
Easyml: Easily Build and Evaluate Machine

Learning Models

Paul Hendricks
Department of Psychology
The Ohio State University
Columbus, OH 43210, USA

Woo-Young Ahn
Department of Psychology
The Ohio State University
Columbus, OH 43210, USA

Abstract

The easyml (easy machine learning) package lowers the barrier to entry to machine
learning and is ideal for undergraduate/graduate students, and practitioners who want to
quickly apply machine learning algorithms to their research without having to worry about
the best practices of implementing each algorithm. The package provides standardized
recipes for regression and classification algorithms in R and Python and implements them
in a functional, modular, and extensible framework. This package currently implements
recipes for several common machine learning algorithms (e.g., penalized linear models,
random forests, and support vector machines) and provides a unified interface to each one.
Importantly, users can run and evaluate each machine learning algorithm with a single
line of coding. Each recipe is robust, implements best practices specific to each algorithm,
and generates a report with details about the model, its performance, as well as journal-
quality visualizations. The package’s functional, modular, and extensible framework also
allows researchers and more advanced users to easily implement new recipes for other
algorithms.

Keywords: machine learning, data science, supervised learning, data mining, visualization, R,
Python.

1. Introduction

Numerous machine learning libraries (or packages) are becoming available in popular pro-
gramming languages, especially R (R Core Team 2016) and Python (Rossum 1995). Both
languages are high-level, interpreted, employ functional and object-oriented paradigms, and
have a wide ecosystem of mature machine learning libraries. However, existing machine
learning libraries assume the user has a solid understanding of statistics and machine learning
principles and best practices, strong programming skills, and the knowledge of how to apply
this skillset to their problem. Oftentimes, this is not the case. Individuals without strong
technical background increasingly want to apply machine learning techniques to their research
without having to spend years studying mathematics, statistics, and/or computer science and
there is a critical need to lower the barrier to machine learning or computational approaches
in general (Ahn and Busemeyer 2016; Ahn, Haines, and Zhang 2017). The easyml targets
these individuals and hopes to lower the barrier to entry to machine learning by providing
user-friendly recipes for common machine learning algorithms.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Easyml: Easily Build and Evaluate Machine Learning Models

These recipes leverage R and Python’s programming capabilities and their existing machine
learning libraries and breaks down each analysis into steps common to all algorithms and
steps unique to each algorithm. These steps are abstracted from the user by a common
unified framework. Thus, machine learning is like baking a cake; whether one wants to bake a
chocolate cake or a vanilla cake, one still needs eggs, flour, and butter as the core ingredients.
If you mix them in certain steps and add chocolate, a chocolate cake is baked. If you mix
the core ingredients in a certain way and add vanilla, a vanilla cake is baked. Analogously,
though one may run similar steps to build and evaluate a penalized linear model (Friedman,
Hastie, and Tibshirani 2010; Simon, Friedman, Hastie, and Tibshirani 2011) and a random
forest model (Breiman 2001), one will wish to assess the coefficients of the linear model and
the variable importances of the random forest model. easyml (easy machine learning) makes
this easy by handling the best practices for each algorithm but still allows an advanced user
the flexibility to customize each recipe.

2. Project Vision

Maintenance This package is maintained by Paul Hendricks and Woo-Young Ahn.

Availability The easyml source code is available under the MIT license and hosted on GitHub
(https://github.com/CCS-Lab/easyml).

Standardized recipes The package provides standardized recipes for regression and classifica-
tion machine learning algorithms in R and Python (see Table 1). Specifically, easyml provides
recipes and unified interface to some of widely used machine learning algorithms including pe-
nalized regression models, random forests, support vector machines (Cortes and Vapnik 1995),
Group-Lasso interaction model (Lim and Hastie 2015), and (deep) neural network models.
More advanced users will find it easy to implement new recipes for other algorithms. To
implement the algorithms, we use other R and Python packages including glmnet (Friedman
et al. 2010), randomForest (Liaw and Wiener 2002), e1071 (Meyer, Dimitriadou, Hornik,
Weingessel, and Leisch 2017), glinternet (Lim and Hastie 2015), nnet (Venables and Rip-
ley 2002), darch (Drees 2013), and scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel,
Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau,
Brucher, Perrot, and Duchesnay 2011). We also plan to add more algorithms in the future.

