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Abstract	

Although	it	is	well	known	that	animals	can	encode	the	consequences	of	their	actions	and	can	use	this	

information	to	control	action	selection	and	evaluation,	it	is	not	known	what	learning	rules	control	action-

outcome	(AO)	learning.	Here	we	trained	participants	to	encode	specific	AO	associations	whilst	undergoing	

functional	imaging	(fMRI)	and	used	computational	modelling	to	evaluate	competing	models.	This	analysis	

revealed	that	a	Kalman	filter,	which	learned	the	unique	causal	effect	of	each	action,	best	characterized	AO	

learning	and	found	the	medial	prefrontal	cortex	differentiated	the	unique	effect	of	actions	from	

background	effects.	We	subsequently	extended	these	findings	to	show	that	mPFC	participated	in	a	circuit	

with	parietal	cortex	and	caudate	nucleus	to	segregate	distinct	contributions	to	AO	learning.	The	results	

extend	our	understanding	of	goal-directed	learning	and	demonstrate	that	sensitivity	to	the	causal	

relationship	between	actions	and	outcomes	guides	goal-directed	learning	rather	than	contiguous	state-

action	relations.
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There	is	now	considerable	evidence	that	animals	are	capable	of	encoding	the	consequences	of	their	actions	1	

and	 that	 they	 use	 that	 information	 to	 select,	 evaluate	 and	 initiate	 future	 actions.1-5	 Although	 it	 is	 clear,	2	

therefore,	that	such	learning	involves	encoding	of	the	action-outcome	relationship,	the	learning	rules	that	3	

govern	that	 learning	have	yet	to	be	established.	Normatively,	 this	relationship	has	been	described	by	the	4	

formalism	∆P	(Figure	1A);	which	captures	the	effect	of	the	action	on	outcome	delivery	over	and	above	any	5	

background	effects6,7.	Nevertheless,	how	we	distinguish	these	effects	is	unclear.	6	

There	are,	in	fact,	very	few	mechanistic	models	of	how	we	and	other	animals	detect	and	encode	the	AO	7	

contingency.	Historically,	models	of	associative	learning	have	been	proposed	as	an	algorithmic	account	of	8	

causal	learning,	including	learning	about	actions.8,9	These	models,	and	their	modern	varients,1	assume	that	9	

background	conditioning	plays	a	key	role	because	the	background	competes	with	actions	via	a	summed	10	

error	term,	to	uniquely	predict	the	outcome.	More	recently	model-based	reinforcement	learning	models	11	

(MBRL),	which	forgo	a	summed	error-term	and	instead	incorporate	a	model	of	the	task	structure,	have	12	

been	proposed	as	a	general	account	of	goal-directed	action.4,10,11	MBRL	represents	the	task	structure	in	a	13	

covariance	matrix	that	represents	the	contiguity,	rather	than	the	unique	causal	relationship,	between	14	

actions	and	outcomes	(i.e.,	the	state-action	transitions).	15	

Here	we	evaluated	the	neural	computations	of	learning	about	causal	actions	(AO	learning)	in	the	human	16	

brain.	We	found	a	simple	Kalman	filter12-14	that	combined	prediction-error	learning	with	the	covariance	17	

structure	of	the	environment	explained	the	acquisition	of	AO	learning	better	than	models	based	on	18	

covariance	or	prediction-error	alone.	This	iterative	model	attributed	prediction-errors	to	different	causal	19	

variables	adjusted	by	their	covariance,	in	order	to	uniquely	predict	the	outcome.	Critically,	model-based	20	

fMRI	revealed	activity	in	the	medial	prefrontal	cortex	(mPFC)	and	the	dorsal	anterior	cingulate	cortex	21	

