each participant. 
Here and in remaining plots, scores of individual participants are shown in gray overlaid with 
the mean for each age group (error bars = 95% CI). Distance to optimal decreases as a 
function of age group. Distance to optimal = 0 is shown (dashed line). (b) Sensitivity to the 
likelihood. Sensitivity to likelihood was computed as a difference in Estimation slope between 
likelihood conditions. There is no significant effect of age group. (c) Sensitivity to the prior. 
Sensitivity to prior was computed as the difference in Estimation slope between prior 
conditions. This increases as a function of age group, with significant differences between 
groups. 
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Figure 6. Overall bias. (a) Subject specific biases were quantified as a participant’s overall 
tendency to rely on the likelihood or prior. Estimation slope was averaged across conditions 
for each individual to give a Bias score for each participant (median bootstrap with 95% CI as 
error bars). The mean bias is shown (error bar = 95% CI). The optimal bias is shown (dashed 
red line). Younger participants have a greater tendency to be biased, but biases are equally 
likely to be toward using the prior or likelihood. (b) The absolute difference between a 
participant’s bias and the optimal is shown as a function of age. This decreases significantly 
with age, with significant differences between age groups (Table 4). 

 

Since children’s sensorimotor estimations were not fully explained by the 

integration of prior and likelihood, their responses may be partly driven by simple 

strategies. We investigated this possibility by quantifying the overall bias in 

participants’ responses, by averaging Estimation slopes across all conditions. A Bias 

of 1 indicates that participants performed the task by always pointing to the likelihood 

regardless of condition and a Bias of 0 indicates a participant who always pointed at 

the prior regardless of condition. Biases appear to be more prevalent in the responding 

of individual participants at a younger age, but without an overall bias across 

participants (Fig. 6a). There is a significant effect of age on Distance to optimal bias 

(H(2) = 11.99, p =.0024, Fig. 6b). Comparisons between age groups were significant 

except between 9-11 year olds and adults (Table 4). Therefore, simple biases are more 

prominent in the responding of the youngest participant group.  
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Table 1: Mann-Whitney U test comparing p(correct) between age groups 

Comparison Mann-Whitney U (n1, n2) p 

6-8 y, 9-11 y 42 (16, 17)* .0011 
9-11 y, adults 25 (17, 11)* .0021 
6-8 y, adults 1 (16, 11)* .0001 

* In all tables, p<.05,  
p-values are Bonferroni-corrected for # comparisons 
 
Table 2: Mann-Whitney U test comparing Distance to optimal between age groups 

Comparison Mann-Whitney U (n1, n2) p 

6-8 y, 9-11 y 49 (16, 17)* .0028 
9-11 y, adults 47 (17, 11)* .0457 
6-8 y, adults 3 (16, 11)* .0001 

 
Table 3: Mann-Whitney U test comparing Sensitivity to prior between age groups 

Comparison Mann-Whitney U (n1, n2) p 

6-8 y, 9-11 y 42 (16, 17)* .0011 
9-11 y, adults 63 (17, 11) .2373 
6-8 y, adults 10 (16, 11)* .0002 

 
Table 4: Mann-Whitney U test comparing Distance to optimal bias between age 
groups 

Comparison Mann-Whitney U (n1, n2) p 

6-8 y, 9-11 y 75 (16, 17)* .0439 
9-11 y, adults 56 (17, 11) .1227 
6-8 y, adults 23 (16, 11)* .0022 

 

Discussion 

We examined the development of Bayesian integration during sensorimotor 

estimation. We found that children aged 6-11 years consistently deviate from optimal 

use of statistical information relative to adults. Children from the age of 6 years used 

sensory information (likelihood), as adults did. However, use of the prior changed 

over the course of development. The youngest age group (6-8 years) did not 

distinguish between prior conditions, with use of the prior increasing with age. 

Children were also more likely to demonstrate overall biases in their estimations, 

which decreased during development. While young children used the uncertainty of 

an immediate source of information, they did not incorporate the distribution of 

targets over several trials into their judgments of target location. 

