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Abstract

Convergence is the process by which several species independently
evolve similar traits. This evolutionary process is not only strongly re-
lated to fundamental questions such as the predictability of evolution and
the role of adaptation, its study also may provide new insights about genes
involved in the convergent character. We focus on this latter question and
aim to detect molecular basis of a given phenotypic convergence. After
pointing out a number of concerns about detection methods based on an-
cestral reconstruction, we propose a novel approach combining an original
measure of the extent to which a site supports a phenotypic convergence,
with a statistical framework for selecting genes from the measure of their
sites. First, our measure of “convergence level” outperforms two previ-
ous ones in distinguishing simulated convergent sites from non-convergent
ones. Second, by applying our detection approach to the well-studied case
of convergent echolocation between dolphins and bats, we identified a set
of genes which is very significantly annotated with audition-related GO-
terms. This result constitutes an indirect evidence that genes involved in a
phenotypic convergence can be identified with a genome-wide approach, a
point which was highly debated, notably in the echolocation case (the lat-
est articles published on this topic were quite pessimistic). Our approach
opens the way to systematic studies of numerous examples of convergent
evolution in order to link (convergent) phenotype to genotype.

1 Introduction

Evolutionary convergence, which is strongly related to what is called homo-
plasy in cladistic, is a key concept in evolutionary biology (Stayton, 2015b;
Pontarotti and Hue, 2016). The fact that several species, phylogenetically dis-
tant (e.g. placental and marsupial mammals), may share very similar traits
cannot be explained without a certain amount of evolutionary convergence. For
instance, Mahler et al. (2013) provide strong evidence of evolutionary conver-
gence by carrying up a systematic study of various morphological characters
of anoles having radiated onto four Caribbean islands. Convergence is indeed
an important and quite common evolutionary mechanism, which concerns all
kinds of traits: behavioral, morphological, developmental, molecular etc. (Losos
et al., 1998; Losos, 2009; Gallant et al., 2014; Pfenning et al., 2014; Vidal-Garćıa
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and Keogh, 2015; Ujvari et al., 2015; Friedman et al., 2016; Davis et al., 2016).
Widely studied, convergence has strong bearing on fundamental questions in
evolution such as its predictability or the role of adaptation. A more practical
motivation for studying this process, pointed out by Stayton (2015b), is that
convergence is the only way to observe replicates of evolutionary events that
cannot be repeated in controlled experiments for obvious reasons. Testing evo-
lutionary hypothesis thus often requires to identify convergence events (Wake
et al., 2011).

As a key concept, convergence has been considered from various points of
view, sometimes slightly different from one another. Intuitively, the main un-
derlying idea is that there is convergence as soon as two or more species evolve
independently similar traits. “Independently” stands here for the opposite of
being derived from a common ancestral trait. In order to avoid confusion, let
us start by giving a formal “working” definition of convergence, which will be
discussed and refined in Section 2.2. We say that a molecular or phenotypic
trait is convergent over two species s1 and s2 if the two following assertions are
true:

1. both species s1 and s2 have the trait;

2. the MRCA of s1 and s2 does not have the trait.

Convergence may involve more than two species, say s1, s2, . . . and sn, all
sharing a same trait. Note that, in this case, the trait can be said convergent as
soon as at least a pair of species si and sj have a MRCA which does not have the
trait. The key point of this definition is that the trait has to evolve separately
several times toward a same (or a similar) state different from the ancestral
one(s). Some authors consider more precise definitions of convergence, by taking
into account whether the ancestral states are different from one another (Zhang
and Kumar, 1997) but we will not get into this level of detail here.

An important point is that deciding whether a given trait is convergent over
species s1 and s2, requires to know whether their MRCA has this trait (actu-
ally, it may also require to quantify to what extent a trait is similar between
two species but we will not consider this part of the problem). Since there is
generally no definitive evidence about ancestral traits, convergence is always
established with at least as much uncertainty as there is for ancestral recon-
struction. Identifying convergent events is an important and difficult question
in its own right. Several approaches have been developed for studying it (Rev-
ell et al., 2007; Ingram and Mahler, 2013; Arbuckle et al., 2014; Arbuckle and
Speed, 2016; Stayton, 2015a; Speed and Arbuckle, 2017).

The question that we shall address here is slightly different from identifying
convergence events. Given a binary character (typically the presence or absence
of some phenotypic trait), which is assumed to be convergent for at least two
extant species, we aim to detect genes showing molecular convergences, say at
the amino acid level, which support, or at least are strongly consistent with, the
convergence of the character. In particular, this is not the same as detecting
molecular convergences per se, i.e. not related with a phenotypic character as
considered in Zhang and Kumar (1997) and Storz (2016). To make it more
concrete, the inputs of the question are:

• the phylogenetic tree of a set of extant species,
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• the information about whether the phenotypic trait of interest is present
for each extant species,

• the alignments of the clusters of orthologous genes of the extant species,

from which we aim to output a selection of genes which significantly support
the convergence of the considered phenotype.

An expected outcome of identifying such genes is, first, a better understand-
ing of evolutionary mechanisms leading to the acquisition of new traits, for
instance with regards to an environmental pressure. Second, genes supporting
the convergence are natural candidates for playing a role not only in the ap-
parition of the phenotypic trait but also in its functions, possibly yielding new
insights into the biological processes involved. This is thus an important ques-
tion, which has been addressed by several previous works (Parker et al., 2013;
Foote et al., 2015; Thomas and Hahn, 2015; Zou and Zhang, 2016). All the
previous approaches have this in common that they first measure the strength
of convergence, with regard to the character considered, for all sites of a given
dataset and then select genes according to the convergence level of their sites.
They do differ notably in the way of measuring the convergence level of sites.

