
Rearrangement Scenarios Guided by Chromatin
Structure

Sylvain Pulicani2,4, Pijus Simonaitis1, and Krister M. Swenson2,3

1 ENS Lyon, 46 alle d’Italie, 69364 Lyon, France,
pijus.simonaitis@ens-lyon.fr,

2 LIRMM, CNRS – Université Montpellier
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Abstract. Genome architecture can be drastically modified through a
succession of large-scale rearrangements. In the quest to infer accurate
ancestral rearrangement scenarios, it is often the case that parsimony
principal alone does not impose enough constraints. Thus, the current
challenge is to consider more biological information in the inference pro-
cess. In previous work, we introduced a model for such a task, based
on a partition into equivalence classes of the adjacencies between genes.
Such a partition is amenable to the representation of spacial constraints
as given by Hi-C data. A major open question is the validity of such a
model. In this note, we show that the quality of a clustering of the adja-
cencies based on Hi-C data is directly correlated to the quality of a rear-
rangement scenario that we compute between Drosophila melanogaster
and D. yakuba.

Keywords: genome rearrangement, double cut and join, Hi-C, chromatin con-
formation

1 Introduction

Genome architecture is modified on a large scale by rearrangements. Even fairly
distantly related species, such as human and mouse, can share almost all of the
same genes yet have drastically different gene orders [4]. These differences are a
result of a succession of rearrangements from an ancestral architecture, called a
rearrangement scenario. In the quest to infer accurate rearrangement scenarios,
it is often the case that the parsimony principal alone does not impose enough
constraints [3].

When comparing large-scale genome architecture, syntenic blocks of similar
sequences of genes between a group of species are first inferred using sequence
similarity [5]. The adjacencies between these blocks are the potential locations
for breakpoints that rearrangements act on. We have developed methods for
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choosing more likely rearrangements based on a partition of these adjacencies
into disjoint sets (or colorings); pairs of adjacencies in the same set are more
likely to take part as breakpoints in a rearrangement than pairs between different
sets. Thus we weight rearrangements by giving the inter-set rearrangements a
weight of 1, and the intra-set rearrangements a weight of 0. The weight of a
scenario is the sum of the weights of the constituent moves. With such a model
in hand, we posed two optimization problems in [9].

Problem 1 (MLS). Minimum Local Scenario

INPUT: Sets of pairs A and B with a coloring of A.

OUTPUT: A scenario of rearrangements transforming A into B.

MEASURE: The weight of the scenario.

The problem Minimum Local Parsimonious Scenario introduces the con-
straint that the output is also a parsimonious scenario, i.e. a scenario of minimum
length.

Problem 2 (MLPS). Minimum Local Parsimonious Scenario

INPUT: Sets of pairs A and B with a coloring of A.

OUTPUT: A parsimonious scenario of rearrangements transforming A into B.

MEASURE: The weight of the scenario.

We will use the term MLS and MLPS to denote the weight of the scenario for
an optimal solution of the problem.

This note is devoted to showing the biological applicability of these meth-
ods. We do this by showing that meaningful partitions of the adjacencies exists.
The hypothesis behind our work is that breakpoints that are close in 3D space
are more likely to take part in a rearrangement than those which are distant.
Evidence supporting this hypothesis has been reported for inter-species rear-
rangements [10], as well as for somatic rearrangements [12,2].

We test our methods by computing clusters of adjacencies based on Hi-C
data for the Drosophila species group [8] (see Section 2.1 for a description of
Hi-C). The general experimental setup is the following. Genomes of Drosophila
melanogaster and Drosophila yakuba are first partitioned into 64 syntenic blocks.
Then the Hi-C data for melanogaster is used as a similarity measure on the
adjacencies. Clustering around medoids [7] is used to construct colorings based
on the similarity function. Then we compute the weights of the MLS and MLPS
for the constructed colorings and investigate the relationship between the weights
of the clusters and the weights of the scenarios.

We observe a strong correlation between the quality of the clusters and the
MLS (i.e. the number of moves that are distant according to Hi-C); the better
the cluster corresponds to the Hi-C data, the fewer distant moves must be done
in a rearrangement scenario. We also study other features of the data that have
implications on the computability of the MLS and more general weight functions.
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2 Methods

2.1 Hi-C Data

The Hi-C experiment provides a rough estimate of how many times a pair of
genomic loci are in close proximity [6]. Roughly speaking, formaldehyde is intro-
duces to a population of cells so that parts of the genomes that are in spacial
proximity are linked together. Each side of the link contains segments of DNA
that are then sequenced. The sequences are mapped to a reference genome so
that the pair of spacially proximal loci are determined. Thus, each cell produces
a set of pairs of loci. With a large population of cells, we have a distribution of
pairs that are finally corrected for experimental biases.