Table 1: List of machine learning models currently implemented in easyml (as of v0.1.0).
Model name easyml command R package Python package

Penalized regression easy_glmnet glmnet glmnet
(LASSO, elastic net, ridge)
Random Forest easy_random_forest randomForest scikit-learn
Support Vector Machine easy_support_vector_machine e1071 scikit-learn
Group-Lasso INTERaction-NET easy_glinternet glinternet N/A
Neural network easy_neural_network nnet N/A
Deep neural network easy_deep_neural_network darch N/A
Average Neural Network easy_avNNet caret N/A

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://github.com/CCS-Lab/easyml
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 3

Journal-quality visualizations Users will find that easyml can immediately produces journal-
quality visualizations. These visualizations can be easily be modified, if needed, and used
directly in research papers or presentations. See Section 4 for an example.

Functional, modular, and extensible framework The package’s functional, modular, and ex-
tensible framework also allows researchers and more advanced users to implement new recipes
for other algorithms. An example of how to implement a new algorithm is demonstrated in
Section 5.

Parallelization The nature of machine learning often lends itself to highly parallelizable code.
easyml makes it possible to run all recipes leveraging as many CPUs as are available. Simply
specify the n_core parameter in the interface and easyml will parallelize the analyze over
that number of cores.

Code quality control easyml uses software engineering best practices such as Continuous Inte-
gration (CI) to check the build of the package, Unit Testing and Code Coverage to check the
quality of the code, and linting to ensure adherence to a common style. As of this writing,
all builds and tests pass on Ubuntu 14.04 and Mac OS X and the Code Coverage is above
85%. The project is also hosted on GitHub (https://github.com/CCS-Lab/easyml), and
is available to users who want to examine the source code, contribute to the code base, or
provide the authors with feedback or alert the authors to potential bugs, both via issues.

Documentation easyml provides exhaustive documentation and examples for both R and
Python. Users interested in the R package can find documentation here: http://ccs-lab.

github.io/easyml. Users interested in the Python package can find documentation here:
http://easyml.readthedocs.io.

3. Recipes

easyml uses standardized recipes for regression and classification machine learning algorithms
in R and Python. These recipes can be broken down into multiple steps and are useful for
interpreting models (e.g., estimating coefficients and variable importances) or estimating in-
sample and out-of-sample performance (e.g., predictions and measures of goodness-of-fit). For
each of these recipes, we describe our motivation for including the recipe, a breakdown of the
steps in each recipe, and the algorithms that recipe is implemented for.

Coefficients Linear models are powerful due to their simplicity, robustness, and interpretabil-
ity of variables. However, sometimes the estimated coefficients for linear models are different
after each run, even with the same random state. This can be due to the low-level code
not setting the random state at the C/Fortran level or due to the stochastic nature of the
algorithm or optimizer. This phenomenon makes it difficult to interpret a coefficient after
building the model only once. To account for this intrinsic randomness and ensure the final
coefficients returned are robust estimators, we generate the coefficients n_samples times using
k-fold cross validation, where n_samples = 1000 and k = 10 are set as the defaults, and then
calculate the mean and standard deviation of the estimated coefficients. We have applied

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://github.com/CCS-Lab/easyml
http://ccs-lab.github.io/easyml
http://ccs-lab.github.io/easyml
http://easyml.readthedocs.io
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 Easyml: Easily Build and Evaluate Machine Learning Models

and validated this protocol in previous studies (Ahn, Kishida, Gu, Lohrenz, Harvey, Alford,
Smith, Yaffe, Hibbing, Dayan et al. 2014; Ahn and Vassileva 2016; Ahn, Ramesh, Moeller,
and Vassileva 2016; Vilares, Wesley, Ahn, Bonnie, Hoffman, Jones, Morse, Yaffe, Lohrenz,
and Montague 2017). The ability to generate beta coefficients is currently implemented only
for the penalized linear model algorithm (easy_glmnet). See Algorithm 1.