(dACC)	tracked	changes	in	the	predictive	value	of	actions	and	the	background	with	respect	to	specific	22	

outcomes,	separately.	Furthermore,	we	found	the	mPFC	participated	in	a	network	with	the	striatum	and	23	

posterior	parietal	cortex	to	segregate	the	influence	of	different	causes	via	their	covariance,	a	unique	24	

prediction	of	the	Kalman	algorithm.	These	findings	reveal,	for	the	first	time,	an	integrated	corticostriatal	25	

network	that	combines	prediction-errors	with	covariance	in	order	to	learn	how	our	actions	control	our	26	

environment.	27	
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Results	28	

We	performed	two	fMRI	experiments	to	probe	the	computational	mechanisms	by	which	the	brain	learns	29	

the	AO	contingency	and	distinguishes	it	from	any	background	effects.	In	typical	neuroscience	experiments,	30	

actions	and	their	consequences	are	offered	in	discrete	trials	where	there	is	no	ambiguity	about	unique	31	

effects.	Instead	we	used	a	free-operant	task	without	a	discrete	trial	structure,	along	with	noncontingent	32	

outcomes,	which	required	participants	to	infer	the	causal	effects	of	their	actions.		33	

AO	contingency	degradation	revealed	people	learned	the	unique	effects	of	their	actions	34	

Experiment	1	involved	training	hungry	participants	with	two	actions	for	distinct	food	outcomes,	selected	35	

before	the	task	by	each	participant	(e.g.,	button	1	=	M&Ms,	button	2	=	BBQ	flavored	crackers).	Training	36	

occurred	according	to	a	‘constant	probability’	schedule.15	During	the	fMRI	test,	at	the	end	of	every	second	37	

the	schedule	recorded	whether	a	button	was	pressed	and	then	presented	an	outcome	onscreen	with	a	38	

conditional	probability	P(Oi|Ai)	=	0.2,	for	each	action.	(Actual	food	outcomes	were	provided	at	the	end	of	39	

all	testing).	In	order	to	selectively	degrade	the	causal	relationship	of	one	AO	contingency	while	equating	the	40	

reward	value	of	both	actions,	the	schedule	also	presented	one	of	the	outcomes	onscreen	if	neither	button	41	

had	been	pressed,	i.e.,	P(O1|~A1,	~A2)	=	0.2.	Under	this	outcome-specific	degradation	schedule,	delivery	of	42	

the	noncontingent	outcome	diminishes	the	reward	value	of	both	actions	equally	(since	reward	can	now	be	43	

obtained	without	taking	either	action).	However	the	noncontingent	outcome	will	selectively	reduce	the	44	

causal	relationship	of	only	one	action	(A1)	and	not	the	other	(A2),	because	the	noncontingent	outcome	is	45	

indistinguishable	from	the	outcomes	caused	by	one	action,	but	easily	distinguishable	from	the	outcomes	46	

caused	by	the	other	action	(see	methods).16		47	

Figure	2A	illustrates	that	a	preference	for	the	non-degraded	action	(Con)	clearly	emerged	over	time	as	48	

people	were	exposed	to	the	differences	between	each	AO	contingency.	Figure	2B	(left	panel)	shows	that	49	

overall	the	mean	number	of	Con	actions	was	greater	than	the	degraded	actions	(Deg).	Causal	ratings	50	

collected	at	the	end	of	each	two	minute	block	also	confirmed	people	judged	the	Con	action	more	causal	51	

than	the	Deg	action,	shown	in	Figure	2C	(left	panel).	52	
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The	selective	impact	of	noncontingent	outcomes	on	actions	and	causal	judgments	reveals	our	sensitivity	to	53	

the	unique	effect	of	our	actions,	even	when	the	probability	of	reinforcement	among	actions	is	equal.	The	54	

noncontingent	outcomes	made	it	more	difficult	for	participants	to	distinguish	the	outcome	they	caused	55	

from	the	outcome	that	would	have	occurred	anyway.	As	a	result,	the	perceived	causal	efficacy	of	that	56	

action	was	reduced.	We	conducted	a	follow-up	test	after	the	fMRI	scan,	under	the	same	contingencies,	57	

with	the	addition	that	each	noncontingent	outcome	was	now	signaled	by	a	yellow-light	cue	(Figure	1B	&	D).	58	