Due to the nature of contact probability, which decreases dramatically with
respect to chromosomal distance (it roughly follows a power law), we applied the
normalization done by Lieberman-Aiden et al. (see the appendix of [6]) to the
matrices obtained from [8]. This allows the long rearrangements (in the genetic
coordinate sense) to have the same importance as the short ones. Specifically, a
normalized intrachromosomal heatmap entry INTRAij gets the value

INTRAij = Hij/averageAtDist(|i− j|),

where averageAtDist(d) is the expected value of an entry d off of the diagonal of
any intrachromosomal matrix. A normalized interchromosomal heatmap entry
INTERij gets the value

INTERij = Hij/
( interactioni ∗ interactionj

interactionall

)
,

where interactionx is the sum of all interaction for position x, and interactionall

is the total sum of all entries in all matrices.

2.2 Clustering

Clustering around medoids [7] was chosen for its simplicity and speed. We use
the Hi-C data as a similarity measure for the clustering; the more Hi-C contacts
there are between two adjacencies, the more likely we are to have the two in the
same cluster. A medoid of a cluster is an element that maximizes the sum of the
similarities to the rest of a cluster. This sum is the cluster’s weight, and when
summed over all the clusters it provides us with a weight function for a clustering.
An important property of this clustering method is that it provides many local
optima that we can compare to MLS. We use three clustering algorithms: k-
medoids, random and mixed that generate k clusters for a chosen k which in
our case range from 1 to 70.

The k-medoids algorithm starts with randomly initialised centroids. The
rest of the elements are then associated to the centroids that are most similar to
them. The medoids of the obtained clusters are then computed and they become
the new centroids around which the elements will be clustered. We continue this
procedure until the weight of a clustering stops increasing.
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The random algorithm partitions the elements at random into k non-empty
clusters. On our data we observe that the weights of the random clusters are
always smaller than those provided by the clustering around medoids and in
order to bridge the gap between the obtained weights we mix k-medoids and
random algorithms to obtain a mixed algorithm that initialises the centroids
randomly and then chooses at random how many of the resulting elements will
get assigned to the clusters based on the similarity function, and how many of
them will be assigned at random (without performing further iterations).

2.3 Creation of Syntenic Blocks

We computed syntenic blocks in two steps. First, we took the orthologs for D.
melanogaster and D. yakuba. This was done using the OMA groups database [1].
We removed each gene that overlaps or intersects another, along with its ortholog
in the other species. Then, the blocks were constructed using the Orthocluster
tool [11]. The basic idea is to aggregate orthologs to make the biggest possible
blocks without breaking certain constraints that define the synteny; the con-
straints are the maximal and minimal number of genes per blocks, the absolute
gene order between the genomes, the genes strandedness, the quantity of non-
ortholog genes and the possibility to make nested blocks. We forbid the creation
of nested blocks as we wanted a 1-1 block mapping. All other parameters were
default. Orthocluster outputs clusters of genes. In order to get back syntenic
blocks, we take the smallest gene position in a cluster as the start position of
the block from this cluster, and the biggest position as the end for that block.
We then check back the blocks for the presence of intersection and overlap. We
did not find any.

3 Results

3.1 MLS and the weight of a coloring

Figure 1 presents 200 independent clusterings of the adjacencies of Drosophila
melanogaster into k = 15 clusters. The blue half of them is generated using
random, the rest using the k-medoids algorithm. There is a clear separation on
both axes between these two sets of clusterings. The MLS and cluster weight is
always significantly better on a k-medoids clustering than a random clustering.
Figure 7 to Figure 8 show such plots for other values of k.
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Fig. 1. For k = 15 on melanogaster Hi-C data, random clusters are in blue while
k-medoids clusters are in red.

Fig. 2. For k = 15 on melanogaster, mixed clusters with varying amounts of randomly
assigned adjacencies. As more randomization is introduced to the clustering the color
of the points moves from red to yellow to green to blue. For this data the Pearson’s
correlation r = -0.87, and the p-value = 1.0-31.

The mixed algorithm was introduced in order to bridge the gap between
the weights of the colorings provided by random and k-medoids. We note a
significant inverse correlation between the weights of the colorings and MLS.
Figure 2 depicts 100 independent clusterings for the adjacencies of Drosophila
melanogaster obtained using the mixed algorithm. In this plot a color of a point
indicates how many of the adjacencies in that particular clustering got assigned
to the clusters at random during a run of mixed. Blue shows that a clustering is
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mostly random and red, on the other hand, means that most of the adjacencies
got assigned to the centroids based on the similarity function. In this example
Pearson’s correlation r is found to be -0.87 with a 2-tailed p-value of 1.0-31.
Figure 9 to Figure 12 present experiments for different values of k showing that
the correlation first increases with k before slowly decreasing.