Algorithm 1 Generate coefficients

1: procedure generate coefficients(X, y)
2: initialize Z . Z is an n samples by m matrix
3: for i in 1, ..., n_samples do
4: preprocess X
5: fit model to X, y
6: extract coefficients from model . coefficients are a 1 by m vector
7: insert the coefficients into row i of the matrix Z
8: end for
9: return Z

10: end procedure

Variable Importances Ensemble models are powerful due to their simplicity, ability to capture
the non-linear patterns of features from the data, and like linear models, their interpretability
of variables. As with linear models, we wish to calculate and visualize the importances of the
variables as part of our machine learning protocol. Like linear models, ensemble models often
have inherent sources of randomness. For example, the random forest algorithm bootstraps
the data randomly and randomly selects a subset of predictors to use in each decision tree.
Interpretability heuristics such as variable importance scores can often differ from one random
state to another. To ensure the resulting variable importances are robust, we can generate the
random forest algorithm n_samples times, where n_samples = 1000 is set as the default, and
then calculate the mean and standard deviation of the estimated importances. The ability
to generate variable importances is currently implemented for the random forest algorithm
(easy_random_forest), which was used in our recent paper (Haines, Southward, Hendricks,
Cohn, Cheavens, and Ahn in preparation). See Algorithm 2.

Algorithm 2 Generate variable importances

1: procedure generate variable importances(X, y)
2: initialize Z . Z is an n samples by m matrix
3: for i in 1, ..., n_samples do
4: preprocess X
5: fit model to X, y
6: extract variable importances from model

7: insert the variable importances into row i of the matrix Z
8: end for
9: return Z

10: end procedure

Predictions We often wish to visualize our predictions, whether it’s a plot of actual against

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 5

predicted values or a plot of the area under the curve (AUC) of a Receiver Operating Char-
acteristic (ROC) curve. If models sometimes produce random, albeit small, deviations in
coefficients or weights, these deviations can propagate to our predictions. To guard against
this intrinsic error, we train a model using k-fold cross validation within the training set (k =
10 set as the default) and generate predictions n_samples times for a particular train-test split
(separately on training and test sets). Then we average the predictions across the n_samples

iterations. By default, the training and test sets are 67% and 33% of the whole dataset and it
can be adjusted (e.g., train_size = 0.67). The ability to generate predictions is currently
implemented for all algorithms. See Algorithm 3 (note that nrow(Xz) indicates the number
of rows in Xz).

Algorithm 3 Generate predictions for single train-test split

1: procedure generate predictions(X, y)
2: divide X, y into Xtrain, Xtest, ytrain, ytest
3: preprocess Xtrain, Xtest

4: initialize Ztrain . Ztrain is an nrow(Xtrain) by n samples matrix
5: initialize Ztest . Ztest is an nrow(Xtest) by n samples matrix
6: for i in 1, ..., n_samples do
7: fit model to Xtrain, ytrain
8: use the model to generate predictions for Xtrain

9: insert train predictions into column i of the matrix Ztrain

10: use the model to generate predictions for Xtest

11: insert test predictions into column i of the matrix Ztest

12: end for
13: return Ztrain, Ztest

14: end procedure

Model performance Often we wish to visualize model performance representing the quality
(i.e., accuracy) of our predictions, whether it’s a plot of mean squared errors, correlation coef-
ficients, or AUCs. We can guard against intrinsic errors by replicating predictions many times
for a particular train-test split, averaging the predictions across n_iterations, generating a
model performance metric, and replicating for many (n_divisions) different train-test splits.
The reader is referred to the Algorithm 4 box for more details. The ability to generate model
performance is currently implemented for all algorithms.

