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Abstract 

Dynamic control of cell polarity is of critical importance for many aspects of cellular 

development and motility. In Myxococcus xanthus a three-protein module MglA, MglB and 

RomR, forms a polarity axis that can be rapidly inverted by the Frz chemosensory system to 

change the direction of movement. However, how Frz signalling provokes the polarity switch 

has remained unknown. Here, we show that Frz exerts spatial regulations at both cell poles. At 

the lagging cell pole, RomR and FrzX, a newly identified Frz regulator, form a two-component 

checkpoint that triggers the switch when MglA and FrzX-P concentrations are sufficiently high. 

At the leading cell pole, the FrzZ protein overcomes the slow unbinding of RomR to provoke 

fast reversals when Frz signalling is high. Mathematical modelling reveals that this architecture 

creates a spatiotemporal oscillator with highly tunable properties allowing a wide range of 

motility responses to internal and external signals.  
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Introduction 

Periodic dynamics are pervasive in biology with examples ranging from circadian rhythms to 

brain activity and from the cell cycle to multicellular development (Goldbeter et al., 2012). Study 

of rhythmic processes in microbes has often been particularly insightful due to the simpler nature 

of the system dynamics. Classic examples include the Escherichia coli Min system regulating 

cell division positioning and the circadian Kai oscillator in cyanobacteria (Cohen and Golden, 

2015; Howard and Kruse, 2005).  
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Rhythmic processes can be particularly important in microbes for the regulation of cell motility. 

In the bacterium Myxococcus xanthus, back and forth movements (reversals) are not only 

important for the motile dynamics of isolated cells but are also critical for the regulation of 

multicellular behaviours, fruiting body formation and rippling during the invasion and 

consumption of prey cell colonies (Guzzo et al., 2015). The function of reversals is particularly 

evident during rippling, the back-and-forth accordion-like movements of large cell groups 

(waves), where each cell of a wave reverses upon collision with the cells of an opposite 

incoming wave (Sliusarenko et al., 2006). This large-scale order has been proposed to emerge 

from the synchronisation of an intracellular compass (called Frz) by cell-cell contacts (Igoshin et 

al., 2004; Sliusarenko et al., 2006). In this study, we use an interdisciplinary approach combining 

genetics, live imaging and mathematical modelling, to elucidate how Frz controls dynamic 

polarity in individual cells. Importantly, this integrated strategy proved essential to properly 

dissect how the individual molecular components fit together to generate coherent oscillatory 

dynamics.  

 

Myxococcus cells employ two motility systems depending on the context, both of which are 

assembled at the leading cell pole. The S-motility complex functions within large cell groups and 

consists of a Type-IV pilus that deploys to pull the cell forward (Figure 1A, (Chang et al., 

2016)), while the A-motility complex traffics toward the lagging cell pole, propelling the cells as 

it becomes adhered at so-called bacterial focal adhesions (Figure 1A, (Faure et al., 2016)). Thus 

at the molecular level, cell reversals are provoked by the rapid activation of the motility 

complexes at the opposite cell pole (Figure 1A). The genetic control of cell reversals involves a 
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chimeric circuit composed of bacterial Che-like proteins and a eukaryotic Ras-like regulation 

system (Figure 1A). Spatial activation of A- and S-motility depends on a single regulator, MglA, 

a G-protein of the Ras superfamily, which binds to the leading cell pole in its active GTP-bound 

form and recruits key proteins of each motility system (Figure 1A, (Leonardy et al., 2010; 

Mauriello et al., 2010; Treuner-Lange et al., 2015; Zhang et al., 2010)). The activity of MglA is 

regulated by MglB, a GTPase Activating Protein (GAP) that binds to MglA in a 2:1 

stoichiometry to activate the transition from polar-localised MglA-GTP to cytoplasmic MglA-

GDP (Miertzschke et al., 2011). Since MglB localises to the lagging cell pole, its GAP activity is 

spatially regulated, blocking access of MglA to the lagging pole. This MglAB polarity axis can 

be inverted on a timescale of 30-60 seconds, leading to cell reversals (Leonardy et al., 2010; 

Zhang et al., 2010). 

 

The mechanism by which polarity is switched is, however, still not understood despite intense 

investigation. Upstream, the switch is controlled by the Frz chemosensory-like system, which 

forms signalling arrays at discrete positions along the bacterial nucleoid (Kaimer and Zusman, 

2016), and connects to the CheA-type kinase FrzE. Following activation (by as yet unknown 

physiological signals, possibly cell-cell contacts), FrzE dimers have been proposed to 

phosphorylate several downstream Response Regulator (RR) domain proteins: the cognate FrzE 

RR domain FrzERR, the tandem RR protein FrzZ and the RR domain of RomR (RomRRR) (Figure 

1A, (Guzzo et al., 2015; Inclan et al., 2007, 2008, Kaimer and Zusman, 2013, 2016)). The 

respective contribution of each RR domain has been investigated by genetic analysis, suggesting 

that the central output of the pathway is RomRRR (Guzzo et al., 2015; Leonardy et al., 2007). 

FrzERR and FrzZ act as accessory domains that impact the signal flow negatively and positively, 

respectively (Figure 1A). Specifically, FrzERR acts as a phosphate sink preventing noisy 
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activation of the system at low stimulation levels (Guzzo et al., 2015; Kaimer and Zusman, 

2016). On the contrary, the non-essential FrzZ protein amplifies the system efficiency by an as-

yet undetermined mechanism (Figure 1A, (Guzzo et al., 2015)). However, contrary to FrzERR 

and FrzZ (Inclan et al., 2007, 2008), it has not been shown experimentally that RomRRR is a 

direct substrate of the FrzE kinase. In motile cells, RomR interacts with MglA-GTP and is 

essential for MglA’s polar localisation (Keilberg et al., 2012; Zhang et al., 2012). However, 

RomR also interacts with MglB at the lagging cell pole (Keilberg et al., 2012; Zhang et al., 

2012). While the exact function of the RomR localisation pattern is not understood, RomR is 

known to be essential for cell reversals (Guzzo et al., 2015). Therefore, direct phosphorylation of 

RomR has been proposed to connect Frz signalling to the MglAB polarity complex.  

 

In this study, we identify for the first time the link between Frz and the MglAB proteins. In doing 

so, we elucidate the mechanism by which RomR controls MglA and MglB localisation dynamics 

and identify how the system’s design allows a wide range of responses to variations in incoming 

signals. 

 

 

 

Results 

 

MglA and MglB rapidly switch their polar localisation when cells reverse 

Polar switching only occurs in the presence of all three polarity proteins MglA, MglB and 

RomR, indicating that they are all part of the same oscillatory circuit. However, how the 

phosphorylation of RomR would control the switch is not known (Guzzo et al., 2015; Leonardy 
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et al., 2007). To investigate this mechanism, we first determined the sequence of events that 

leads to switching, performing high-time resolution fluorescence microscopy using YFP fusions 

to MglA and MglB (Figure 1B,C, (Zhang et al., 2010)), followed by quantitative image analysis 

(see Supplementary Information). In this assay, both proteins re-localised at the time of reversals 

as previously described (Zhang et al., 2010), with switching timescales (i.e. the time necessary 

for the entire protein fluorescent cluster to switch pole, see Figure S1A, Methods) of 45� 20 s 

(n=12) for MglA-YFP and 90� 30s (n=19) for MglB-YFP (Figure 1D). Fluorescence Recovery 

After Photobleaching (FRAP) revealed the polar dissociation of MglA and MglB is rapid with 

mean recovery times of 4 s (n=51) and 6 s (n=20) respectively (Figure 1E, Figure S1B, 

Methods). The MglA and MglB recovery times were not substantially affected in frz mutants 

(Figure S1C,D), suggesting that Frz signalling does not directly modulate the affinity of MglA 

and MglB for the poles. Analysis of a dual colour strain expressing both MglA-YFP and MglB-

mCherry (Zhang et al., 2010) revealed that when cells reverse, both proteins co-localise during a 

short time window and MglA is the first protein to re-localise during a given reversal (observed 

in 10 out of n=10 events, Figure 1F). This suggests that overcoming the repelling action of MglB 

triggers a reversal event (Figure 1F).  