3.2 Computational complexity

In general, finding MLS is computationally costly, as we have proven it to be
NP-hard. In other words, we cannot expect to be able to compute a scenario that
minimizes the number of non-local moves on any pair of genomes. We established
an exact algorithm, however, that runs efficiently if a certain parameter called
the number of simple cycles is “small enough”. We expect “small enough” to
roughly be in the hundreds of thousands. Between melanogaster and yakuba, we
find that the number of simple cycles is always very small using the clusters
computed by the k-medoids algorithm. In particular, we ran 100 instances of
k-medoids using Hi-C data from melanogaster for every k ranging from 2 to 70,
and computed the number of simple cycles for those clusterings. The values for
all 6900 runs are presented in Figure 3. The average number of simple cycles is
16.9 for k = 42, the maximum that we observed. The average number of simple
cycles over all k is 8.5. We conjecture that this value would also be low enough
for human Hi-C data on scenarios between human and mouse.

Fig. 3. k-medoids clusters for melanogaster, average = 8.5, standard deviation = 8.4,
highest average of 16.9 for k = 42

Figure 17 presents a similar histogram for the runs of random for melanogaster.
As expected, random clusterings produce larger numbers of simple cycles.
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3.3 MLPS − MLS and the weight of a coloring

We study the value of the difference MLPS −MLS due to its potential role
in computing a more general weight function. When this difference is low, the
number of non-parsimonious rearrangements is few, and a more general weight
function on non-local moves is easier to compute and approximate.

A significant correlation between the difference MLPS−MLS and the weights
of the colorings is also found, as depicted in Figure 4 and Figure 5 for k = 10,
and in Figures 13 to 16 for other values of k.

Fig. 4. k = 10, random and k-medoids clusters for melanogaster

Fig. 5. k = 10, mixed clusters for melanogaster, r = -0.69, p-value = 2.0-15

Further, for the clusterings provided by k-medoids this value of MLPS −
MLS is low in general, as displayed in Figure 6. As for Figure 3 we did 100
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runs of k-medoids for every k, and found the average for MLPS−MLS to be
highest at k = 24 with a value 0.29. The average over all k was 0.12.

Fig. 6. k-medoids clusters for melanogaster, average = 0.12, standard deviation =
0.34, highest average of 0.29 for k = 24

A similar histogram for the runs of random for melanogaster can be found
in Figure 18

4 Conclusions and Future Work

We have presented a strong correlation between the quality of a clustering of
genomic adjacencies, and the number of DCJ rearrangements that must be done
between these clusters. This shows that partitions on genome adjacencies can be
constructed using Hi-C data which inform rearrangement scenarios through the
use of the Minimum Local Scenario and Minimum Local Parsimonious
Scenario problems.

For now, we have used a simple weight function and a simple k-medoids
clustering [7]. In the future better clusterings can be computed to suit our needs
for high within-cluster similarity and a dissimilarity between the clusters. Other
clustering techniques, such as hierarchical clustering, might also be of interest.

From a practical perspective, results showing that the difference MLPS −
MLS is always low give hope that a more general weight function could be

developed.
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Fig. 7. k = 5, random and k-medoids clusters for melanogaster

Fig. 8. k = 10, random and k-medoids clusters for melanogaster
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Fig. 9. k = 5, mixed clusters for melanogaster, r = -0.80, p-value = 1.3-23

Fig. 10. k = 20, mixed clusters for melanogaster, r = -0.85, p-value = 1.0-29
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Fig. 11. k = 35, mixed clusters for melanogaster, r = -0.77, p-value = 3.4-21

Fig. 12. k = 50, mixed clusters for melanogaster, r = -0.69, p-value = 5.7-16
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Fig. 13. k = 5, mixed clusters for melanogaster, r = -0.69, p-value = 1.8-15

Fig. 14. k = 20, mixed clusters for melanogaster, r = -0.79, p-value = 3.1-23
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Fig. 15. k = 35, mixed clusters for melanogaster, r = -0.54, p-value = 5.0-09

Fig. 16. k = 50, mixed clusters for melanogaster, r = -0.21, p-value = 0.04
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For every k ranging from 2 to 70 we ran an instance of random and computed
the number of the simple cycles, as well as the difference MLPS −MLS. The
computed histograms are presented in Figures 17 and 18.

Fig. 17. random clusters for melanogaster. The average number of simple cycles is
9164, standard deviation is 18,227. Four values higher than 50,000 were detected with
a maximum of 86319.

Fig. 18. random clusters for melanogaster, average = 2.19, standard deviation = 2.2,
and the highest value is 7.
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