4. Example

This example demonstrates how to use easyml in both R and Python. For further examples
on how to use easyml in R, please see the documentation at http://ccs-lab.github.io/

easyml. For further examples on how to use easyml in Python, please see the documenta-
tion at http://easyml.readthedocs.io. In this example, we will use easyml to replicate
findings reported in Ahn et al. (2016) where a penalized logistic regression was used to iden-
tify multivariate patterns of behavioral measures that can classify individuals with cocaine
dependence. To use easyml in R, we must first install the easyml library.

install.packages("easyml")

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

http://ccs-lab.github.io/easyml
http://ccs-lab.github.io/easyml
http://easyml.readthedocs.io
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 Easyml: Easily Build and Evaluate Machine Learning Models

Algorithm 4 Generate model performance metrics

1: procedure generate model performance(X, y)
2: initialize Wtrain . Wtrain is a 1 by n divisions vector
3: initialize Wtest . Wtest is a 1 by n divisions vector
4: for i in 1, ..., n_divisions do
5: divide X, y into Xtrain, Xtest, ytrain, ytest
6: initialize Ztrain . Ztrain is a nrow(Xtrain) by n iterations matrix
7: initialize Ztest . Ztest is a nrow(Xtest) by n iterations matrix
8: for j in 1, ..., n_iterations do
9: fit model to Xtrain, ytrain

10: use the model to generate predictions for Xtrain

11: insert the train predicitons into column j of the matrix Ztrain

12: use the model to generate predictions for Xtest

13: insert the test predicitons into column j of the matrix Ztest

14: end for
15: calculate the mean of the matrix Ztrain across the row axis

16: generate a metric from ytrain and the averaged predictions

17: insert the metric into slot i of the vector Wtrain

18: calculate the mean of the matrix Ztest across the row axis

19: generate a metric from ytest and the averaged predictions

20: insert the metric into slot i of the vector Wtest

21: end for
22: return Wtrain, Wtest

23: end procedure

To use easyml in Python, we must first install the easymlpy library using pip. We can
accomplish this by running the following in a Bash shell:

pip install easymlpy

Next, let’s load the package and the data set in R by executing the following code in an R
interpretter.

library(easyml)

data("cocaine_dependence", package = "easyml")

And in Python, we can accomplish loading the package and the data set by executing the
following code in a Python interpretter:

from easymlpy.glmnet import easy_glmnet

from easymlpy.datasets import load_cocaine_dependence

from easymlpy.preprocess import preprocess_scale

cocaine_dependence = load_cocaine_dependence()

Finally, we pass in the following input arguments to run the analysis:

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 7

• .data (or just data within Python), the data set to be analyzed (n×m matrix). n=the
number of samples. m=the number of features. At this time, it should contain no
missing data.

• dependent_variable, the name of the dependent variable, which is an n by 1 vector.
In the cocaine data, diagnosis (0=healthy control, 1=cocaine user) is the dependent
variable.

• family, the name of the family of regression with choices are “gaussian” and “binomial”.
Since we are modeling a binary dependent variable, we will select “binomial”.

• preprocess, the preprocessing function to use on the data. We choose the preprocess_scale
function so as to scale (z-score) any continuous variable across samples (full data set or
train/test data sets) before training a model.

• exclude_variables, which variables, if any, should be excluded from the analysis.
If there is more than one variable, use the function c() (e.g., exclude_variables =

c("subject", "edu_yrs")).

• categorical_variables, which variables are categorical, and thus need to be specially
handled during preprocessing. Note that categorical variables will not be normalized.
If there is more than one variable, use the function c().

• random_state, the seed to use for the random state.

• model_args, the list of arguments specific to penalized linear models. See ?glmnet::glmnet.

In R:

model_args = list(alpha = 1, nlambda = 200)

results = easy_glmnet(cocaine_dependence,

dependent_variable = "diagnosis",

family = "binomial",

preprocess = preprocess_scale,

exclude_variables = c("subject"),

categorical_variables = c("male"),

random_state = 12345,

model_args = model_args)

And in Python:

model_args = {'alpha': 1, 'n_lambda': 200}

results = easy_glmnet(cocaine_dependence,

dependent_variable="diagnosis",

family="binomial",

preprocess=preprocess_scale,

exclude_variables=["subject"],

categorical_variables=["male"],

random_state=12345,

model_args=model_args)

That’s it! Now let’s examine the results. Each algorithm returns a list with objects for various
functions, data structures, and plot objects that are instrumental to the analysis. Calling the