We found that young children aged 6-8 years used the prior to a lesser degree 

than children aged 9-11 years and adults, even though they were shown target 
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location at the end of each trial and samples from the prior were displayed on screen. 

A different manifestation of the experiment could have led young children to use the 

prior more. For example, if participants were given exposure to more trials in a longer 

experiment they may have eventually learned the prior, or actively engaging with the 

prior through trials with noiseless sensory feedback (likelihood) could have led 

children to incorporate the prior variance into their estimations. Nevertheless, our 

findings still show that older children and adults use priors in their estimations more 

readily than children do. 

Cognitive explanations can be offered as to why young children learn to use 

the likelihood in their decisions, but incorporate the prior less. Using the likelihood in 

estimations involves learning the reliability of an immediate source of information 

when provided with feedback. Therefore, sensory processing of children and adults is 

comparable in this task. Using the prior variance involves integrating information 

about the target distribution over a longer timescale to learn its spatial distribution. 

Superior memory abilities of adults could allow them to learn the target distribution 

more successfully (Gathercole, 1999). More flexible decision making in adults may 

have allowed them to predict future target locations based on samples from the prior 

displayed on screen (Ernst, 2008). Children may have successfully acquired the prior 

but failed to integrate it with likelihood information. Our experiments do not allow us 

to distinguish between these possibilities.  

For a theoretically-driven account of our findings we draw on the 

Reinforcement Learning literature. Model-based behavior leverages an understanding 

of the world’s structure to predict successful actions (Doll, Simon, & Daw, 2012; 

Sutton & Barto, 1998). Using a model of the environment is not trivial. To do so, the 

agent must have already learned the dynamics and causal structure of the environment 

(Doll et al., 2012; Kording et al., 2007; Wei & Kording, 2012), and our findings, 

along with others, suggest that the ability to do so is not fully developed in children 

(Decker, Otto, Daw, & Hartley, 2016). Increase in use of the prior during 

development and a decrease in simple biases may reflect a progression from use of a 

simpler model to a more complex one. Weaker multisensory integration in children 

can also be understood as a failure of model-based behavior, i.e. children may have 

undeveloped models of the behavior of real-world objects, and therefore lack 

understanding of when information should be integrated or not (Ernst, 2008; Gori et 

al., 2008; Kording et al., 2007; Nardini et al., 2010, 2008). Further experiments are 
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needed to fully understand the change in learning strategies in sensorimotor 

integration over development. 

There is great interest in understanding intelligent human behavior to build 

artificial systems with the same degree of functionality (Lake, Ullman, Tenenbaum, & 

Gershman, 2016; Lecun, Bengio, & Hinton, 2015; Marblestone, Wayne, & Kording, 

2016). If our aim is to understand human behavior, we may benefit from 

understanding the process by which human abilities are learned in the first place. The 

algorithmic approaches of the future may benefit from implementing a development-

like process, beginning with the kind of simple biases demonstrated in young children 

and progressing toward the flexible and complex model-based abilities of adults 

(Decker et al., 2016; Spelke & Kinzler, 2007; Ullman, Harari, & Dorfman, 2012).  

If Bayesian computation is at the core of the neural code (Beck et al., 2008; 

Ma et al., 2006; Zemel, Dayan, & Pouget, 1998), behavior should show the signatures 

of Bayesian inference under all conditions, including during development. Our results 

show that children do not use probabilistic information to the same extent as adults. 

The finding that children gradually shift toward the statistical optimum during 

development suggests that the brain learns to approximate Bayesian principles by 

means other than explicitly implementing Bayesian computations in neural circuits 

(Mandt et al., 2017; Rao, 2004).  Our findings fit with ideas suggested by Jean Piaget 

on the role of constructivism in child development, i.e. that abilities are acquired 

through experience by building on more basic forms of knowledge (Piaget, 1954). In 

that sense, learning statistics may be seen as a very basic form of knowledge. While 

we may be born with a general learning architecture, it seems that statistics should not 

be seen as core knowledge (Spelke & Kinzler, 2007), but as an acquired skill. 
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