The	signal	reduces	the	uncertainty	about	the	noncontingent	outcomes,	which	allows	participants	to	once	59	

again	distinguish	the	unique	effect	of	their	own	actions.	The	results	found	the	addition	of	the	signal	60	

restored	responding	(Figure	2B,	Signaled)	as	well	as	causal	judgments	of	the	degraded	action	(Deg)	to	the	61	

same	level	as	the	Con	action	(Figure	2C,	Signaled).	The	restoration	of	actions	and	causal	judgments	by	the	62	

signal	implies	that	learning	about	the	base-rate	or	‘background	conditioning’	plays	a	key	role	in	learning	the	63	

unique	causal	strength	of	our	actions.		64	

Action-selection	reflected	causal	learning	rather	than	reinforcement	learning	65	

Figure	3A	shows	the	correlation	between	causal	judgments	and	causal	actions	for	each	person	in	66	

Experiment	1	was	high	and	significant,	consistent	with	causal	learning	guiding	action-selection	rather	than	67	

the	frequency	of	reinforcement	or	immediate	temporal	effect	of	reward.	To	check	our	experimental	control	68	

over	each	contingency	in	this	free-response	task,	we	confirmed	the	noncontingent	outcomes	selectively	69	

degraded	the	experienced	contingency	of	the	degraded	action:	post-hoc	analysis	revealed	the	mean	70	

contingencies		experienced	for	the	Con	and	Deg	action	were	∆P	=	0.18	and	∆P	=	0.07	respectively,	paired	t-71	

test	t29	=	12.06,	p	=	.8E-12.	The	positive	contingency	(ignoring	noncontingent	outcomes)	for	the	Deg	action	72	

was	P(O1|A1)	=	0.17,	and	very	similar	to	the	Con	action	(P(O2|A2)	=	0.18,	paired	t-test	t29	=	0.90,	p	=	.37),	73	

confirming	that	serendipitous	differences	in	the	positive	contingency	were	not	responsible	for	the	results.	74	

Importantly,	each	person	received	noncontingent	outcomes	in	each	block,	with	the	exception	of	one	75	

person	who	received	noncontingent	outcomes	in	only	4	out	of	6	blocks.	We	also	checked	whether	any	76	

serendipitous	reward	contingency	existed	for	the	Con	action.	Figure	3B	(blue)	shows	the	correlation	77	

between	the	number	of	Con	actions	and	the	total	number	of	outcomes	(contingent	+	noncontingent)	78	

delivered	was	close	to	zero	across	participants,	confirming	there	was	no	serendipitous	reward	contingency	79	
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that	may	have	influenced	preference	for	the	Con	action.	Conversely	there	was	no	negative	contingency	80	

between	Deg	actions	and	total	outcomes	(Figure	3B,	red).	Furthermore,	the	distribution	of	delays	between	81	

each	outcome	and	the	preceding	action	did	not	differ	within	a	10-s	interval	for	Con	and	Deg	actions	(Figure	82	

3C),	confirming	that	the	immediate	temporal	contiguity	with	reward	was	not	differentially	influencing	83	

action-selection.	Finally,	pre-test	preference	ratings	of	the	snack	food	outcomes	confirmed	both	rewards	84	

were	equally	liked.	The	mean	(95%	confidence	interval)	ratings	on	a	7-point	Likert	scale	were	5.8	CI[5.5,	85	