A first class of measures of the convergence level of a site is conceptually very
close to the definition above (Foote et al., 2015; Thomas and Hahn, 2015; Zou
and Zhang, 2016). Its main idea is to check if the species with the convergent
trait show a same amino acid at the studied site and if this amino acid has been
derived independently. To this end, the “convergent” amino acids are compared
with the ancestral reconstructed ones, not necessarily at the MRCA level. For
instance, Foote et al. (2015) compare the amino acid of each marine mammal
with the reconstructed amino acid of its most recent ancestor having a terres-
trial descendant. Assuming that the amino acids are accurately reconstructed
allows counting the number of times that a given amino acid has been derived
independently toward a species with the trait of interest (we shall see in Section
2.2 that this is not completely true). Since our approach was mainly designed
to address some of its concerns, we will discuss ancestral reconstruction further
in the next section. Let us just say that this kind of approaches heavily depends
on the method used for reconstructing ancestral amino acids.

Another way of measuring the convergence level, which is used by Parker
et al. (2013), consists in testing, for each site, the “real” phylogeny against an
alternative phylogeny that separates the extant species having the convergent
trait from the other ones. The convergence strength of a site is then measured
in terms of ∆SSLS that is the difference between the log-likelihoods obtained
from these two phylogenies. The approach is conceptually far from the defini-
tion of convergence, in the sense that ∆SSLS tests an evolutionary hypothesis
corresponding to the alternative phylogeny, which is not obvious to interpret
(Zou and Zhang, 2015b), rather than several independent mutations towards a
same amino acid. We refer to Zou and Zhang (2015b) and Thomas and Hahn
(2015) for a thorough discussion and a critical evaluation of this method.

The stage in which these approaches select genes from the convergence level
of their sites is generally straightforward. For instance, Thomas and Hahn
(2015) and Foote et al. (2015) considered genes which contain at least a con-
vergent site, according to the measure used. Parker et al. (2013) ranked genes
according to the mean ∆SSLS of their sites and considered the top-ranked ones.
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Genome-wide detection of molecular signature of convergence is an emergent
area of research which is still controversial. The article of Parker et al. (2013),
about echolocation, was followed by two responses: from Thomas and Hahn
(2015) and Zou and Zhang (2015b), which conclude that there is “no genome-
wide protein sequence convergence for echolocation”. We propose here a new
measure of the convergence level of a site, called convergence index, altogether
with a statistical framework for ranking and selecting significant genes with re-
gard to the convergence level of their sites. By applying our detection approach
to the dataset of Thomas and Hahn (2015), still about echolocation, we draw
the opposite conclusion to that of these authors. The set of genes significantly
convergent between dolphin and microbat, the two echolocating species, show a
very significant enrichment in GO-terms associated with audition in constrast to
those detected from the other pairs of species in the dataset. These results pro-
vide an indirect evidence that molecular signatures of a phenotypic convergence
may be detected with a suitable approach.

Source code of the software implementing the detection of molecular signa-
tures of convergence is available at
https://github.com/gilles-didier/Convergence.

2 Detecting genes supporting a phenotypic con-
vergence

Given a set of extant species, among which some of them have a trait assumed
convergent, the phylogenetic tree and alignments of orthologous genes of the
extant species, the question is to identify the genes that show molecular conver-
gences consistent with that of the trait. To this end, we follow the same general
outline as the previous approaches, i.e. by first considering a convergence mea-
sure on alignment sites, then by selecting genes from the convergence level of
their sites.

The ideas underlying the convergence measure that we developed, are con-
ceptually close to the intuitive definition of convergence, thus to measures based
on ancestral reconstruction. In fact, our measure, called convergence index, is
essentially an attempt to address some concerns raised by ancestral reconstruc-
tion which are discussed in Section 2.1. The convergence index itself is presented
in Section 2.2 (see also Appendix A).

The convergence index of a site is not directly used for measuring the
strength of its convergence. We rather consider its significance under a null
“neutral” evolution model in order to normalize effects due to the number of
convergent extant species, to the phylogenetic tree and to the evolution rate of
its gene (Section 2.3).

The last stage consists in selecting the genes which contain a significant
number of sites detected convergent with regard to their index (Section 2.4).

2.1 Ancestral reconstruction approaches

Methods for identifying molecular signatures of convergence from ancestral se-
quences reconstruction (Foote et al., 2015; Thomas and Hahn, 2015) raise several
concerns, among which:
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1. in order to decide whether there is convergence for a given site, one has
to choose the ancestor nodes of which the reconstructed amino acids will
be compared with those of convergent extant species;

2. ancestral reconstruction always comes with a certain amount of uncer-
tainty, which is not taken into account by standard ancestral reconstruc-
tions;

3. approaches based on ancestral reconstruction implicitly assume that if one
observes a same amino acid both at an ancestral species and at its direct
descendant, then it was continuously present all along the branch (i.e. no
mutation occurred during the corresponding time).

The first concern is not a big issue in the case where only two extant taxa
have the convergent trait since, in this case, the MRCA is quite a natural choice.
Things get more complicated when one has to deal with datasets containing a
greater number of convergent extant species. Ancestral nodes to be compared
with, have then to be chosen with regard to assumptions about whether they
have the trait of interest. For instance, Foote et al. (2015) compare the amino
acids of marine mammals with those reconstructed at their most recent ancestors
having at least a terrestrial descendant, implicitly assuming that these ancestors
were themselves terrestrial. Though there is strong evidence that assumptions
made in Foote et al. (2015) make sense, reconstructing the evolutionary history
of phenotypic traits is often much more challenging, and comes generally with a
lot of uncertainty (Royer-Carenzi et al., 2013; Royer-Carenzi and Didier, 2016).
Moreover, results obtained this way heavily depend on the positions of selected
ancestors in the tree, thus on the phylogenetic definition of the dataset.