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

8 Easyml: Easily Build and Evaluate Machine Learning Models

names function in R on the variable results will show all the slots available to us.

print(names(results))

[1] "call" "data"

[3] "dependent_variable" "algorithm"

[5] "class" "family"

[7] "resample" "preprocess"

[9] "measure" "exclude_variables"

[11] "train_size" "survival_rate_cutoff"

[13] "n_samples" "n_divisions"

[15] "n_iterations" "random_state"

[17] "progress_bar" "n_core"

[19] "generate_coefficients" "generate_variable_importances"

[21] "generate_predictions" "generate_metrics"

[23] "model_args" "column_names"

[25] "categorical_variables" "y"

[27] "X" "coefficients"

[29] "coefficients_processed" "plot_coefficients"

[31] "X_train" "X_test"

[33] "y_train" "y_test"

[35] "predictions_train" "predictions_test"

[37] "plot_predictions_single_train_test_split_train" "plot_predictions"

[39] "plot_predictions_single_train_test_split_test" "model_performance_test"

[41] "plot_roc_single_train_test_split_test" "model_performance_train"

[43] "plot_roc_single_train_test_split_train" "plot_model_performance"

[45] "plot_model_performance_train" "plot_model_performance_test"

In R, ggplot2 objects can be accessed via the $ operator. For example, to examine the ROC
Curve for the train data set, we can call the following (see Figure 1A):

results$plot_roc_single_train_test_split_train

In Python, functions that produce matplotlib objects can be accessed via the . operator.
To mirror the call in Python, we can call the following (see Figure 1B):

results.plot_roc_single_train_test_split_train()

And we can examine the out-of-sample predictions for the test data set (see Figure 2A).

results$plot_roc_single_train_test_split_test

And in Python (see Figure 2B):

results.plot_roc_single_train_test_split_test()

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 9

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
1 − Specificity

Se
ns

itiv
ity

Train Dataset
ROC Curve (AUC Score = 0.99)

(A) (B)

Figure 1: ROC Curve for the train dataset in (A) R and (B) Python.

(A) (B)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
1 − Specificity

Se
ns

itiv
ity

Test Dataset
ROC Curve (AUC Score = 0.89)

Figure 2: ROC Curve for the test dataset in (A) R and (B) Python.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

10 Easyml: Easily Build and Evaluate Machine Learning Models

(A) (B)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Education

IMT Discriminability

IGT Score

Sex

IMT FN

IMT Response bias

SSRT

ln(k), Kirby

PRL perseverance

BIS Attn

IMT FP

ln(k)

Age

BIS Nonpl

BIS Motor

−0.5 0.0 0.5
Coefficient estimates

Pr
ed

ic
to

rs

Predicting Cocaine Group Membership

Figure 3: Multivariate patterns of impulsivity measures predicting cocaine dependence in (A)
R and (B) Python. Error bars indicate 95% confidence intervals. See Ahn et al. (2016) for
more details.

We can also examine the plot of the estimated beta coefficients. See Figure 3 where the coeffi-
cient means are represented by the dots and the error bars represent the standard deviations.
We could reproduce the almost exact plot that appears in Ahn et al. (2016). These are true
ggplot2 objects in R and can be modified however needed:

library(ggplot2)

labels = c("Education", "IMT Discriminability", "IGT Score",

"Sex", "IMT FN", "IMT Response bias",

"SSRT", "ln(k), Kirby", "PRL perseverance",

"BIS Attn", "IMT FP", "ln(k)",

"Age", "BIS Nonpl", "BIS Motor")

results$plot_coefficients +

scale_x_discrete("Predictors", labels = labels) +

ggtitle("Predicting Cocaine Group Membership") +

theme_gray() +

theme(legend.position = "none")

And in Python (see Figure 3B):

results.plot_coefficients()

As seen in Figure 4A, by calling results$plot_model_performance_train in R, we can
also examine the in-sample model performance generated for the train data set, which is the
distribution of the AUCs of the ROC curves over 1,000 repetitions:

results$plot_model_performance_train

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 11

(A) (B)

0

100

200

300

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUC Score

Fr
eq

ue
nc

y

Train Dataset
Distribution of AUC Scores (Mean AUC Score = 0.98)

Figure 4: Measures of model performance for the train dataset in (A) R and (B) Python.