 

A three-protein model of the reversal cycle 

We next turned to mathematical modelling to investigate how interactions between MglA, MglB 

and RomR could generate the oscillations. Our initial mathematical model incorporated 

observations from the previous section, as well as those previously published (Supplementary 

Information). In particular, we assumed that MglA and MglB exert bidirectional antagonistic 

effects such that each protein excludes the other protein from the pole, with local concentrations 
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determining which protein is dominant over the other at a given pole (Figure 2A,B 

Supplementary information). This could be explained if immediately after a reversal, MglB 

efficiently inhibits polar MglA-GTP by stimulating GTP hydrolysis (Leonardy et al., 2010; 

Zhang et al., 2010) returning MglA to the cytoplasm in the GDP form. However, as the cell gets 

closer to the next reversal, MglB also sequesters RomR progressively, and this interaction in turn 

recruits more MglA-GTP (Keilberg et al., 2012; Zhang et al., 2012). Eventually MglB inhibition 

becomes saturated when RomR accumulates to sufficient levels (Figure 2B). At this point, 

excess MglA-GTP could effectively replace MglB if the MglA-MglB interaction detaches MglB 

from the pole (Supplementary Information). MglB would thus be displaced to the other pole 

where MglA-GTP levels are significantly lower, allowing the process to begin again. This 

process would be greatly facilitated if MglB has an affinity for itself (through a cooperative self-

interaction). Consistent with this hypothesis, structural studies indicate that MglB can form 

tetramers (Miertzschke et al., 2011). Furthermore, MglB is monopolar in an mglA romR mutant 

(Zhang et al., 2012), a localisation pattern that could be explained if MglB cooperatively forms 

polar oligomers similar to, for example, the hub protein PopZ (Bowman et al., 2013; Laloux and 

Jacobs-Wagner, 2013). We therefore incorporated into the model an affinity of MglB for itself. 

The equations describing the interactions in Figure 2A (solid and non-solid arrows) are presented 

in Figure 2C. 

 

We solved this system of equations numerically and found that the system could indeed exhibit 

oscillations, with the MglA and MglB profiles qualitatively similar to the experimental curves 

(Figure 2D). Specifically, the oscillations were driven by RomR binding to MglB and then 

recruiting MglA, with switching provoked when RomR reaches a critical threshold at the lagging 
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pole. This driving could be seen explicitly by manually varying the asymmetry in polar RomR 

levels and observing the effect on polar MglB localization (Figure 2E). We also observed that 

that oscillations only took place if the dynamics of RomR occurred on a timescale longer than 

that for MglA and MglB. We further found that, in this case, the slower RomR timescale set the 

cycle duration (defined as the time between two successive polarity switching events) (Figure 

2F). These properties are characteristic of a relaxation oscillator (Ferrell et al., 2011; Lenz and 

Søgaard-Andersen, 2011), in which oscillations are due to, and set by, a component of the 

system with dynamics much slower than the others. Indeed, from simulations we found a linear 

relationship between the timescale of RomR dynamics and the cycle duration (Figure 2F). Thus, 

if phosphorylation of RomR by the FrzE kinase (Figure 2A) alters the (slow) timescale of RomR 

dynamics, then the model suggests that this regulation would specify the cycle duration (Figure 

2D,F). 

 

 

RomR dynamics do not time the reversal cycle 

We next tested if our experimental observations of RomR are indeed consistent with the slow 

dynamics predicted by the model. We found that RomR switching indeed occurred on longer 

timescales than MglA and MglB (mean 160 s, Figure 1D), with a mean FRAP recovery time of 

28s, slower than that measured for both MglA and MglB (Figure 1E). Unexpectedly however, in 

WT cells RomR switching dynamics were not correlated to the reversals and RomR-GFP 

accumulated stably at the lagging pole before the cell reversed (Figure 2G). In fact, the timescale 

of RomR switching was largely constant and did not vary significantly as a function of the cycle 

duration (Figure 2F). These results suggest that switching cannot be solely regulated by the slow 

dynamics of RomR, a conclusion that questions whether RomR is indeed a substrate of the FrzE 
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kinase. 

 

We therefore tested if the receiver domain of RomR (RomRRR, Figure S2A) is phosphorylated by 

FrzE in vitro. Consistent with published results (Inclan et al., 2007), purified FrzE 

phosphorylated FrzZ very efficiently, achieving 100% transfer less than 2 min after the proteins 

were mixed (Figure 3A). However, under the same conditions, neither full length RomR nor 

RomRRR were significantly phosphorylated even after 8 min incubation (Figure 3A, Figure S2B). 

 

Since we obtained no evidence for RomR phosphorylation in vitro, we revisited the impact of 

point mutations on the conserved D53 residue of RomRRR in vivo (Leonardy et al., 2007) by 

substituting romR with a romRD53E (phospho-mimicking mutation) or romRD53N (phospho-

ablative mutation). To quantitatively measure the impact of the point mutations on the reversal 

frequency, we scored single cell reversals of both mutants as compared to the WT in a 

microfluidic device where the level of Frz activation can be controlled by Isoamylalcohol (IAA), 

a known Frz activator  (see methods, (Guzzo et al., 2015)). Surprisingly, the romRD53E and the 

romRD53N  mutants showed no detectable defect and had a reversal frequency comparable to the 

WT (Figure 3B). In addition, the romRD53E frzZ and romRD53N frzZ double mutants showed 

reversals similar to the frzZ mutant (Figure 3B, (Guzzo et al., 2015)), but it is known that the 

romR frzZ double mutant does not reverse, similar to the romR mutant (Guzzo et al., 2015). 

Thus, the presence of RomR, but not its phosphorylation, is required for reversals. Consistently, 

the RomR point mutant strains showed no developmental defects: both the romRD53E and 

romRD53N point mutants formed fruiting bodies on hard surfaces, showing that the 

phosphorylation of RomR is not critical for multicellular development (Figure S2C). We 
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therefore conclude that RomR is required for reversals, presumably because it is needed for the 

polar localisation of MglA but its phosphorylation is not involved in the control of the switch. 

Furthermore, since FrzE can still trigger reversals when the frzZ gene is deleted and/or when the 

RomRRR receiver domain is mutated, these results implicate an as yet unidentified response 

regulator in the reversal process. 

 

Identification of a new target of the FrzE kinase 

To identify the missing regulator, we reasoned that it should share structural similarities with 

FrzZ, which is directly phosphorylated by FrzE. The search of close FrzZ homologs identified 

the product of the MXAN_5688 gene as a predicted single domain response regulator protein 

with high sequence homologies to the FrzZ1 domain (Figure 3C). In addition, a homolog of 

MXAN_5688 is encoded in proximity to a frz-type operon in Anaeromyxobacter species, which 

contains both a FrzZ and an MXAN_5688 homolog (Figure S3A). To test if the protein encoded 

by the MXAN_5688 locus is a direct target of FrzE, we purified the protein (named FrzX) and 

tested its phosphorylation in vitro. Co-incubation between the FrzE kinase domain and FrzX led 

to the complete disappearance of phosphorylated FrzE even after 30 sec of co-incubation, 

suggesting that phosphotransfer had occurred (Figure 3D). However, no band corresponding to 

phosphorylated FrzX could be detected. The phosphorylated state of RR domains with high auto-

phosphatase activity can be difficult to capture on SDS-PAGE gels (Skerker et al., 2005; Thomas 

et al., 2008). Therefore, to test whether FrzE indeed phosphorylates FrzX, we repeated the 

phosphotransfer assay in the presence of a FrzX variant carrying a non-phosphorylatable D55A 

mutation, where D55 is the predicted phosphorylatable Asp (Figure 3C,D). Under these 

conditions, FrzE remained phosphorylated even after 8 min co-incubation (Figure 3D), 

suggesting that FrzX is indeed a direct target of the FrzE kinase. 
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FrzX is the missing Frz Response Regulator protein 

Similar to a frzE-null mutant, a frzX-null mutant formed typical “frizzy” tangled filaments 

instead of fruiting bodies on developmental agar plates (Figure 3E). The deletion of frzX could 

be complemented with a frzX allele but not with a frzXD55A allele, showing that the 

phosphorylation of FrzX is essential for its function (Figure S3B,C). FrzX is central to Frz 

signalling because neither a frzX mutant nor a frzX frzZ double mutant were rescued by the 

addition of IAA (Figure 3E). By contrast, IAA addition can rescue the absence of FrzZ, implying 

that, despite its signal amplification properties, FrzZ is a less critical component of the reversal 

apparatus (Guzzo et al., 2015, Figure 3E).  