6.2]	and	6.3	CI[5.9,	6.6],	for	BBQ	crackers	and	M&M	respectively.	Thus,	action-selection	did	not	reflect	any	86	

post	hoc	or	serendipitous	differences	in	reward	contingency	or	contiguity.		87	

Modelling	revealed	a	Bayesian	prediction-error	best	explained	AO	learning		88	

We	simulated	and	fit	three	models:	a	prediction-error	model	with	a	summed	prediction-error	term,	a	MBRL	89	

model	with	a	covariance	matrix,	and	a	Kalman	algorithm	with	both,	to	determine	which	best	explained	90	

behavioral	performance	in	Experiment	1.	The	prediction-error	model	assumed	actions	and	background	cues	91	

competed	for	causal	strength	via	a	summed	error-term	(see	methods).	Simulation	(Supplementary	figure	1)	92	

confirmed	this	model	resolved	the	unique	effect	of	the	causal	action	(i.e.,	converged	to	∆P).	By	contrast,	93	

the	MBRL	used	a	transition	matrix	(updated	via	a	state	prediction-error)	to	represent	the	covariance	94	

between	each	action,	outcome	and	background.	Simulation	confirmed	the	covariance	learned	by	this	95	

model	was	insufficient	to	distinguish	the	causal	action.	In	particular,	the	reward	value	of	the	free	outcomes	96	

outcompeted	both	actions	equally	in	the	MBRL,	which	did	not	learn	or	prefer	the	causal	action.	Finally,	the	97	

Kalman	algorithm	assumed	actions	compete	with	background	effects	via	a	summed	prediction-error	term,	98	

however	the	amount	learned	about	each	is	adjusted	by	the	covariance	between	them.	That	is,	when	causal	99	

variables	covary	(i.e.,	positive	covariance),	the	model	cannot	distinguish	their	separate	influence	and	so	100	

adjusts	them	together.	However	with	negative	covariance	then	the	effects	can	be	distinguished	and	101	

changes	in	the	belief	of	one	cause	will	inversely	affect	the	other	(see	Figure	4).	By	combining	the	prediction-102	

error	term	with	the	covariance,	the	Kalman	filter	distinguished	causal	actions	across	the	widest	range	of	103	

parameter	values	(Supplementary	figure	2).		104	

Behavioral	fitting	indicated	action	selection	was	better	explained	by	the	Kalman	algorithm	than	a	105	

prediction-error	model	or	MBRL.	Data	from	Experiment	1	was	used	to	calculate	the	posterior	probability	of	106	
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the	Kalman	algorithm,	as	well	as	a	prediction-error	model,	a	MBRL	model	(using	a	transition	matrix),	and	a	107	

null	model.	The	null	model	used	the	asymptote	AO	contingencies	of	each	block	as	action	values,	thus	it	was	108	

not	a	learning	model	but	a	static	model	with	no	temporal	dynamics.	Comparison	with	the	null	model	109	

determines	whether	each	learning	model	can	explain	how	choices	depend	on	the	sequence	of	trial-by-trial	110	

feedback.	Table	1	shows	the	negative	log	likelihoods	and	relative	Bayes	factors	of	each	model	relative	to	111	

the	null.	After	fitting	each	participants’	data	by	maximum-likelihood	estimation,	the	results	of	a	likelihood	112	

ratio	test	(LRT)	indicated	all	learning	models	predicted	significantly	more	behavior	than	chance.	However,	113	

the	relative	Bayes	factor	(vs	the	null	model)	shows	only	the	optimal	Kalman	algorithm	had	a	positive	value,	114	

indicating	only	this	model	predicted	the	acquisition	of	causal	learning	over	time.	This	model	also	explained	115	

more	choices	and	the	behavior	of	more	individuals	than	the	other	models,	with	a	Pseudo-R2	of	0.24	and	a	116	

positive	evidence	ratio	of	2	(20/10	favoring	H1/H0),	which	were	higher	than	the	respective	values	for	the	117	

other	learning	models.	Thus,	the	majority	of	subjects	and	the	total	evidence	favors	the	simple	Kalman	118	

algorithm	over	a	static	model	with	no	temporal	dynamics	but	perfect	asymptote	performance.	This	was	not	119	

the	case	for	the	optimal	MBRL,	or	the	prediction-error	model	(or	a	causal	induction	model,	see	120	