The second concern may be easier to address. Ancestral reconstruction ap-
proaches based on stochastic evolution models are able to provide the proba-
bilities of reconstructing one or another amino acid at a given ancestral node.
This makes it possible to compute the expected number of convergent events
in the sense of ancestral reconstruction approaches. Namely, given the amino
acids of the convergent extant species and the ancestor nodes to which they are
compared, the expected number of convergences under continuous time Markov
model of evolution, can be directly computed (Zou and Zhang, 2015a). In a
similar way, Zhang and Kumar (1997) and Castoe et al. (2009) were interested
in the expected number of convergences between all pairs of branches of a phy-
logenetic tree by considering the posterior probabilities of all ancestor amino
acids.

Let us remark that the definition of convergence given in the introduction,
which is essentially at the basis of ancestral reconstruction approaches, is not
completely consistent with the intuitive idea that there is convergence as soon
as a trait (or an amino acid) appeared independently. There may indeed be an
independent mutation toward an amino acid X inside a branch, even in the case
where X is present at both nodes beginning and ending the branch. Figure 1
illustrates this point by displaying four different evolutionary histories of a site
along a branch, all leading to observe Alanine (A) both at its beginning and
at its end. All the histories but the one at the top-left of the figure, show an
independent mutation toward Alanine, which will not be considered as such in
an ancestral reconstruction framework, even if it deals with the reconstruction
uncertainty like Zhang and Kumar (1997); Castoe et al. (2009); Zou and Zhang
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Figure 1: Several evolutionary histories (left) leading to observe amino acid A
at the beginning and the end of a branch of a phylogenetic tree (right). The
parts in red (resp. in blue, in green, . . . ) correspond to the times when amino
acid A (resp. V , L, . . . ) was continuously present at the corresponding site.

(2015a). In short, assuming that no mutation occurred on a branch which
starts and ends with a same amino acid is an oversimplification which may lead
to underestimate the actual number of molecular convergences.

2.2 Convergence index of an alignment site

In order to introduce our convergence measure, let us start by assuming that the
whole evolutionary history of a site is known. By whole evolutionary history, we
mean that the amino acid present at all lineages and at all times encompassed
by the phylogenetic tree is known (i.e. we know which amino acid is present
not only at the nodes but anywhere in the tree, including inside branches). In
this situation, and for all amino acids X present at a convergent extant species,
it is straightforward to count the number of mutations towards X which are
conserved until an extant species with the convergent trait. This number reflects
intuitively the extent to which mutations toward X supports the convergence
of the trait for the site considered. It will be referred to as the number of
independent apparitions of X. Figure 2 displays several evolutionary histories
leading to different number of independent apparitions of amino acid A, which
correspond to the number of starting points of the red parts of branches in the
figure. Note that it may occur that the amino acid considered (A in Figure
2) is not present at all the extant species having the convergent trait (e.g.
evolutionary history at the bottom-right of Figure 2).

Unfortunately, in a real situation, we don’t have access to the whole evo-
lutionary history of a site, but only to the amino acids of the extant taxa.
All is not lost, however, since we are able to compute the expected number
of independent apparitions under a standard continuous time Markov model of
evolution (Yang, 1994). We present in Appendix A, a method for computing the
expected number of independent apparitions of a given amino acid with regard
to a phylogenetic tree, the traits of extant species and an alignment site, under
a continuous time Markov model of evolution.

The convergent index of a site is defined as the maximum of the expected
numbers of apparitions over all amino acids present at convergent extant species,
conditioned on amino acids of all the extant species (i.e. the corresponding
alignment column, see Equation 1 of Appendix A).

Let us note that the concerns stated at the beginning of Section 2.1, do no
apply to the convergence index, since:
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Figure 2: Independent apparitions of amino acid A with regard to a given
phenotypic trait assumed convergent. Extant species are represented with • or
◦ depending on whether they have the convergent trait. Red parts of branches
end at all tips with both the convergent trait and amino acid A, and keep go
back in time as long as A was continuously present at the site.

1. computing the expected number of apparitions of an amino acid does not
require to select any ancestor node;

2. it does take into account the uncertainty due to the stochastic nature of
evolution, since it is an expectation under a probabilistic model;

3. our calculus distinguish between the case where there is no mutation all
along a branch of the phylogenetic tree and the case where an ancestor
and its direct descendant share a same amino acid (Appendix A).

The computation of the convergence index requires a continuous time Markov
model of sequence evolution, which is generally given by its substitution rate
matrix (Whelan and Goldman, 2001). In order to compute likelihoods over phy-
logenetic trees, this matrix has to be multiplied by a constant rate, standing for
the evolution speed with regards to the time unit of the branch lengths. The
choice of this rate has a great influence on the convergence index. In particu-
lar, a high rate leads systematically to convergence indexes almost equal to the
number of convergent species. After trying several alternatives, we devised a
heuristic for calibrating the evolution rate used for computing the convergence
index from the phylogenetic tree and the convergent species, which ensures that
the convergence index takes values over a range as wide as possible (Section
5.3).