 

To show directly that FrzX acts in the regulation of reversals, we measured the reversal 

frequency of the frzX mutant in a single cell assay that measures IAA and Frz-dependent protein 

switching directly (FrzS-YFP, (Guzzo et al., 2015)). This methodology can thus unambiguously 

distinguish bona fide reversals from other movements such as stick-slip motions (these motions 

occur at a low level adding noise to standard reversal scoring assays, see Methods, (Guzzo et al., 

2015)). As expected, the frzX mutant failed to reverse, similar to a frzE kinase mutant (Figure 

3F), but dissimilar to the frzZ mutant which does still reverse in this assay, albeit at a lower 

frequency, in the presence of IAA (Figure 3F). These results again place FrzX in a more central 

position in the reversal mechanism as compared to FrzZ.  

 

To prove this central function of FrzX in a definitive manner, we tested its contribution in a 

strain with a hyper-signaling state of the FrzE kinase (termed the frzon mutation, (Guzzo et al., 

2015; McBride et al., 1989)) where the cells hyper-reverse due to constitutive activation by the 
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Frz receptor (FrzCD). These reversals can be detected in our single cell assay in the absence of 

IAA (Figure 3G). A frzon frzZ mutant still reversed, although again at a lower frequency since 

FrzZ is needed for optimal signalling activity (Guzzo et al., 2015). In contrast, both a frzon frzX 

and a frzon frzX frzZ mutant failed to reverse (Figure 3G). We conclude that FrzX acts genetically 

downstream from FrzZ and, unlike FrzZ, is absolutely required for the transmission of FrzE 

signals to the downstream polarity proteins. 

 

 

The phosphorylated form of FrzX localises to the lagging cell pole in an MglB-dependent 

manner 

To understand how FrzX provokes cellular reversals downstream from the FrzE kinase, we first 

tested how deleting frzX affects the localisation of MglA-YFP, MglB-YFP and RomR-GFP. In a 

frzX mutant, these proteins were correctly localised at their respective poles (Figure S4A) but 

they did not switch poles, consistent with FrzX being essential for reversals. Thus, FrzX is only 

required for the dynamic switching of the polarity proteins.  

 

We next constructed a functional N-terminal GFP-FrzX fusion (Figure S3D) to investigate where 

FrzX localises. We found that GFP-FrzX was present diffusely in the cytoplasm when Frz-

signalling is at low level (Figure 4A). However, the addition of IAA induced the appearance of a 

clear polar focus (Figure 4A). This polar localisation was fully abrogated in a frzE mutant and in 

the presence of IAA (Figure 4A). These results suggest that phosphorylation of FrzX by FrzE is 

required for polar localisation.  

 

To identify a possible FrzX target at the pole, we next investigated the localisation of GFP-FrzX 
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in the polarity protein mutants, mglA, romR, mglB and frzZ. Except for the mglB mutant, GFP-

FrzX was polarly localised in all mutants (Figure 4B, although a slight reduction was also 

observed in the mglA mutant), suggesting that either MglB or an MglB-interacting protein is a 

polar target for FrzX. Finally, consistent with this probable interaction with MglB or an MglB-

interacting partner, GFP-FrzX accumulated at the lagging cell pole between reversals (see 

below). 

 

RomR and FrzX both act to provoke reversals 

To determine how FrzX and RomR act at the lagging cell pole to provoke reversals, we more 

closely investigated their localisation dynamics during the reversal cycle. Because the polar 

localisation of FrzX can only be observed at high Frz signalling levels, we performed all the 

GFP-FrzX localisation assays in the presence of either IAA or a frzon mutation (similar results 

were obtained in both conditions). Remarkably, in these Frz-activated cells, reversals coincided 

with a peak accumulation of GFP-FrzX, suggesting that FrzX triggers cell reversals (Figure 

5A,B and Figure S5A).  

 

We next tested how GFP-FrzX localises in the absence of FrzZ, again either in the presence of 

IAA or in a frzon background. Remarkably, in both conditions, GFP-FrzX still localised to the 

lagging cell pole but its accumulation no longer coincided with cell reversals (Figure 5C,D and 

Figure S5B), suggesting that another component is needed for reversals. To test if this 

component could be RomR, we further analyzed RomR-GFP dynamics in Frz-activated cells 

(Figure 5C and Figure S5C). Indeed, the maximum accumulation of RomR-GFP was strongly 

correlated with reversals (Figure 5D). Consistent with this, the distribution of the RomR 

switching timescale coincides with that of the cycle duration in a frzon frzZ background (Figure 
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5E). However, as observed previously, the RomR switching timescale is not significantly 

correlated with reversals in the wildtype background (Figure 2F, Figure 5E). Taken together the 

results suggest that both RomR and FrzX function together at the lagging pole to provoke 

reversals, but which of the two provides the final trigger depends on which is limiting: FrzX in 

WT but RomR when frzZ is missing. 

 

FrzZ overcomes a refractory period set by the dynamics of RomR 

In cells where Frz-signaling is at maximum level, RomR dynamics set a minimum reversal 

frequency and faster reversals require FrzZ. This function is evident when RomR dynamics are 

analysed in WT cells in a frzon background (Figure 5F). In these cells, switching is also 

correlated to RomR levels at the lagging cell pole but, contrarily to frzon frzZ cells, it does not 

require the entire RomR population to localise to the lagging pole and occurs at a much lower 

threshold (Figure 5G). This result is confirmed in a dual labelled strain expressing functional 

GFP-FrzX and RomR-mCherry (RomR-mCh), fusions in which reversals coincide both with 

peak accumulations of GFP-FrzX and low amplitude changes of RomR-mCh at the lagging cell 

pole  (Figure S5D).  

 

Thus, FrzZ overcomes a limit set by the slow dynamics of RomR, accounting for the previously 

documented positive effect of FrzZ on the reversal frequency. How FrzZ performs this function 

is not known. FrzZ localises to the leading cell pole in a FrzE phosphorylation- and MglA-

dependent manner, opposite to GFP-FrzX (Figure 5H, Figure S4B and Kaimer and Zusman, 

2013). Furthermore, FrzZ and FrzX localise independently to the cell poles (Figure 4B and 

Figure S4B). In the next section, we will use these results together with mathematical modelling 
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to propose a mechanism for FrzZ function. 

 

 

Modelling the switch mechanism by incorporating the functions of FrzX and FrzZ 

The above results show that the reversal switch requires the combined action of phosphorylated 

FrzX and RomR at the lagging pole. By gradually accumulating at the lagging pole via its 

interaction with MglB, RomR primes the cell for the next reversal. The kinetics of RomR 

relocalisation therefore introduce a refractory period during which it is not possible to effect a 

reversal until sufficient RomR (and therefore MglA) have accumulated. However, the above 

mechanism is critically incomplete to provoke the switch, since FrzX is also required as a 

trigger. 

 

To test whether a combined mechanism involving FrzX can explain the reversal switch, we 

added the dynamics of FrzX~P to our earlier mathematical model. A simple and 

thermodynamically consistent mode of action of FrzX~P is to mediate the inhibitory effect 

proposed in our earlier model of MglA-GTP on the polar binding of MglB (Figure 2A and 

Supplementary Information). Based on our experimental data, we assume that FrzX~P is 

recruited to the pole by MglB (Figure 4B). The interactions between MglA, MglB, RomR and 

FrzX and the associated differential equations are presented in Figures 6A,B. Solving the 

equations led to the expected properties: in WT cells, the re-localisation of RomR introduced a 

refractory period and primed the reversal event, which was eventually provoked by the action of 

FrzX~P (Figure 6C).  
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We next simulated a frzon background, with constitutively high levels of FrzX~P (Supplementary 

Information) (Figure S6A). Switching is now more rapid, with reversals happening on a 

timescale faster than the intrinsic RomR dynamics (Figure 6C), leading to only weak RomR 

oscillations. As a result, immediately after a reversal, the new lagging pole already has sufficient 

RomR (and thus MglA) bound for another reversal.  Since reversals occur with approximately 

symmetrical RomR levels at both poles (Figure S6A), consistent with our experimental 

observation (Figure 5G), the trigger function of FrzX~P is then clearly revealed (Figure S6A). In 

a frzon background, the system is still effectively a relaxation oscillator, but where now FrzX~P 

rather than RomR acts as the slow component. To further confirm that dynamical changes in 

RomR levels are inessential, we simulated artificially constant and symmetric RomR in the frzon 

background (Figure S6B). As expected, reversals still occurred, demonstrating the key trigger 

role of FrzX~P.   