Supplementary	Materials),	which	all	explained	more	variance	than	chance	but	had	a	negative	GBF	relative	121	

to	the	null	and	a	PER	less	than	1	(Table	1).		122	

Model-based	fMRI	revealed	the	mPFC	distinguishes	causal	actions	from	background	effects	123	

We	evaluated	whether	the	brain	learned	about	causal	actions,	as	described	by	the	Kalman	filter,	by	124	

regressing	the	model-derived	learning	estimates	against	the	image	data	collected	in	Experiment	1.	125	

Independent	learning	estimates	for	actions	and	background	(∆AO	and	∆XO;	see	Methods)	were	included	as	126	

parametric	modulators	of	a	stick	(delta)	function	of	response	and	outcome	times.	We	included	outcomes	in	127	

the	delta	function	in	order	to	include	times	when	the	action	was	present	as	well	as	absent	(the	background	128	

was	assumed	to	be	always	present).	Whole-brain	analysis	revealed	learning	about	actions	and	the	129	

background	occurred	in	distinct	regions	of	the	mPFC	(Figure	5A	&	B).	Action	learning	(∆AO)	appeared	in	a	130	

medial	region	of	the	superior	frontal	gyrus	(BA9,	global	peak	MNI	co-ordinates:	-15	+47	+40,	Z	=	4.71,	F1,29	=	131	

37.12,	FWE	=	.031).	At	the	same	time,	learning	related	changes	to	the	background	estimates	(∆XO)	132	

appeared	in	the	dorsal	anterior	cingulate	cortex	(BA32,	global	peak	MNI:	-9	+41	+22,	Z	=	5.19,	F1,29	=	50.20,	133	
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FWE	=	.004),	as	well	as	smaller	changes	in	the	left	caudate	(MNI:	-15	+14	+7,	Z	=	4.88,	F1,29		=	41.80,	FWE	=	134	

.017),	and	cuneus	(MNI:	-3	-64	+34,	Z	=	4.39,	F1,29		=	37.28,	FWE	=	.04).	No	other	region	survived	multiple	135	

comparison	correction	in	this	whole-brain	analysis.	136	

The	results	described	so	far	indicate	the	background	expectancy	produced	by	the	noncontingent	outcome	137	

plays	a	key	role	in	learning	the	unique	effect	of	our	actions.	According	to	prediction-error	models	(including	138	

the	Kalman	algorithm),	this	background	expectancy	will	be	violated	whenever	the	noncontingent	outcome	139	

does	not	follow	an	action.	This	implies	that	a	negative	AO	contingency	will	be	learned	under	certain	140	

conditions	(i.e.,	inhibitory	learning).	For	example,	in	Experiment	1	we	explicitly	arranged	that	O1	sometimes	141	

occurs	after	A1	but	never	after	A2	(in	order	to	equate	the	reward	value	of	both	actions),	which	results	in	a	142	

negative	contingency	between	A2-O1.	We	tested	a	regressor	of	changes	to	this	negative	AO	contingency,	as	143	

learned	by	the	Kalman	algorithm,	in	the	whole-brain.	BOLD	activity	in	a	ventral	medial	prefrontal	region,	144	

including	the	anterior	cingulate	(BA32)	and	medial	orbitofrontal	cortex	(BA10),	learned	the	negative	AO	145	

contingency,	global	peak	MNI:	-3	+50	-11,	Z	=	3.52,	F1,29	=	18.08,	FWE	=	.011	(Supplementary	figure	3).	These	146	

imaging	results	are	consistent	with	recent	reports	in	rodents	that	the	medial	orbitofrontal	cortex	is	critical	147	

for	learning	about	unobserved	outcomes,	and	in	particular	a	negative	AO	contingency.17		148	

Model-based	fMRI	showed	the	posterior	parietal	cortex	tracks	covariance	between	causes.	149	