2.3 Significance of a site

By construction and for all amino acids X, the expected number of independent
apparitions of X ranges between 0 and the total number of convergent extant
species. It follows that the convergence index heavily depends on the number of
convergent extant species. Another factor which influences the expected number
of apparitions of an amino acid is the evolutionary rate of the site. For instance,
no molecular convergence can be identified from a completely conserved site.
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Figure 3: Simulated distributions of the convergence index under neutral evolu-
tion. Distributions of each line are simulated from the tree displayed in Column
1 at evolution rates 10 (Column 2) and 30 (Column 3). The tree of the top row
(resp. of the bottom row) has three (resp. two) convergent species (represented
with •).
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Figure 3 displays the simulated distributions of the convergence index over two
different trees, having respectively three and two convergent species, and at
evolutionary rates 10 and 30. We do observe that these distributions are quite
different between each other. In particular, distributions simulated with rate
10 do not have the same general shape as those simulated with rate 30. Note
that the rate used for computing the convergence index is here fixed, constant
over all the plots, and different from those used for the simulations. Convergence
indexes of the bottom row distributions are bounded by 2 while those of top row
distributions may actually go until 3, the number of convergent species, though
the corresponding probabilities are very low and (at most) barely noticeable on
the plots (Figure 3).

In order to decide whether a site is convergent, we thus have to normalize its
convergence index with regard to its evolution rate, the phylogenetic tree, and
the number and positions of extant species with the convergent trait. To this
end, we consider the p-value associated to its convergence index with regard to
the empirical distribution of convergent indexes computed from the same phylo-
genetic tree and the same set of convergent extant species but for sites obtained
by simulating neutral evolution of an amino acid on the phylogenetic tree, under
an evolution model of which parameters are estimated from the whole gene to
which the tested site belongs. We insist on the fact that the model used for
simulating sites does not have to be the same as the one used for computing
the convergence index. Convergence index is treated here as a statistics of the
site of which we evaluate the distribution under an evolution model of its gene
(this model may take into account rates heterogeneity etc.). In the current im-
plementation of the method, the same substitution rate matrix is used both for
convergence indexes and for simulations but convergence indexes are computed
with a single evolution rate while simulations are performed from evolution rates
drawn from a discretized Gamma distribution. Computing convergence indexes
from the exact same model as for simulating worked as well but was several
times more time-consuming.

2.4 Significance of a gene

In our context, assessing the significance of a gene requires to combine the
(empirical) p-values of its sites. Since combining p-values is a question of broad
interest, several methods have been developed for performing this task (Loughin,
2004). The widely used “quantile” approaches such as Fisher and truncated
product are not well suited to our particular question. Empirical p-values are
prone to uncertainty, notably for the smallest ones which have the greatest
influence on these methods. We rather follow Wilkinson (1951) and start by
choosing a significance level γ. A site is said convergent at a significance level
γ, or γ-convergent, if the probability of observing a convergence index greater
of equal to its own convergence index is smaller or equal to γ, in the empirical
distribution associated to its gene as described in Section 2.3. We developed an
adaptive sampling scheme which determines the number of simulations required
for ensuring a given confidence level to the number of γ-convergent sites of a
gene, with regard to its length and γ. All genes are next associated with the
number of γ-convergent sites that they contain. By assuming independence
between sites, the number of convergent sites of a gene of length L follows a
binomial distribution of parameters (γ, L). The (combined) p-value of a gene,
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that is the probability of observing a number greater or equal than the observed
number of convergent sites in this binomial distribution, is thus straightforward
to compute. This p-value has to be corrected for multiple testing with regard
to all the genes/alignments in the dataset, in order to give the final significance
of this gene.

3 Results

3.1 Comparison of 3 measures of convergence of a site

In order to assess the accuracy of measures of convergence level, we simulated
the evolution of non-convergent and convergent sites on the tree of Thomas
and Hahn (2015) (Figure 4-left-top). We compared 3 measures, namely the
convergence index, the number of convergence observed from the ancestral re-
construction (Foote et al., 2015) and the ∆SSLS (Parker et al., 2013). We used
the tree of Thomas and Hahn (2015) with the same convergent extant species,
also displayed in Figure 5. The ∆SSLS measure was computed with an alter-
native tree built following the ideas of Hypothesis H2 in Parker et al. (2013)
(Figure 4-left-bottom). Following Foote et al. (2015), we compare the amino
acids of convergent extant species with those reconstructed at their most recent
ancestors with least a descendant without the convergent trait, in order to count
the number of convergent events for the ancestral reconstruction method. Since
all the sites were simulated on the same tree with the same convergent species
and under a same evolution rate, it is not required to normalize the convergence
indexes with regard to their empirical distribution. They are thus used directly.

The relevance of the convergence measures was next assessed with regard to
their ability to distinguish between the simulated non-convergent and convergent
sites (the status of all simulated sites is known). Figure 4-right displays the
results obtained for the ancestral reconstruction, ∆SSLS and the convergence
index. The ROC curves (Zhou et al., 2009) reporting the results of each measure,
show that the convergence index better discriminates between convergent and
non-convergent sites than the two other measures (Figure 4-Right). In this
particular example, the convergence index identifies 99% of the convergent sites
with an error rate of 1.4%, with a suitable threshold.

3.2 Convergent genes related to echolocation

We applied the approach described in Section 2, to the dataset of Thomas
and Hahn (2015). This dataset was designed for studying the apparition(s) of
echolocation abilities in mammals, like that of Parker et al. (2013). It contains
6,332 alignments of orthologous genes from 9 mammal species, among which
two have echolocation abilities (dolphin and microbat), and the phylogenetic
tree of these 9 species (Figure 5 and Section 5.6).