 

We next used our simulations to investigate the effect of deleting frzZ. Given that FrzZ~P 

localises to the leading pole and promotes reversals, we considered two possibilities for its mode 

of action: (i) FrzZ~P promotes the polar switching of MglA by accelerating the re-localisation of 

RomR, or (ii) FrzZ~P favors the unbinding of MglA from the pole without affecting the 

dynamics of RomR, by, for example, dissociating MglA from RomR. These two options were 

incorporated into the model implicitly by alterations in the kinetic parameters. We found that 

option (i) is likely incorrect, because removing FrzZ from the model in the frzon background (and 

thus simulating a frzon frzZ background) resulted in a more symmetric RomR distribution at the 

poles (compare Figure S6A,C), whilst we observed the opposite experimentally (compare Figure 

5C and 5F). We therefore pursued option (ii) (Figure 6A). 
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In a simulated frzon frzZ background, using option (ii), we found that the reversal switch now 

became dependent on RomR accumulation to a sufficiently high level at the lagging pole (Figure 

6D), as observed experimentally (Figure 5C,D). In this case, the FrzX~P trigger is quickly 

primed, but with slower MglA dynamics, RomR must now accumulate to high levels to recruit 

enough MglA to provoke the switch, similar to our original relaxation oscillator model. This 

reasoning was confirmed when we again simulated artificially constant and symmetric RomR: 

unlike in the frzon background simulated above, no reversals were seen, confirming the key role 

of RomR dynamics (Figure S6D). The resulting increase in RomR asymmetry in a frzon 

background due to the removal of FrzZ seen in our simulations (compare Figure 6D and Figure 

S6A) was also consistent with our experimental observations (compare Figure 5C and Figure 

5F). 

 

Finally, we found that in the absence of FrzZ alone, and thus slower MglA dynamics than the 

wild-type, simulated reversals were only obtained with sustained FrzX activity (Figure S6E). 

This result was consistent with previous observations and the restoring effect of IAA to the frzZ 

mutant (Figure 3E, Figure S5B,C and Guzzo et al., 2015). 

 

Overall, the modified model has rationalized our findings on RomR and FrzX: both are needed 

for a reversal and if one factor is already present, the reversal is delayed until the second is also 

present. In addition, both the experimental data and simulations suggest that FrzZ~P increases 

the MglA off-rate, thus decreasing the threshold of RomR required to prime the pole for a 

reversal. This effect shortens the RomR refractory period and promotes shorter reversal periods.  
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Discussion 

In this work, we have systematically dissected the dynamics of the Myxococcus polarity module. 

Using a combination of mathematical modelling and experiments, we discovered that our 

original three-protein model, where Frz signalling enters through modulation of the RomR 

dynamical timescale, was too simple. This result motivated our experimental search for an 

additional Frz response regulator protein, leading to the identification of FrzX. We then 

constructed an improved model with a two-factor switch mechanism employing both RomR and 

FrzX, which successfully accounted for many features of the oscillatory dynamics.  

 

In this system, RomR acts as an oscillating scaffold protein, regulating the polar concentration of 

MglA. We find that RomR is never fully localised to the lagging cell pole, which likely explains 

why MglA remains attached to the leading cell pole even if the majority of RomR localises to the 

opposite pole. Importantly, increasing MglA binding at the lagging cell pole via RomR is not 

sufficient to provoke the switching but requires the further action of FrzX~P. Specifically, we 

have proposed that FrzX~P could be responsible for the inhibitory effect of MglA-GTP on MglB 

(see Supplementary Information for further discussion). Note, however, that FrzX alone cannot 

be the long sought after MglA Guanine nucleotide Exchange Factor (GEF) because MglA is 

active in absence of FrzX. Mathematical modelling has revealed that the two above processes are 

sufficient to provoke the switch, laying a framework for future investigations. However, we 

cannot of course exclude a more complex sequence of events occurring downstream from FrzX, 

perhaps involving as yet unidentified polar proteins. 

  

The two-factor switch mechanism, requiring both sufficient RomR-dependent MglA and 
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FrzX~P, introduces new properties to the regulatory system allowing greater control of polarity 

dynamics and thus of cell motility. For example, the system becomes sensitive to variations in 

the level of FrzX~P. Assuming that the pool of FrzX does not vary abruptly between cells, these 

fluctuations could be introduced not only by varying levels of FrzE activity but also due to the 

existence of a high auto-phosphatase activity of FrzX, as suggested by our inability to capture 

FrzX~P on SDS-PAGE gels (Figure 3D). These effects could be important because wild-type 

Myxococcus cells show a broad distribution of reversal frequencies (Guzzo et al., 2015), but all 

mutants with narrow distributions, be they in the fast (frzon) or slow (frzZ) ranges, are severely 

impaired in development (Bustamante et al., 2004).  

 

A refractory period has been speculated to synchronize cells during rippling and multicellular 

development (Igoshin et al., 2004). We have identified such a refractory period and shown that 

the slow relocalisation kinetics of RomR introduce a rate-limiting step in the switch kinetics 

during which new reversals cannot be provoked. Importantly, this refractory period is shortened 

when Frz signalling is high, but is lengthened by the absence of FrzZ. This control is critically 

important because the frzZ mutant is defective in most developmental processes. Control of the 

refractory period could also be useful for chemotaxis. Unlike swimming bacteria, which can 

change their direction of movement in 3D (usually via tumbling), Myxococcus has a binary 

choice: reverse or not. A refractory period could ensure that two consecutive reversals, which 

would result in no change of direction, do not occur and allow the cell to travel further before re-

sampling the stimulant gradient. 

 

In conclusion, the Myxococcus polarity system forms a new type of genetic circuit in which two 
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polar response regulators mediate two distinct controls. One (RomR) ramps up slowly and must 

exceed a critical level, while the other (FrzX~P) then acts as a critical “ignition key” to trigger a 

reversal. This flexible architecture allows a wide range of reversal dynamics in response to 

environmental signals. It is therefore likely that this type of regulation also occurs in other 

rhythmic biological systems. 
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Figure 1. Pole-to-pole dynamics of the polarity proteins. 

(A) Genetic structure and function of the Frz pathway, based on previously published work. 

(B) Top: Timelapse images of pole-to-pole dynamics of MglA-YFP (5s time frames) in a single 

reversing WT cell. Bottom: difference in intensity of MglA-YFP between the two poles 

normalized to maximum absolute value of difference shown as a function of time. R: Reversals, 

detected by a clear directional change of the cell. Scale bar = 2 µm. 

(C) As in (B), but for MglB-YFP in a single reversing WT cell. 

(D) Boxplots of the switching timescale distributions for MglA-YFP, MglB-YFP and RomR-

GFP. The lower and upper boundaries of the boxes correspond to the 25% and 75% percentiles, 

respectively. The median is shown as a red line and the whiskers represent the 10% and 90% 

percentiles.  ** p-value<0.01, *** p-value<0.001 

(E) Boxplots of the recovery timescales for MglA-YFP, MglB-YFP and RomR-GFP as 

determined by FRAP. Boxplots read as in (D). *** p-value<0.001 

(F) Top: Time-lapse images of pole-to-pole dynamics of MglA-YFP and MglB-mCh (5 s time 

frames) in a single reversing cell. Bottom: differences in intensities of MglA-YFP (green) and 

MglB-mCh (red) between the two poles, normalized to the respective maximum absolute value 

of the difference, shown as a function of time. Note that MglA-YFP switches first and that both 

proteins co-localise for a short period immediately before reversals. Scale bar = 2 µm. 

 

Figure 2: A three-protein model of polarity reversals. 

(A) Schematic of the polarity module. Solid arrows indicate interactions supported by existing 

data. Hypothetical interactions indicated by non-solid arrows. Blunt-end arrows refer to negative 

effects on polar localisation at the same pole. The Frz chemosensory system is proposed to 
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modulate the timescale of RomR dynamics, possibly by direct phosphorylation.  

(B) Schematic localisation of polarity proteins with respect to direction of movement inferred 

from the interactions proposed in (A). Proteins colored as in (A).  