(A) (B)

0

25

50

75

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUC Score

Fr
eq

ue
nc

y

Test Dataset
Distribution of AUC Scores (Mean AUC Score = 0.89)

Figure 5: Measures of model performance for the test dataset in (A) R and (B) Python.

And in Python (see Figure 4B):

results.plot_model_performance_train()

as well as the out-of-sample model performance generated for the test data set by calling
results$plot_model_performance_test in R (see Figure 5A).

results$plot_model_performance_test

And in Python (see Figure 5B):

results.plot_model_performance_test()

Users can run other algorithms as easily by following the same structured interface, with very
few modifications to the parameters. For example, to run a random forest model, one would
run in R:

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

12 Easyml: Easily Build and Evaluate Machine Learning Models

results = easy_random_forest(cocaine_dependence, "diagnosis",

family = "binomial",

exclude_variables = "subject",

categorical_variables = "male")

Or for a support vector machine model, one would run:

results = easy_support_vector_machine(cocaine_dependence,

"diagnosis",

family = "binomial",

exclude_variables = "subject",

categorical_variables = "male")

5. Implementing a New Algorithm

While penalized regression models, random forests, and support vector machines are among
some of the most popular algorithms, an advanced user may wish to add an algorithm imple-
mented elsewhere to easyml or perhaps even write their own algorithm. easyml makes this
easy by allowing users to write wrapper functions to provide a common interface to those
algorithms and pass wrapper functions into easyml functions. In Appendix A, we provide an
example where we wrap an algorithm that uses averaging over several neural networks. The
reader is referred to the caret (Kuhn 2016) documentation for details on the caret::avNNet

function.

6. Comparison to Similar Toolkits and Frameworks

R and Python both have a wide ecosystem of machine learning toolkits. caret and mlr (Bis-
chl, Lang, Kotthoff, Schiffner, Richter, Studerus, Casalicchio, and Jones 2016) are perhaps
the most similar packages to easyml in R while scikit-learn (Pedregosa et al. 2011) is
perhaps the most simiar package to easyml in Python. These packages contain algorithms
for regression and classification tasks, tools for preprocessing and model interepretation, and
all focus on lowering the barrier to entry for machine learning for non-experts. While these
packages provide users the flexibility and tools to develop modeling techniques, easyml ex-
tends the process by allowing users to use standardized recipes for common machine learning
techniques and produce journal-quality visualizations, all in a single line of coding.

7. Conclusions and Outlook

In conclusion, the easyml package fits a specialized niche, and further lowers the barrier to
entry to machine learning. Practitioners have immediate access to powerful machine learning
algorithms in a single-line of coding in R or Python, without worrying about their implemen-
tation or best practices for each algorithm. Researchers with strong programming skills can
leverage the easyml library to provide customized extensions quickly. We also warn users
that the use of easyml without sound understanding of machine learning can be potentially

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 13

dangerous: we recommend users understand the basic concepts of machine learning and each
algorithm they use. Otherwise they may incorrectly use algorithms implemented in easyml

or interpret the results in a misleading way.

Next steps for easyml are likely to include more algorithms and additional recipes and con-
venience functions to further lower the barrier to entry for machine learning. We also plan
make it easy to use easyml on neuroimaging data. Specifically, we will allow users to ap-
ply a machine learning algorithm to functional magnetic resonance imaging (fMRI) data and
produce journal-quality brain maps in a single line of coding.

8. Acknowledgement

We thank Nathaniel Haines for his feedback on various codes and his help on the random
forest algorithm.

9. Author contributions

W.-Y.A. conceived the project. P.H. and W.-Y.A. programmed codes and designed/built the
package.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

14 Easyml: Easily Build and Evaluate Machine Learning Models

References

Ahn WY, Busemeyer JR (2016). “Challenges and promises for translating computational
tools into clinical practice.” Current Opinion in Behavioral Sciences, 11, 1–7.