Convergent sites are detected at a confidence level of 10−4 according to the
empirical distribution simulated with regards to the genes to which they belong
(Sections 5.7). We next computed the (binomial) p-values of all genes with
regard to the number of convergent sites that they contain, ranked the genes
according to their p-values and performed a Benjamini-Hochberg correction for
multiple-testing (Section 5.8). We finally selected the genes with corrected p-
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Figure 4: (left-top) Tree used for simulating non-convergent and convergent
protein site. (left-bottom) Alternative tree used for ∆SSLS computation. Ex-
tant species are represented with • or ◦ depending on whether they have the
convergent trait. (right) ROC curves obtained from 100, 000 simulations. The
closer a ROC curve is to the upper left corner, the higher the accuracy of the
corresponding convergence measure.
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Figure 5: Phylogenetic tree from Thomas and Hahn (2015). Among the nine
extant species, dolphin and microbat (in red italic) have echolocation abilities.
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Figure 7: Enrichment p-values, with regard to the “audition-related” GO-terms,
of the genes detected convergent for all pairs of species of the dataset.

values smaller than 5 × 10−2, that give us the set of convergent genes. The
detection of convergent genes was performed between all pairs of species in the
dataset for control purposes.

Figure 6 displays the number of genes detected convergent for all pairs of
species. No convergent genes were found for pairs of sister species (cow-dolphin,
microbat-megabat and human-marmoset). But there is a certain amount of
convergent genes for almost all the other pairs of species, ranging from 23 to
152 genes, except for the pair human-mouse which has only 2 convergent genes.
We did not observe more convergent genes between the two echolocating species
than between the other pairs, which is consistent with what was observed by
Thomas and Hahn (2015).

In order to assess if the convergent genes detected between dolphin and
microbat were related to echolocation, we tested their enrichment with regards
to GO-terms involved in audition (see Section 5.9). We performed the same test
for all pairs of species, in order to ensure that there is no bias leading to observe
more convergence on genes associated with these particular GO-terms. Results
are displayed in Figure 7, which shows that the set of convergent genes between
dolphin and microbat is by far the most significantly enriched in audition-related
annotations. The corresponding Fisher’s exact test p-value, i.e. 6.66× 10−5, is
(at least) three orders of magnitude lower than those of other pairs of species.
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Note that Prestin (a.k.a. SLC26A5), known to be involved in echolocation
(Li et al., 2010; Liu et al., 2010, 2014), is the 3rd most significant convergent gene
out of the 6, 332 ones of the dataset. Still for studying echolocation, Shen et al.
(2012) screened three genes, namely CDH23, PCDH15 and OTOF, pointing
out that “Convergent evolution and expression patterns of OTOF suggest the
potential role of nerve and brain in echolocation”. The two first genes were
not in the dataset of Thomas and Hahn (2015) but Otoferlin (OTOF) was well
detected convergent with our approach (at the 54th rank). Davies et al. (2012)
found signatures of sequence convergence in TMC1 and DFNB9 (aka PJVK).
These genes are respectively the 5th and 11th most significantly convergent with
our method (Supplementary Information). Among the seven genes pointed out
by Parker et al. (2013) as previously reported for showing convergence and/or
adaptation in echolocation, four were present in the dataset. We detected all of
them (in bold in Table 1 of Supplementary Information). Table 1 displays the
significant GO annotations of genes convergent for the echolocating pair, that
are related with audition (as defined in Section 5.9) and their Fisher’s exact test
p-values without multiple testing correction with regard to the total number of
GO-terms.

Fish
er’s

exact
p-v

alue

GO ID
Desc

rip
tio

n

Genes

4.36 × 10−4 GO:0007605 sensory perception of sound
SLC26A5, TMC1,

DFNB59, COL11A1,

OTOF

4.59 × 10−3 GO:0050910

detection of mechanical
stimulus involved in sensory
perception of sound

TMC1, COL11A1

7.79 × 10−3 GO:0090102 cochlea development SLC26A5, OTOF

1.89 × 10−2 GO:0007420 brain development
PTPRZ1, RELN,

MED1, KCNAB1

3.10 × 10−2 GO:0060117
auditory receptor cell
development

TMC1

Table 1: Significant audition-related GO annotations of genes detected conver-
gent between dolphin and microbat.

4 Discussion

There is mounting evidence that phenotypic convergence has detectable molecu-
lar basis for many phenotypic characters, including echolocation (Li et al., 2010;
Liu et al., 2010). Despite this fact and the importance of this matter, there is
still no consensus method for the genome-wide identification of the molecular
signatures of a given phenotypic convergence. We presented here, first, a new
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measure for evaluating the extent to which an alignment site supports a pheno-
typic convergence and, second, a statistical framework for detecting significant
genes from the convergence level of their sites.

A first result is that our convergence measure has better performance for
detecting convergence than two previous measures on simulated sites. In par-
ticular, the convergence measure based on ancestral reconstruction (the “histor-
ical” approach) showed poor results on discriminating between convergent and
non-convergent simulated sites. This is not a surprise in view of the concerns
we listed in Section 2.1 and of the lack of definition of this approach, which
basically decides if the amino acids of the convergent species are convergent or
not, without considering any nuance between the two situations. The ∆SSLS
approach has better results than the ancestral one but is outperformed by the
convergence index whatever the alternative tree we tried.

Our detection pipeline did not return a greater amount of convergent genes
between the two echolocators than between the other pairs of species. This
point was not completely unexpected since dolphin and microbat evolve in very
different environments and, at first glance, do not share more phenotypic char-
acters than the other pairs (echolocation excepted). Nevertheless, the fact that
the amount of convergent sites or genes detected between echolocators was not
greater than between other pairs was put forward as an argument against the
detectability of the molecular basis of echolocation (Thomas and Hahn, 2015;
Zou and Zhang, 2015b). We argue that this point is not conclusive since it is
based on the assumption that non-echolocating pairs have no phenotypic conver-
gence (Thomas and Hahn (2015) used them for determining a null distribution).
The actual amount of phenotypic and molecular convergence between species
remains difficult to predict since it may involve “traits” not obvious to observe
(e.g. metabolic pathways, proteins binding etc.). Evaluating the actual extent
of convergence between species needs further investigations which are out of the
scope of the present work. At this point, Figure 6 suggests either that conver-
gence is quite a common mechanism of which molecular traces are detectable,
or a possible issue in the approach.