(C) The model consists of six ordinary differential equations describing the relative polar levels 

of MglA (��), RomR (��) and MglB (��) at each pole, �=1,2. Binding and unbinding rates are 

indicated by k and d, respectively. See Supplementary Information for further details and 

parameter values. 

(D) Profiles produced by equations in (C), showing difference in levels between the two poles. 

Dashed lines indicate the time of parity of the MglB levels. 

(E) Bifurcation diagram showing fixed points of �1 as a function of RomR asymmetry (R1- R2) 

(orange line; the stable branch is solid, unstable is dashed, as also indicated by arrows). The 

saddle bifurcations are indicated by crosses. Overlayed in green is the solution shown in (D). The 

solutions proceeds clockwise and the data points are evenly spaced in time. 

(F) Correlation between the RomR switching timescale and the cycle duration as predicted by 

the model (blue line), and as obtained experimentally (red squares). Model data was obtained by 

measuring the cycle duration and switching timescale as for experimental profiles. Different 

cycle durations were obtained by scaling all RomR rates (binding and unbinding) by the same 

factor. The model predicts that the RomR switching timescale should be strongly correlated to 

the cycle duration. However, the observed correlation is weak: Pearson’s correlation coefficient 

of the experimental data is r=0.45 (p-value ρ=0.003, calculated using Student’s t-distribution). 

Experimental data is from a mix of unstimulated and stimulated (0.03% IAA) WT cells.  

(G) Example RomR-GFP profile as in Fig. 1B showing both the slow accumulation of RomR-

GFP at the lagging pole and the stability of its levels before a reversal. Scale bar = 2 µm. 
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Figure 3. FrzX not RomR is the major FrzE kinase substrate used to control the reversal 

cycle. 

(A) RomR is not phosphorylated by the FrzE kinase in vitro. Autoradiogram of P32-labelled FrzE 

in the presence of FrzZ or RomR. Note that P32 is readily transferred to FrzZ but not to RomR. 

(B) Single-cell S-motility reversal frequency of WT and selected mutants on 

carboxymethylcellulose (see Methods) in the presence of 0.15% IAA. Shown are boxplots of the 

measured reversal frequency monitored as the number of directional changes per hour (see 

Methods) of isolated cells (tracked for at least 10 min) for each strain. Boxplots read as in Figure 

1D. D53E: romRD53E, D53N: romRD53N. Statistics: Wilcoxon test (n<40) for  romRD53E and 

student test (t-test, n>40) for all the other strains. *** p-value<0.0001. Note that the WT, frzE 

and frzZ controls are the same as published by (Guzzo et al., 2015)(see Methods). 

(C) Multiple sequence alignment of Frz-associated RR proteins. Sequence alignment was 

generated using MAFFT and secondary structures were predicted using Ali2D (α−helices: 

residues highlighted in red. β-sheets: residues highlighted in blue). Stars indicate the 

phosphorylatable aspartate residues (D) and critical residues important for signal transduction 

Serine (S) and Tyrosine (Y). 

(D) FrzX is directly phosphorylated by the FrzE kinase in vitro. Direct phosphorylation is 

observed through the rapid disappearance of P32-labelled FrzE in the presence of FrzX. A 

FrzXD55A mutant does not affect P32-FrzE indicating that this effect is due to a phosphotransfer 

event. 

(E) FrzX is a central output of the Frz pathway. Developmental phenotypic assays showing the 

typical “frizzy” phenotype of frzX mutants. Note that IAA rescues the development of a frzZ 
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mutant but not that of either frzE or frzX mutants, indicating that FrzX is central for the 

regulation. Scale bar: 1mm. 

(F) FrzX is essential for reversals. Single-cell S-motility reversal frequency on 

carboxymethylcellulose in the presence of 0.1% IAA. Shown are boxplots of the measured 

reversal frequency monitored as the number of FrzS-YFP oscillations per hour (see Methods) of 

isolated cells (tracked for at least 10 min) for each strain. The boxplots read as in Figure 1D. 

Statistics: Wilcoxon test (n<40) for WT, frzE, frzX and frzZ frzX and student test (t-test, n>40) 

for frzZ. ** p-value<0.01, *** p-value<0.0001. Note that the WT, frzZ and frzE controls are the 

same data as published by (Guzzo et al., 2015)(see Methods). 

(G) FrzX but not FrzZ is essential for reversals in Frz-hyper signaling mutants (frzon). Single-cell 

S-motility reversal frequency of frzon and selected mutants on carboxymethylcellulose (see 

Methods) without IAA. Shown are boxplots of the measured reversal frequency monitored as the 

number of directional changes per hour (see Methods) of isolated cells (tracked for at least 10 

min) for each strain. Boxplots read as in Figure 1D. Statistics: Wilcoxon test. *** p-

value<0.0001. Note that the frzon and frzon frzZ controls are the same as published by (Guzzo et 

al., 2015)(see Methods). 

 

Figure 4. FrzX localises to the cell pole in phosphorylation- and MglB-dependent manners. 

(A) FrzX localises to the cell pole in a phosphorylation-dependent manner. Polar localisation 

patterns in the presence of low (WT no IAA, frzE + IAA) and high (WT + IAA) Frz-signaling 

activity. Scale bar = 2 µm.  

(B) FrzX localisation depends on MglB and partially on MglA. All tests done in the presence of 

IAA to increase the frequency of polar GFP-FrzX clusters. The WT (+IAA) control is shown in 
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(A). Scale bar = 2 µm.  

 

Figure 5. Reversals require the action of both FrzX~P and RomR at the lagging cell pole. 

(A) Top: Time-lapse images of GFP-FrzX (15 s time frames) in a single cell with IAA-induced 

high-Frz signalling. Scale bar = 2 µm. See also Figure S5A. 

(B) Reversals correlate with peaks of GFP-FrzX at the lagging cell pole in Frz-activated cells 

(frzon or IAA treated). Plot shows frequency of fluorescence peaks (as detected by fluorescence 

maxima) relative to reversal events. Time=0 indicates the reversal event itself, with negative 

values representing pre-reversal and positive values representing post-reversal times.  

(C) Time-lapse images (15 s time frames) from single frzon frzZ cells expressing GFP-FrzX (top) 

and RomR-GFP (bottom). Note that GFP-FrzX accumulates stably at the lagging cell pole in this 

background. Scale bar =  2 µm. See Figure S5B,C for IAA treated cells. 

(D) RomR-GFP, but not GFP-FrzX, peaks are correlated with reversals in Frz-activated (frzon or 

IAA treated) frzZ mutant cells. Otherwise as in (B). 

(E) Reversals are set by the RomR switching time scale in frzon frzZ mutant cells. Upper panel: 

Distribution of RomR-GFP switching times scales (green bars, normal distribution fit in orange) 

and reversal cycle duration (black bars, normal distribution fit in red) in a frzon frzZ mutant. 

Lower panel: same as in upper panel but in WT in the presence of a low concentration of IAA 

(0.05%, which induces a broad range of reversals). Note that in this case the RomR-GFP 

switching distribution is little changed and no longer coincides with the distribution of switching 

timescales. 

(F) Time-lapse images from a single frzon cell expressing RomR-GFP. Sacle bar = 2 µm 

(G) Difference in RomR-GFP intensities over time between the two poles in a frzon background 
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(green trace, corresponding reversals are indicated by grey bars) overlaid with the difference in 

RomR-GFP intensities in a frzon frzZ background (orange dotted line, trace corresponding to the 

cell shown in Figure 5C). Note that for comparison, the pole1-pole2 difference is not normalized 

to the absolute value of the maximum intensity and thus pole1-pole2 values are expressed in 

arbitrary units (au).  The green area corresponds to the mean amplitude difference (pole1-pole2) 

between poles at the time of reversal, computed from n = 20 frzon reversal events, (mean 

amplitude difference = 12 �2). Orange area: same methodology, but for  frzon frzZ background 

(from n = 20 reversal events, mean amplitude difference = 98 �10). In frzon, peak asymmetry in 

polar RomR-GFP intensities is still correlated to reversals, but reversals occur at a 10 fold less 

amplitude difference than in the frzon frzZ background. 