Ahn WY, Haines N, Zhang L (2017). “Revealing neuro-computational mechanisms of re-
inforcement learning and decision-making with the hBayesDM package.” Computational
Psychiatry, 1(1).

Ahn WY, Kishida KT, Gu X, Lohrenz T, Harvey A, Alford JR, Smith KB, Yaffe G, Hib-
bing JR, Dayan P, et al. (2014). “Nonpolitical images evoke neural predictors of political
ideology.” Current Biology, 24(22), 2693–2699.

Ahn WY, Ramesh D, Moeller FG, Vassileva J (2016). “Utility of Machine-Learning Ap-
proaches to Identify Behavioral Markers for Substance Use Disorders: Impulsivity Dimen-
sions as Predictors of Current Cocaine Dependence.” Frontiers in Psychiatry, 7. doi:

10.3389/fpsyt.2016.00034. URL https://doi.org/10.3389%2Ffpsyt.2016.00034.

Ahn WY, Vassileva J (2016). “Machine-learning identifies substance-specific behavioral mark-
ers for opiate and stimulant dependence.” Drug and alcohol dependence, 161, 247–257.

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM
(2016). “mlr: Machine Learning in R.” Journal of Machine Learning Research, 17(170),
1–5. URL http://jmlr.org/papers/v17/15-066.html.

Breiman L (2001). “Random Forests.” Mach. Learn., 45(1), 5–32. ISSN 0885-6125. doi:

10.1023/A:1010933404324. URL http://dx.doi.org/10.1023/A:1010933404324.

Cortes C, Vapnik V (1995). “Support-Vector Networks.” Mach. Learn., 20(3), 273–297.
ISSN 0885-6125. doi:10.1023/A:1022627411411. URL http://dx.doi.org/10.1023/A:

1022627411411.

Drees M (2013). Implementierung und Analyse von tiefen Architekturen in R. Master’s thesis,
Fachhochschule Dortmund.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. URL http:

//www.jstatsoft.org/v33/i01/.

Haines N, Southward MW, Hendricks P, Cohn JF, Cheavens JS, Ahn WY (in preparation).
“Reading positive and negative emotion intensities from facial expressions using machine
learning.”

Kuhn M (2016). caret: Classification and Regression Training. R package version 6.0-73,
URL https://CRAN.R-project.org/package=caret.

Liaw A, Wiener M (2002). “Classification and regression by randomForest.” R news, 2(3),
18–22.

Lim M, Hastie T (2015). “Learning interactions via hierarchical group-lasso regularization.”
Journal of Computational and Graphical Statistics, 24(3), 627–654.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

http://dx.doi.org/10.3389/fpsyt.2016.00034
http://dx.doi.org/10.3389/fpsyt.2016.00034
https://doi.org/10.3389%2Ffpsyt.2016.00034
http://jmlr.org/papers/v17/15-066.html
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://CRAN.R-project.org/package=caret
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 15

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2017). e1071: Misc Functions
of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.
R package version 1.6-8, URL https://CRAN.R-project.org/package=e1071.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “Scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rossum G (1995). “Python Reference Manual.” Technical report, Amsterdam, The Nether-
lands, The Netherlands.

Simon N, Friedman J, Hastie T, Tibshirani R (2011). “Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent.” Journal of Statistical Software, 39(5),
1–13. URL http://www.jstatsoft.org/v39/i05/.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer,
New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Vilares I, Wesley MJ, Ahn WY, Bonnie RJ, Hoffman M, Jones OD, Morse SJ, Yaffe G,
Lohrenz T, Montague PR (2017). “Predicting the knowledge–recklessness distinction in the
human brain.” Proceedings of the National Academy of Sciences, 114(12), 3222–3227.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://CRAN.R-project.org/package=e1071
https://www.R-project.org/
http://www.jstatsoft.org/v39/i05/
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

16 Easyml: Easily Build and Evaluate Machine Learning Models

Appendix A.