The relevance of the results obtained with our pipeline was assessed with
regard to the particular phenotype studied in the dataset. Since echolocation
requires special hearing capacities, one expects genes detected convergent be-
tween the two echolocating species to be, for at least some of them, related to
audition. This point is clearly observed in Figure 7 (see also the Supplementary
Information). On the contrary, Thomas and Hahn (2015) found no evidence
of sensory enrichment in genes detected convergent with the ancestral recon-
struction approach. Though Parker et al. (2013) observed several hearing genes
among the top 5% with the highest ∆SSLS, they did not provide any statistical
support for this point (they obtained 117 genes among which only 4 were also
detected convergent by our method). They showed that a selection of hearing
(and sensory) genes have ∆SSLS higher than expected but not at a level ex-
tremely significant and without checking the non-echolocating pairs as pointed
out by Thomas and Hahn (2015).

The significance threshold γ, which is used for deciding if a site is convergent
with regard to the empirical distribution associated to its gene, is a crucial
parameter of our approach. Its choice is up to the user and relies on what is
expected about molecular convergence, i.e. a signal diffuse or concentrated on a
few sites. We tested several values of γ from 10−3 to 10−5. For all cases but γ =
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10−3, p-values of the “audition enrichment” of the set of genes detected between
the echolocating pair were at least one order of magnitude lower than those of
the other pairs (Supplementary material). Though this is not an absolute rule,
the number of detected genes tends to decrease with γ for all pairs of species.
Significance with regards to audition-related GO-terms peaks at γ = 5 × 10−5

for the echolocators but only 36 convergent genes are detected at this level.
There are only 7 genes left for γ = 10−5 and there is no point in considering
lower thresholds.

Though we aim to provide a rigorous framework for detecting convergent
genes, the relevance of our results heavily depends on our assumptions with
regard to protein evolution. Since deciding if a site is convergent relies on
simulations from the evolution model chosen, the more realistic this model, the
more accurate the results we get. By “evolution model”, we mean here both the
modeling of amino acid substitutions and that of the rate heterogeneity along a
gene. The current version of the detection pipeline is based on the widely used
model WAG+discretized Gamma distribution as implemented in PAML (Yang,
1994). Any evolution model, whatever its sophistication, may be easily plugged
into the detection pipeline, since it is only used for simulating empirical null
distributions. We plan to test more realistic models in the future.

Though there is still room for improvement, the fact that genes we de-
tected convergent for the echolocating pair are annotated with audition-related
GO-terms at a significance level far greater than for the other pairs of species,
constitutes a proof of concept that a genome-wide approach may identify molec-
ular basis of a given phenotypic convergence. Whether such an identification
was possible was debated, notably in a genome-wide context. First, detecting
convergent genes is possible only if at least some of the mutations leading to the
phenotype involve the same sites, thus the same genes, which corresponds to
strong constraints on evolution. Second, the preceding condition is not sufficient
to ensure that convergent sites are detectable. In a genome-wide context, this
also requires a rigorous statistical framework for evaluating the significance of
the molecular convergences observed at sites, in other words, a way of distin-
guishing convergence signal from evolutionary noise. This latter point is not a
real concern when genes in which molecular signatures are expected are known
a priori (Zhang, 2006; Ujvari et al., 2015) but is essential for dealing with thou-
sands of genes.

Since Conte et al. (2012) estimated that phenotypic convergence involves the
same genes in between a third and a half of the cases, the numerous occurrences
of phenotypic convergence observed in nature constitutes a huge dataset that
can be used for studying relations between genotype to phenotype.

5 Material and Methods

5.1 Detection pipeline overview

The detection pipeline is schematically displayed in Figure 8. In order to detect
molecular signatures of a given convergent character inside a set of genes, it
takes as input the alignments of orthologous sequences of the genes for a set
of species containing the convergent ones, the phylogenetic tree of these species
and the information about whether they carry the convergent character. Users
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have to provide four parameters: a substitution matrix M, suited to the type
of sequences considered, a significance threshold γ for deciding which sites are
convergent and a significance threshold β for deciding if a gene is convergent
with regard to its length, the convergent sites that it contains and the total
number of genes. The execution of the pipeline follows three stages. Stage 1,
“Method calibration”, determines the evolutionary rate µ used for computing
the convergence index with matrix M (Section 5.3). Stage 2 consists in treat-
ing all alignments/genes of the dataset by (i) estimating the parameter α of
the discretized Gamma distribution for the evolutionary rates of the alignment
protein from matrix M (Yang, 1994), (ii) simulating the empirical distribution
of the convergence index from the estimated parameter α with M , (iii) com-
puting the convergence index of all sites with the method rate µ under M and
(iv) determining the p-values associated to alignments/genes with regard to pa-
rameter γ, the number of sites of significance smaller than γ and the length of
alignments/genes. In Stage 3, p-values are corrected for multiple testing. Fi-
nally, alignments/genes with corrected p-values smaller than parameter β are
output. The pipeline also returns the complete list of genes, sorted according
to their p-values, and the positions of their γ-convergent sites (Supplementary
information).

5.2 Convergence index of a site

The convergence index of a site of a gene is determined from the expected
number of independent apparitions of all amino acids as presented in Appendix
A. These expected numbers are computed under a WAG model (Whelan and
Goldman, 2001), with the evolutionary rate determined as presented in Section
5.3.