(H) FrzZ and FrzX act simultaneously at opposite cell poles. Left: time-lapse images of the same 

GFP-FrzX and FrzZ-mCherry hyper-reversing single cell (IAA treated, 15 s time frames). Right: 

differences in intensities of GFP-FrzX (green) and FrzZ-mCherry (red) between the two poles, 

normalized to the respective maximum absolute value of the difference, shown as a function of 

time. R: Reversals, detected by a clear directional change of the cell. Scale bar = 2 µm.  

 

Figure 6: A refined model of polarity reversals captures most of the experimental data 

(A) The polarity module of Figure 2A with the addition of FrzZ and FrzX. The kinase FrzE 

phosphorylates FrzZ and FrzX. The former is hypothesised to promote the unbinding of MglA, 

while the latter is required for MglA(-GTP) to promote unbinding of MglB.  

(B) The equations of the refined model, updated from those in Figure 2C. Xi represent the 

relative polar copy numbers of FrzX~P. Phosphorylation of FrzX is incorporated as a pulse in the 

levels of the phosphorylated protein (relative total copy number: XT). The effect of FrzZ is 
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incorporated globally by modifying the rate dA (Supplementary Information). 

(C-D). Simulated profiles of MglA, MglB, RomR and FrzX~P, generated by the equations in 

(B), showing the difference in the polar levels for (C) WT and (D) frzon frzZ cells (using option 

(ii)). Phosphorylation pulses in (C) have width 1.3 min. Pulses induce a switch if they occur after 

sufficient RomR has accumulated at the lagging pole (indicated by the shaded region). 

Phosphorylation of FrzX~P is continuous in (D). Dashed lines are as in Figure 2D. See 

Supplementary Information for parameter values. 

 

Supplemental figure titles and legends 

 

Figure S1: Recovery times of polarity proteins MglA-YFP, MglB-YFP and RomR-GFP. 

Related to Figure 1. 

(A) A schematic of the switching timescale measurement. The normalised difference between 

polar signals, Y, is determined from time-lapse analysis (upper plot, blue dots). Savitzky-Golay 

filters are used to obtain a smoothed profile (upper plot, red line) and a smoothed profile of the 

derivative (lower plot, blue line). The duration of a switching cycle is defined to be the time 

between a peak and subsequent (or preceding) valley in the derivative profile (indicated for the 

first cycle by shading and crosses). Since the derivative is simply the angle between the tangent 

(black dashed lines) to the profile and the x-axis (blue triangles), we can use values of the 

maxima/minima of the derivative to define appropriate timescales: the two switching timescales 

associated with each cycle are defined to be twice the maximum absolute value, M, of 

(smoothened) Y within each cycle divided by the absolute value of the minimum/maximum of 

the derivative profile (S). 
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(B) Top: Example of single-cell recovery after photobleaching for each polarity protein. The 

fluorescence intensity dynamics in the bleached regions (blue crosses and lines), corrected for 

bleaching, were fit to exponential curves (red lines) by non-linear least squares fitting. Bottom: 

Timelapse images (0.4 s time frame for MglA-YFP and MglB-YFP, 10 s time frame for RomR-

GFP) of single-cell recovery after photobleaching. 

(C) MglA-YFP and (D) MglB-YFP recovery times as determined by FRAP in WT, frzon and frzE 

mutants. The lower and upper boundaries of the boxes correspond to the 25% and 75% 

percentiles, respectively. The median is shown as a red line and the whiskers represent the 10% 

and 90% percentiles. 

 

 

Figure S2: RomR is not phosphorylated by FrzE. Related to Figure 3. 

(A) Schematic of RomR domain structure.  

(B) RomRRR is not phosphorylated by the FrzE kinase in vitro. Autoradiogram of P32-labelled 

FrzE in the presence of RomRRR.    

(C) Developmental phenotypic assays showing the absence of fruiting body formation in a romR 

mutant. romR is essential for fruiting body formation but point mutations at the phosphorylatable 

aspartate of the RomR response regulator domain do not affect fruiting body formation. Scale 

bar: 1 mm. 

 

Figure S3: FrzX is a target of FrzE and is essential for reversals. Related to Figure 3. 

(A) Genomic context of genes encoding FrzX and FrzX-like proteins in the Myxococcales and 

Anaeromyxobacter species.  
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(B) and (C) Fruiting body formation of (B) WT, frzX mutant and frzX mutant complemented 

with an ectopic copy of the frzX gene, (C) an ectopic copy of the frzXD55A gene and an ectopic 

copy of the gfp-frzX gene. Scale bar: 1 mm. 

 

Figure S4: Localization dependencies between the frz proteins and the polarity proteins. 

Related to Figure 4. 

(A) Images showing localization of MglA-YFP, MglB-YFP, RomR-GFP in the frzX mutant. 

Scale bar = 2 µm.  

(B) Images showing localization of FrzZ-GFP in the WT and frzE and frzX mutants. Scale bar = 

2 µm.  

 

Figure S5: Dynamics of GFP-FrzX and RomR-GFP in a frzon background and a frzZ 

background in the presence of IAA. Related to Figure 5. 

(A) Top: time lapse images of GFP-FrzX dynamics from a single reversing cell in a frzon 

background (30 s time frames). Bottom: difference in intensity of GFP-FrzX between the two 

poles normalized to maximum absolute value of the difference. R: Reversals, detected by a clear 

directional change of the cell. Scale bar = 2 µm.  

(B), (C) and (D) Same as (A) but for (B) GFP-FrzX with 0.1% IAA in a frzZ background (15 s 

time frames), (C) RomR-GFP with 0.1% IAA in a frzZ background and (D) GFP-FrzX (green 

trace) and RomR-mCh (red trace) in a WT background with 0.3% IAA (30 s time frames). Scale 

bar = 2 µm 
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Figure S6: Simulated polarity protein dynamics. Related to Figure 6. 

(A) Simulated profiles of MglA, MglB, RomR and FrzX~P, generated by the equations in Figure 

6B, showing the difference in polar levels in the frzon background. Phosphorylation of FrzX~P is 

continuous. For all panels, dashed lines are as in Figure 2D. See Supplementary Information for 

parameter values. 

(B) Simulated profiles in frzon cells as in (A) but with RomR levels held constant and symmetric. 

Asymmetry in polar RomR is not required for oscillations.  

(C) Simulated profiles in frzon frzZ cells, assuming FrzZ promotes RomR unbinding (option (i) of 

main text). Parameters are same as in (A) but with a one order of magnitude lower rate of RomR 

unbinding.  

(D) Simulated profiles in frzon frzZ cells (with option (ii) of main text) as in Figure 6D, but with 

RomR levels held constant and symmetric. In this case, asymmetry in polar RomR is clearly 

required for oscillations. 

(E) Simulated profiles in frzZ cells (option (ii) of main text). Shown is the effect of 

phosphorylation pulses of differing durations (1.3, 2 and 3 mins). Unlike the wild-type, a 1.3 min 

pulse is not sufficient to induce a switch, nor is a 2 min pulse. However, a 3 min pulse (or 

greater) is sufficient and induces a polar switch if it occurs when sufficient RomR has 

accumulated at the lagging pole (indicated by the shaded region). See Supplementary 

Information for parameter values and justification for modelling FrzX activity as pulsatile. 
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MATERIALS AND METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bacterial strains, growth conditions and genetic constructs 

Strains, plasmids and primers used for this study are listed in Tables S1, S2 and S3. All genetic 

mutants were constructed in the Myxococcus xanthus DZ2 strain (Bustamante et al., 2004). M. 

xanthus DZ2 was grown at 32°C in CYE rich media, as previously described (Bustamante et al., 

2004). Plasmids were introduced in M. xanthus by electroporation. Mutants and transformants 

were obtained by homologous recombination based on a previously reported method 

(Bustamante et al., 2004). Complementation, expression of the fusion and mutant proteins were 

either obtained by ectopic integration of the genes of interest at the Mx8-phage attachment site 

(Zhang et al., 2010) under the control of their own promoter in appropriate deletion backgrounds, 

or by expression from the endogenous locus (Table S2). Clean replacement and deletions were 

constructed as previously reported. 

 

The plasmid to replace frzX contains an insert encompassing 850 bp upstream from the frzX 

coding sequence to 850 bp immediately downstream of the frzX coding sequence and 

synthesized into the pBluescriptII SK(+) plasmid by Biomatik. This plasmid was then digested 

by HindIII/EcoRI restriction enzymes and the insert was ligated into the pBJ114 vector.  