The	results	so	far	indicate	causal	actions	are	distinguished	from	the	background	in	the	mPFC.	A	unique	150	

feature	of	the	Kalman	filter	is	that	the	covariance	term	distinguishes	the	influence	of	candidate	causes	by	151	

updating	∆AO	and	∆XO	together	when	the	covariance	is	positive	and	updating	them	in	opposite	directions	152	

when	the	covariance	is	negative	(Figure	4).	We	tested	whether	any	brain	regions	tracked	the	covariance	153	

between	actions	and	background	by	entering	the	covariance	values	as	a	parametric	modulator.	A	whole-154	

brain	analysis	revealed	bilateral	activity	in	posterior	parietal	cortex	(BA40)	was	significantly	associated	with	155	

the	covariance	term,	left	global	peak	MNI:	-57	-55	+37,	Z	=	5.83,	F1,29	=	72.78,	FWE	<	.001	and	right	peak	156	

MNI:	+42	-67	+43,	Z	=	5.34,	F1,29	=	54.67,	FWE	=	.002	(Figure	5B).	157	

ROI	analysis	showed	prediction-error	and	covariance	converge	in	caudate	158	
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Substantial	evidence	exists	that	the	ventral	striatum	tracks	or	receives	reward	prediction-errors,18-20	while	159	

dorsal	striatal	regions	track	action	values.18	In	the	present	example	of	AO	learning,	the	prediction-error	160	

represents	the	deviations	between	the	observed	outcome	and	the	summed	total	causal	expectancy	(action	161	

+	background).	We	tested	whether	the	striatum	tracks	this	summed	error	term,	by	including	it	as	a	162	

parametric	modulator	in	an	anatomical	ROI	analysis	of	the	striatum.	Figure	5C	&	5D	shows	BOLD	responses	163	

in	a	posterior	region	of	the	caudate	body	(green)	tracked	the	summed	errors	(ROI	peak	MNI:	:	+15	+11	+4,	Z	164	

=	4.17,	t29	=	4.94,	FWE	=	.002	svc)	while	activity	in	the	anterior	caudate	(red)	was	associated	with	the	165	

covariance	between	actions	and	background	(ROI	peak	MNI:	-15	+23	+7,	Z	=	3.42,	t29	=	3.84,	FWE	=	.029	svc)	166	

These	regions	were	more	medial	and	dorsal	than	those	implicated	in	reward	prediction-error	signals	but	167	

similar	to	regions	implicated	in	instrumental	learning.18	Thus,	the	caudate	appears	to	receive	sufficient	168	

information	to	segregate	the	influence	of	different	events	and	may	play	an	important	role	in	selectively	169	

distinguishing	causal	actions	from	background	effects.	170	

DCM	revealed	the	caudate	segregates	the	effect	of	the	action	from	background	effects	171	

To	further	determine	the	caudate’s	role	in	distinguishing	control,	we	performed	a	dynamic	causal	model	172	

(DCM)	analysis.21	We	tested	two	possibilities	shown	in	Figure	5E	&	5F.	In	Model	1	the	caudate	is	a	site	of	173	

convergence	of	the	updated	values	from	the	prefrontal	cortex	to	enable	action-selection.	In	Model	2	the	174	

caudate	segregates	the	prediction-error	to	update	the	estimates	of	the	action	and	background	separately.	175	

Bayesian	model	selection	revealed	the	relative	log-evidence	for	model	2	was	85.31,	which	corresponds	to	176	

strong	evidence	in	favor	of	segregation.	A	random-effects	analysis	(Figure	5G	&	5H)	revealed	a	large	177	

majority	of	participants	were	significantly	more	consistent	with	the	segregate	model	than	the	integration	178	

model	(the	exceedance	probability	was	99	percent),	and	it	was	more	likely	to	be	true	for	any	random	179	

subject	(the	posterior	probability	of	the	segregate	model	was	80	percent).	180	

PPI	showed	cortex	and	caudate	interact	when	causal	actions	must	be	distinguished	by	their	covariance		181	