5.3 Method calibration

The method is calibrated with regard to the phylogenetic tree, the convergent
characters and the evolution model. Our calibration heuristic consists in finding
the evolutionary rate (or more generally the evolution model parameters) which
is such that the alignment column with amino acid Leucine at all entries, has a
convergence index equal to 1.1. Note that the amino acid Leucine was arbitrarily
chosen and so was the value 1.1. Calibrating the evolutionary rate of the method
with another amino acid and/or any value slightly greater than 1 leads to similar
results.

5.4 Simulating non-convergent sites

Simulated non-convergent sites, used for plotting the ROC curves of Figure 4-
left-top, were obtained by simulating the evolution of an amino acid on the tree
displayed in Figure 4, under the WAG model with an evolutionary rate of 10
(Whelan and Goldman, 2001) and by keeping only the amino acids of the extant
species which give us our alignment columns.
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Figure 8: Schematic of the detection pipeline. ML stands for Maximum Likeli-
hood and CI for Convergence Index.
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5.5 Simulating convergent sites

Simulated convergent sites were obtained in two stages. First, we simulated
the evolution of an amino acid in the very same way as for a non-convergent
site. Second, for all sites such simulated, we randomly picked an extant species
with the convergent trait and we set the amino acids of all the other convergent
extant species, to that observed at the one picked. This way, we get an align-
ment column (i.e. a site) in which a same amino acid occurs at all the entries
corresponding to the convergent species.

5.6 Biological dataset

We used the dataset of Thomas and Hahn (2015). It contains the phyloge-
netic tree displayed in Figure 5 and 6,400 protein alignments, among which we
kept only the ones with Ensembl IDs which mapped to RefSeq IDs. This left
6, 332 alignments of length ranging from 1 to 4, 822, with an average length of
approximately 295 amino acids.

5.7 Significance of a site

The empirical distributions used for evaluating the significance of convergence
indexes of sites are obtained by simulating neutral “non-convergent” sites as
described in Section 5.4, under the standard evolution model with multiple
rates drawn from the 4-values discretized Gamma distribution estimated from
the gene containing the site (Yang, 1994).

5.8 Significance of a gene

All sites with a convergence index significant at a level smaller or equal to
γ = 10−4 with regard to the empirical distribution corresponding to its gene, are
considered convergent. The total number of γ-convergent sites of a gene allows
us to compute a p-value from a binomial distribution of parameters γ = 10−4

and the length of the gene. Finally, the p-values of genes are corrected for
multiple-testing by using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).

5.9 GO-term enrichment

The RefSeq IDs were fetched from all Ensembl IDs of the dataset of Thomas and
Hahn (2015) by using the perl API of Ensembl (see http://www.ensembl.org/

info/docs/api/core/core_tutorial.html). We next obtained all the GO-
terms associated to each RefSeq ID via QuickGO (https://www.ebi.ac.uk/
QuickGO/WebServices.html). The set of GO-terms associated to audition is
the union of GO-terms returned by searching the keywords “sound”, “hearing”,
“auditory” and “cochlea” in the AmiGO 2 site (http://amigo.geneontology.
org/amigo/). Exact Fisher’s tests were performed with the 6, 332 genes of the
dataset as background.
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A Convergence index of a site

Let T be a phylogenetic tree. For all nodes n of T (tips included), we put

• τn for the length of the branch leading to n,

• T (n) for the subtree rooted at n,

• C(n) for the set of direct descendants of n.

Let us put L for the set of tips of T and X for the subset of tips which contains
all the extant taxa having the convergent trait (|X | designs the number of species
in X ).

We present here the computation of the convergence index of a protein site.
The exact same method can be applied on a site of a DNA or a codon sequence.
It just requires to change the evolution model accordingly.

In the present context, a site is a column of a given alignment of orthologous
proteins of the extant species of T . For all species ` ∈ L, we put α(`) for the
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amino acid present at the site considered, i.e. the entry ` of the corresponding
alignment column.

For a given amino acid A (here and thereafter, ‘A’ is a generic notation
for designing an arbitrary amino acid and does not stand for ‘Alanine’), the
A-expectation of the site is defined as the expected number of times that a
mutation towards A is observed (from an amino acid different from A), after
which A is continuously conserved until at least a tip of X (see Section 2.2
and Figure 2). This expectation is computed under a standard continuous time
Markov model of evolution (π,Q), where π is the amino acid distribution at the
root of the tree and Q is the infinitesimal generator of the continuous Markov
chain modeling the mutation process (see for instance Felsenstein (1981)). A
continuous A-path is a path of the phylogenetic tree starting at some point
(possibly inside a branch) and ending at a tip having the convergent trait, in
which the amino-acid A is continuously present (represented in red in Figure 2).
We will say that a continuous A-path passes through a node n of the tree if it
starts inside an ancestor branch of n and ends at a tip, which has the convergent
trait and which descends from n. By construction, the A-expectation is equal
to the expected number of starting points of continuous A-paths in T (Figure
2).

In order to compute the A-expectation of a site, we define, for all nodes n
of T and all integers 0 ≤ k ≤ |X |,

• CA(n, k) as the probability of observing k starting points of continuous A-
paths in the subtree rooted at n and a continuous A-path passing through
n, which implies that A is the ancestral amino acid at n, conditioned on
having amino acid A at node n;

• for all amino acids X, BA(n,X, k) as the probability of observing k starting
points of continuous A-paths in the subtree rooted at n with no continuous
A-path passing through n, conditioned on having amino acid X at node
n.