Below we demonstrate an ordinary way of fitting the avNNET model of the caret package
on the cocaine dataset in R. We see that while we can build this model relatively easily,
it takes some extra work to build such as removing the first and second columns from the
cocaine_dependence dataset. Furthermore, to evaluate this model multiple times with cus-
tomized train-test splits, preprocessing data, visualize outputs, users need to program many
lines of code additionally.

library(caret)

data("cocaine_dependence", package = "easyml")

model = avNNet(cocaine_dependence[, c(-1, -2)],

factor(cocaine_dependence$diagnosis),

size = 5, linout = TRUE, trace = FALSE)

predictions = predict(model, type = "class")

Here we demonstrate the easyml way of using this model (see below how we wrapped the
algorithm into easyml). We see that with very few lines of code, we can enjoy all the fea-
tures and benefits of easyml. For example, users can examine model performance by calling
b$plot_predictions_train_mean and b$plot_metrics_test_mean, etc.

model_args = list(size = 5, linout = TRUE, trace = FALSE)

b = easy_avNNet(cocaine_dependence, "diagnosis",

family = "binomial",

preprocess = preprocess_scale,

exclude_variables = c("subject"),

categorical_variables = c("male"),

n_samples = 10, n_divisions = 10,

n_iterations = 10, random_state = 12345,

n_core = 1, model_args = model_args)

g = easy_avNNet(prostate, "lpsa",

preprocess = preprocess_scale,

n_samples = 10, n_divisions = 10,

n_iterations = 10,

random_state = 12345, n_core = 1,

model_args = model_args)

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paul Hendricks, Woo-Young Ahn 17

Here we show how we wrapped the avNNet algorithm into easyml.

library(easyml)

fit_model.easy_avNNet = function(object) {

model_args = object[["model_args"]]

model_args[["x"]] = as.matrix(object[["X"]])

model_args[["y"]] = object[["y"]]

model = do.call(caret::avNNet, model_args)

object[["model_args"]] = model_args

object[["model"]] = model

object

}

predict_model.easy_avNNet = function(object, newx = NULL) {

newx = as.matrix(newx)

model = object[["model"]]

family = object[["family"]]

if (family == "gaussian") {

type = "raw"

} else if (family == "binomial") {

type = "class"

}

preds = stats::predict(model, newdata = newx, type = type)

preds

}

easy_avNNet = function(.data, dependent_variable,

family = "gaussian", resample = NULL,

preprocess = preprocess_scale,

measure = NULL,

exclude_variables = NULL,

categorical_variables = NULL,

train_size = 0.667, foldid = NULL,

survival_rate_cutoff = 0.05,

n_samples = 1000, n_divisions = 1000,

n_iterations = 10,

random_state = NULL,

progress_bar = TRUE, n_core = 1,

coefficients = FALSE,

variable_importances = FALSE,

predictions = TRUE, metrics = TRUE,

model_args = list()) {

easy_analysis(.data, dependent_variable,

algorithm = "avNNet",

family = family, resample = resample,

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

18 Easyml: Easily Build and Evaluate Machine Learning Models

preprocess = preprocess, measure = measure,

exclude_variables = exclude_variables,

categorical_variables = categorical_variables,

train_size = train_size, foldid = foldid,

survival_rate_cutoff = survival_rate_cutoff,

n_samples = n_samples,

n_divisions = n_divisions,

n_iterations = n_iterations,

random_state = random_state,

progress_bar = progress_bar, n_core = n_core,

coefficients = coefficients,

variable_importances = variable_importances,

predictions = predictions, metrics = metrics,

model_args = model_args)

}

Affiliation:

Woo-Young Ahn
Department of Psychology
The Ohio State University
Columbus, OH 43210, USA
E-mail: ahn.280@osu.edu
URL: http://ccs-lab.github.io

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/137240doi: bioRxiv preprint

mailto:ahn.280@osu.edu
http://ccs-lab.github.io
https://doi.org/10.1101/137240
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Project Vision
	Recipes
	Example
	Implementing a New Algorithm
	Comparison to Similar Toolkits and Frameworks
	Conclusions and Outlook
	Acknowledgement
	Author contributions