 

For clean replacement of the romR gene by romR-sfgfp at the endogenous locus, pBJ114-romR-
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sfgfp was constructed by amplifying and fusing 850 bp upstream from the romR stop codon, the 

sf-gfp gene and 850 bp immediately downstream from the romR coding sequence, by overlap 

PCR. The resulting PCR product was digested by the EcoRI/HindIII restriction enzymes and 

ligated into the pBJ114 vector. The insert was verified by sequencing. 

 

The plasmids carrying the romRD53E/N point mutations were constructed by PCR with 

oligonucleotides carrying the mutation amplifying a fragment encompassing 500 bp upstream 

from the mutation site with a fragment encompassing 1000 bp downstream from the point 

mutation. The two fragments were fused by overlap PCR, digested by the HindIII/XbaI 

restriction enzymes and cloned into the pBJ114 plasmid. The insert was verified by sequencing.  

 

For replacement of the frzZ gene by frzZ-mcherry at the locus, pBJ114-frzZ-mcherry was 

constructed by amplifying independently 857 bp encompassing the 5’ end of frzZ and the 

mcherry gene. The two fragments were fused by overlap PCR. The resulting PCR product was 

digested by the BamHI/EcoRI restriction enzymes and ligated into the pBJ114 vector. The insert 

was verified by sequencing. 

 

Complementation of the frzX deletion was obtained by expressing frzX under the control of its 

own promoter from the pSWU30 plasmid, an integrating plasmid that recombines at the Mx8 site 

(ref). A fragment encompassing frzX and the upstream 200 bp sequence containing the promoter 

was digested using the EcoRI/BamHI restriction enzymes and ligated into the pSWU30 vector. 

pSWU19-frzXD55A was constructed with the same external primers as the frzX complementation, 

but with internal overlapping primers carrying the point mutation. The fragments were fused 
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using overlap PCR. The resulting fragment was digested and ligated into pSWU19, a pSWU30 

derivative containing a Kanamycin resistance cassette (Zhang et al., 2010). 

 

GFP-FrzX was expressed in a frzX deletion background by expressing sfGFP-frzX from the frzX 

promoter integrated at the Mx8 site. For this, the frzX promoter region upstream was fused 

upstream from the sf-gfp gene, itself fused in-frame with the frzX gene. The resulting PCR 

product was digested using the BamHI/EcoRI restriction enzyme and ligated into the pSWU19 

vector.  

 

METHOD DETAILS 

Phenotypic assays 

Development assays were performed as previously described (Bustamante et al., 2004). Cells 

were grown up to exponential phase and concentrated at Optical Density OD = 5 in TPM buffer 

(10 mM Tris-HCl, pH 7.6, 8 mM MgSO4 and 1 mM KH2PO4). Then they were spotted (10 μL) 

on CF 1.5% agar plate. Colonies were photographed after 72 h of incubation at 32°C. 

Developmental assays in the presence of Isoamyl alcohol (IAA, Sigma Aldrich) were performed 

similarly, except that plates also contained IAA at appropriate concentrations. 

Cloning, expression and purification of M. xanthus Frz system proteins 

The cloning, expression and purification of M. xanthus Frz system proteins were performed as 

previously described (Guzzo et al., 2015). Briefly, the genes encoding FrzZ, FrzX, RomR and 

RomRRR were amplified by PCR using M. xanthus DZ2 chromosomal DNA as a template, with 

the forward and reverse primers listed in Table S3. The amplified product was digested with the 
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appropriate restriction enzymes, and ligated into either pETPhos or pGEX. All constructs were 

verified by DNA sequencing. The generated plasmids were used to transform E. coli 

BL21(DE3)Star cells in order to overexpress His-tagged or GST-tagged proteins. Recombinant 

strains harboring the different constructs were used to inoculate 400 ml of LB medium 

supplemented with glucose (1 mg/mL) and ampicillin (100 μg/ml). The resulting cultures were 

incubated at 25°C with shaking until the optical density of the culture reached an OD = 0.6. 

IPTG (0.5 mM final) was added to induce overexpression, and growth was continued for 3 extra 

hours at 25°C. Purification of the His-tagged/GST-tagged recombinant proteins was performed 

as described by the manufacturer (Clontech/GE Healthcare). 

In vitro autophosphorylation assay 

The in vitro phosphorylation assay was performed as described (Guzzo et al., 2015; Inclan et al., 

2007), with E. coli purified recombinant proteins. Briefly, 4 μg of FrzEkinase was incubated with 1 

μg of FrzA and increasing concentrations (0.5 to 7 μg) of FrzCD in 25 μl of buffer P (50 mM 

Tris-HCl, pH 7.5; 1 mM DTT; 5 mM MgCl2; 50mM KCl; 5 mM EDTA; 50μM ATP, 10% 

glycerol) supplemented with 200 μCi ml-1 (65 nM) of [γ-33P]ATP (PerkinElmer, 3000 Ci mmol-

1) for 10 minutes at room temperature in order to obtain the optimal FrzEkinase 

autophosphorylation activity. Each reaction mixture was stopped by addition of 5 × Laemmli and 

quickly loaded onto SDS-PAGE gel. After electrophoresis, proteins were revealed using 

Coomassie Brilliant Blue before gel drying. Radioactive proteins were visualized by 

autoradiography using direct exposure to film (Carestream). 

Fluorescence microscopy 

Time-lapse experiments were performed as previously described (Guzzo et al., 2015), using an 
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automated and inverted epifluorescence microscope TE2000-E-PFS (Nikon, France), with a 

100×/1.4 DLL objective and a CoolSNAP HQ2 camera (Photometrics). The microscope is 

equipped with “The Perfect Focus System” (PFS) that automatically maintains focus so that the 

point of interest within a specimen is always kept in sharp focus at all times, in spite of any 

mechanical or thermal perturbations. Images were recorded with Metamorph software 

(Molecular Devices). All fluorescence images were acquired with a minimal exposure time to 

minimize bleaching and phototoxicity effects. 

 

FRAP experiments 

Image acquisition and FRAP measurements were performed on an upright monolithic aluminum 

microscope (custom-made; Morgenstein et al., 2015) with a 100 × /1.49 N.A. objective (Nikon), 

iXon DU-897 cooled EMCCD camera (Andor Technology), and a homemade LabView software 

package (National Instruments). 

 

Photobleaching was achieved by focusing an argon ion laser to a diffraction-limited spot on the 

specimen for a pulse of ≈1.5 s. Wide-field fluorescent images of the cells were acquired before 

and after photobleaching by custom time-lapse recording of digital images with 16-bit gray 

levels. Images of both wild-type MglA-YFP cells and MglB-YFP cells were obtained every 0.4 s 

for 30 s. Images of wild-type RomR-GFP cells were obtained every 10 s for 4 min.  

 

Bioinformatics 

Genomic contexts: close FrzX homologs identified by BLAST were analysed using Microbial 

Genomic Context Viewer  (http://mgcv.cmbi.ru.nl/). Protein sequence alignment was performed 
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using Mafft (https://toolkit.tuebingen.mpg.de/mafft) and Ali2D for secondary structure 

prediction (https://toolkit.tuebingen.mpg.de/ali2d). 

 

Mathematical modelling 

The model is described by a set of ordinary differential equations. The equations were solved 

numerically using the ode45 solver in Matlab (The Mathworks Inc.). We mimicked signalling 

from the Frz system to the response regulator FrzX using a square wave smoothened with the 

smooth function. The bifurcation diagram was created using the matcont toolbox 

(https://matcont.sourceforge.io). See main text and Supplementary Information for detailed 

description and justification. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Reversal scoring assays 

Reversals were scored using previously described microfluidic single cell 

carboxymethylcellulose based assays, allowing modulation of Frz-signaling intensity with IAA 

(Guzzo et al 2015). In this assay, cells are moving using the S-motility system and reversals are 

scored in the presence of IAA (0.1% or 0.15%) or without IAA (for mutants with a frzon 

mutation). For this, homemade PDMS glass microfluidic chambers (Ducret et al., 2013) were 

treated with 0.015% carboxymethylcellulose after extensive washing of the glass slide with 

water. For each experiment, 1 mL of a CYE grown culture of OD = 0.5–1 was injected directly 

into the chamber and the cells were allowed to settle for 5 min. Motility was assayed after the 

chamber was washed with TPM 1mM CaCl2 buffer (Guzzo et al., 2015). IAA solutions made in 

TPM 1mM CaCl2 buffer at appropriate concentrations (0.1% or 0.15%) were injected directly 
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into the channels. Reversals were scored using two different analyses, since rapid directional 

changes unlinked to reversals but linked to motility engine activity (so-called stick-slip motions, 

(Guzzo et al., 2015; Hu et al., 2011)) can occur infrequently accounting for a low number of 

false positives. In mutants with no stick-slip motions, directional changes were monitored in 

contrast images acquired every 15 s for 30 min (see below) with 0.15% IAA, or without for 

mutants carrying the frzon mutation. To discriminate stick-slip motions from bona fide reversals 

in certain mutants, oscillations of FrzS-YFP proteins were scored instead of directional 

movements in the presence of 0.1% IAA (see below). This method has proven particularly 

accurate in determining the effect of a given gene in reversal control (Guzzo et al., 2015). Here, 

we use this method to unambiguously characterise the role of FrzX. 