We shall proceed in a very similar way as for computing the likelihood of the
tree (Felsenstein, 1981). Before establishing recurrence formula determining the
above conditional probabilities of an internal node from those of its children,
we start with base cases, i.e. the conditional probabilities of tips. Since the
subtree pending from a tip n is empty, both CA(n, k) and BA(n,X, k) are zero
for all k > 0. If n is a tip having the phenotype, then there is a continuous
A-path passing through it, if and only if amino acid A is present at n. Namely,
it follows that we have for all integers 0 ≤ k ≤ |X |,

CA(n, k) =

{
1 if α(n) = A, k = 0 and n ∈ X ,
0 otherwise,

BA(n,A, k) =

{
1 if α(n) = A, k = 0 and n 6∈ X ,
0 otherwise,

and, for all amino acids Y 6= A,

BA(n, Y, k) =

{
1 if α(n) = Y and k = 0
0 otherwise.

Let us put:
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• pC(A, t) for the probability of keeping an amino acid A without mutation
all along a branch during time t under the evolution model (π,Q), namely
pC(A, t) = e−QAAt (e.g. top-left evolutionary history of Figure 1),

• pM(X,Y, t) for the probability of going from an amino acid X to an amino
acid Y in time t, namely the entry (X,Y ) of the transition matrix eQt.

For all internal nodes n and all c ∈ C(n), we define the tree T̂ (c) as the
subpart of T which contains the node n, the branch going from n to c and the
subtree T (c) (i.e. the subtree rooted at n in which all the descendants of n

other than those in the subtree T (c) were pruned). Note that T̂ (c) is rooted at
n, the direct ancestor of c, and not at c itself.

We then define:

• ĈA(c, k) as the probability of observing k starting points of continuous

A-paths in T̂ (c) and a continuous A-path passing through n, conditioned
on observing the amino acid A at n;

• B̂A(c,X, k) as the probability of observing k starting points of continuous

A-paths in T̂ (c) and no continuous A-path passing through n, conditioned
on observing the amino acid X at node n.

Let us compute the conditional probabilities ĈA(c, k) and B̂A(c,X, k) from the
conditional probabilities CA(c, `) and BA(c,X, `) for all amino acids X and all
integers 0 ≤ k ≤ |X |.

If there is a continuous A-path passing through n in T̂ (c), it necessarily
passes through the node c and it is not interrupted in the branch between n and
c. There cannot be a starting point on this branch. It follows that:

ĈA(c, k) = CA(c, k)pC(A, τc), for all integers 0 ≤ k ≤ |X |.

If there is no starting point of continuous A-paths in the subtree T (c) and if

no continuous A-path passes through c, then the same holds for n in T̂ (c). We
have

B̂A(c,X, 0) =
∑
Z

BA(c, Z, 0)pM(X,Z, τc), for all amino acids X.

For all positive integers k, observing k + 1 starting points on T̂ (c) and no
A-path passing through n may come from two mutually exclusive possibilities:
either there were already k + 1 starting points on T (c) and no A-path passing
through c, or there were only k starting points on T (c) and an A-path passing
through c which starts on the branch between n and c. These two possibilities
correspond to the terms at the right of the sums below. We have that, for all
integers 0 ≤ k < |X |,

B̂A(c, A, k + 1) =
∑
Z

BA(c, Z, k + 1)pM(A,Z, τc)

+ CA(c, k) [pM(A,A, τc)− pC(A, τc)] ,

and, for all amino acids Y 6= A,

B̂A(c, Y, k + 1) =
∑
Z

BA(c, Z, k + 1)pM(Y,Z, τc) + CA(c, k)pM(Y,A, τc).
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For the sake of simplicity, we assume that n has only two children c1 and
c2. We can actually handle polytomies, but the computations are quite more
complicated to write down. Let us make two general remarks:

1. under the model, the evolution on the parts of the trees T̂ (c1) and T̂ (c2)
is independent conditionally on the amino acid present at n;

2. the total number of starting points on T (n) is the sum of that on T̂ (c1)

and of that on T̂ (c2).

Since an A-path passing through n may come either from c1 or from c2 or from
both of them, we get that, for all integers 0 ≤ k ≤ |X |,

CA(n, k) =
∑
k1,k2

k1+k2=k

(
ĈA(c1, k1)ĈA(c2, k2) + B̂A(c1, A, k1)ĈA(c2, k2)

+ ĈA(c1, k1)B̂A(c2, A, k2)
)
.

There is no A-path passing through n if and only if there is both no A-path
reaching n from c1 and no A-path reaching n from c2. It follows that, for all
integers 0 ≤ k ≤ |X |,

BA(n,X, k) =
∑
k1,k2

k1+k2=k

B̂A(c1, X, k1)B̂A(c2, X, k2), for all amino acids X.

By convention, if there is an A-path which starts before the root r of T , we
count an extra starting point. The probability of observing k starting points on
T with an A-path passing through r, thus counting for k + 1, is the product of
the conditional probability CA(r, k) with πA, i.e. the probability of amino acid
A in the initial distribution of the evolution model. The probability of observing
k starting points on T with no A-path passing through r is the sum over all
the amino acids Z, of the product of this probability conditioned on having Z
at the root, i.e. BA(r, Z, k), with the initial probability πZ . We get that the
A-expectation is:

EA =
∑
k

(
(k + 1)πACA(r, k) + k

∑
Z

πZBA(r, Z, k)

)
.

Finally, by putting P ({α(`)}`∈L) for the probability of observing the amino
acids of the extant species under the evolution model (π,Q) (i.e. the probability
of the tip configuration computed using the pruning algorithm of Felsenstein
(1981)), we define the convergence index of the site as

(1)CI = max
Z

EZ

P ({α(`)}`∈L)
,

that is the maximum over all the amino acids Z, of the expected number
of independent apparitions of Z going to an extant species with the convergent
trait, conditioned on the amino acids of the extant species.
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