Cell tracking  

Image analysis was performed with a specific library of functions written in Python and adapted 

from available plugins in FIJI/ImageJ (Schindelin et al., 2012). Cells were detected by 

thresholding the phase contrast images after stabilization. Cell were tracked by calculating all 

object distances between two consecutive frames and selecting the nearest objects. The 

computed trajectories were systematically verified manually and, when errors were encountered, 

the trajectories were removed. The analysis of the trajectories was performed using a Python 

script that calculates the angle formed by the line segments between the center of the cell at time 

t, the center at time t-1 and the center at time t+1.  

Directional changes were scored as reversals when cells switched their direction of movement, 

and the angle between segments was less than 90°. For non-reversing strains, the reversal 

frequency was calculated by dividing the number of directional changes by the number of 
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tracked frames, and, since images were acquired every 15s, this number was multiplied by 240 to 

generate a reversal frequency per hour and plotted. For strains that frequently reversed, the mean 

time between two reversals for each cell was plotted. Plotting was performed using the software 

R  (http://www.R-project.org/). 

To further discriminate bona fide reversal events from stick-slip motions, the fluorescence 

intensity of FrzS-YFP was measured at cell poles over time. For each cell that was tracked, the 

fluorescence intensity and reversal profiles were correlated to distinguish bona fide reversals 

from stick-slip events with the R software. When a directional change was not correlated to a 

switch in fluorescence intensity, this change was discarded as a stick-slip event. The reversal 

frequency was then calculated by dividing the number of bona fide reversals by the number of 

tracked frames, and, since images were acquired every 15s, this number was multiplied by 240 to 

generate a reversal frequency per hour and plotted.  

Statistics were performed using R: the Wilcoxon test was used when the number of cells was less 

than 40 in at least one of the two populations compared, while the student test (t-test) was used 

when the numbers of cells was higher than 40. 

Generating single cell traces 

Tracking of fluorescent polar clusters was performed manually with the MTrackJ plugin under 

FIJI after background subtraction and using a local cursor snapping to detect the maximum of 

fluorescence intensity at a pole. Normalized fluorescence intensities were calculated by 

normalizing the difference in polar signal by its maximum absolute value: I=(Pole1-

Pole2)/max(abs(Pole 1- Pole 2)). 
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Switching timescales 

Measurement of the timescale of polar switching, i.e. how long it takes a fluorescent foci to 

switch poles, was performed using an automated method under the FIJI/ImageJ plugin MicrobeJ 

(Ducret et al., 2016). Cell outlines and tracks were obtained based on phase contrast images and 

used to extract the subcellular fluorescence (using the ‘profile’ option). In this methodology, 

MicrobeJ performs a projection of the fluorescent signal onto the medial axis of the cell, 

returning the projected signal at discrete points along this axis (beginning and ending at each 

pole, and approximately 1 pixel apart). These discrete points define the boundary of transverse 

segments along the medial axis. The R script determines, for each cell on each frame, the area 

A(i) and the total fluorescent signal S(i) of each segment i. The sum of these values are the cross-

sectional cell area (A_cell) and the total fluorescence of the cell respectively. The mean 

fluorescence intensity of the cell (Int_cell) is the latter divided by the former. The polar regions 

were defined to be the first and last 5 segments of the cell and the corresponding mean polar 

fluorescence intensities, P1 and P2, are given by dividing the sum of the fluorescent signal, S(i), 

of these segments by the sum of the corresponding segment areas A(i). The mean cytoplasmic 

(CYTO) fluorescence intensity was defined as the summed intensity of the remaining segments 

divided by the sum of the corresponding segment areas. A correction for background 

fluorescence was made by subtracting the background intensity (extracted from the MicrobeJ 

output). A photobleaching correction was also added by normalizing to the whole cell intensity 

(Int_cell) . We removed the effect of autofluorescence and diffuse cytoplasmic signal by 

subtracting CYTO from P1 and P2.  We denote these corrected mean polar intensities by Y1 and 

Y2, respectively. 
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We found that working with the difference between the two polar intensities was less noisy than 

looking at the poles individually and we define the normalised difference as Y=(Y1-

Y2)/(Y1+Y2). The profile, Y was then smoothened using a Savitzky-Golay filter (Fig. S1D, 

upper plot). Nevertheless, variation in Y made it difficult to say when precisely a switch began 

and ended in all cases. However, one time point that can be determined robustly is the time of 

maximum (or minimum) slope, i.e. the time at which the signal changes fastest. We therefore 

used this measure as the basis of our approach. To calculate the slope maxima and minima, we 

used a Savitzky-Golay derivative filter to calculate a smoothened derivative directly from the 

unsmoothed profile (Fig. S1D, lower plot). We also take the time period between consecutive 

minima/maxima to define individual cycles (and the cycle duration). This generally agrees with 

the times of parity in the signal between the poles. We define the switching timescale to be the 

duration of the switch if the signal were to change continuously at its maximum measured rate. 

This is calculated as twice the maximum absolute value of Y within a cycle divided by the 

absolute value of the maxima/minima of the derivative (Fig. S1D). Note that each cycle has two 

associated switching timescales. 

 

Correlating fluorescence intensities and reversals 

To correlate fluorescence intensities and reversals, the time interval between a reversal, detected 

by the first time frame where a directional change can be measured, and the maximum of 

fluorescence intensity of a given GFP/mCherry fusion was scored for each reversal event (n). 

Negative time values were given if the maximum intensity was measured before a reversal and 

positive time values were given if the maximum intensity was measured after a reversal. A zero 

value means that a fluorescence maximum is observed exactly at the reversal detection time. 
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Note that due to phototoxicity and photobleaching, the time resolution of the measurements is 30 

s and thus detection of the exact reversal time has a resolution equal to this interval. 

 

FRAP analysis 

The analysis of FRAP data was performed using a custom MATLAB script. Data stored as 

multiplane tiff images were read in and presented to the user to select a region of interest as well 

as the bleached region. After background subtraction, the mean intensity within the region of 

interest was corrected for acquisition bleaching by multiply the intensities by an exponential 

exp(kt), the coefficient, k, having being obtained by fitting to the acquisition bleaching curve of 

another cell. Finally, we normalized to a prebleach intensity of 1. The resulting curves were fit 

using non-linear least squares to the equation f(t)=a*(1-exp(-b*t))+c , where a is a measure of 

the amplitude of the recovery, b is the inverse of the timescale of recovery and c is the fraction of 

the initial intensity that was not bleached. 

 

Other than the intensity in the bright focus near the pole, the background intensity in the cell is 

uniform along the long axis of the cell, even at the fastest timescales that we investigated (2.5 

frames/second). As described in the Supporting Information section describing the three 

compartment model, this implies that the timescale of FRAP recovery is dominated not by the 

diffusion of free protein through the cytoplasm, but the binding and unbinding kinetics. 

Following the work of Sprague et al., we interpret the constant b from each cell to be an estimate 

of koff. The half-time of recovery, t1/2, is ln(2)/b. 

 

Statistics were performed using R: the Wilcoxon test was used when the number of cells (n)  was 
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less than 40 in at least one of the two populations compared, and the student test (t-test) was used 

for a number of cells higher than 40. 

 

Supplemental table titles and legends 

 

Table S1. Bacterial strains used in this study. Related to STAR Methods 

Table S2. Plasmids used in this study. Related to STAR Methods 

Table S3. Primers used in this study. Related to STAR Methods 
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