Experiment	2	replicated	the	key	fMRI	results	in	an	independent	sample	of	naive	participants,	using	a	design	182	

that	allowed	us	to	assess	the	effect	of	distinguishing	the	free	outcomes	on	the	corticostriatal	network	we	183	

identified	above.	The	experiment	used	a	single	AO	contingency	and	varied	whether	or	not	the	free	184	

outcomes	were	distinguishable	from	the	earned	outcomes	in	a	block-by-block	fashion,	to	test	the	185	
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interaction	between	causality	and	caudate	activity.	For	half	the	blocks	we	used	the	same	outcome	for	both	186	

free	and	earned	outcomes	(i.e.,	as	in	Experiment	1),	while	in	the	other	half	the	earned	outcomes	were	187	

different	from	the	free	outcomes.	Using	distinct	outcomes	in	half	the	blocks	allowed	the	participant	to	188	

discern	the	causal	effect	of	their	actions	(i.e.,	equivalent	to	signaling	the	free	outcomes,	as	in	the	follow-up	189	

to	Experiment	1).	Figure	6A	shows	that	degradation	reduced	total	actions	and	causal	ratings,	however	190	

providing	distinct	free	outcomes	restored	causal	actions	and	judgments.	As	before,	we	fitted	the	Kalman	191	

algorithm	to	the	data	using	maximum	likelihood	estimation.	The	optimal	model	predicted	significantly	192	

more	choices	than	chance,	the	mean	group	average	likelihood	per	trial	was	57	percent	(95%	CI:	53-60).	A	193	

functional	ROI	(fROI)	analysis	using	masks	generated	from	the	significant	results	in	the	mPFC	and	caudate	of	194	

Experiment	1	confirmed	that	learning	about	the	background	(∆XO)	occurred	in	the	same	dorsal	ACC	region	195	

(Figure	6C,	blue),	ROI	peak	MNI:	-3	+36	+38,	Z	=	3.94,	t19	=	5.06,	FWE	=	.02.	Meanwhile	learning	values	for	196	

the	action	(∆AO)	occurred	in	the	same	region	of	BA9	(Figure	6C,	violet),	ROI	peak	MNI:	-2	+47	+46,	Z	=	3.04,	197	

t19	=	3.56,	p	=	.001.	Covariance	between	the	action	and	background	was	tracked	in	the	caudate	(Figure	6C,	198	

right),	ROI	peak	MNI:	-12	+20	+1,	Z	=	3.91,	t19	=	5.01,	FWE	=	.002.	We	used	a	whole-brain	PPI	analysis	to	199	

determine	whether	any	cortical	regions	interacted	with	the	caudate	when	free	outcomes	were	200	

indistinguishable	from	earned	outcomes.	A	single	region	in	the	right	parietal	junction	interacted	with	the	201	

caudate	when	free	outcomes	were	the	same	(versus	different),	shown	in	Figure	6E,	global	peak	MNI:	+54	-202	

58	+30,	Z	=	4.68,	F1,19	=	24.90,	FWE	=	.01.	This	region	overlapped	with	the	right	posterior	parietal	cortex	203	

(BA40)	identified	in	Experiment	1	(Figure	6E,	red).	Together	these	results	implicate	the	posterior	parietal	204	

cortex	in	tracking	the	covariance	with	the	background,	and	interacting	with	the	caudate	when	the	unique	205	

effect	of	our	actions	must	be	distinguished	from	the	background.	206	

Discussion 207	

We	sought	to	establish	the	learning	rules	that	govern	AO	learning	in	instrumental	conditioning	and	their	208	

neural	bases.	We	found	that	the	medial	prefrontal	cortex	participates	in	a	circuit	that	detects	and	209	

segregates	the	unique	causal	effects	of	our	actions	from	other	background	effects,	and	more	importantly,	210	

that	this	segregation	was	generated	by	a	Bayesian	prediction-error,	described	by	a	Kalman	filter,	which	uses	211	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 14, 2017. ; https://doi.org/10.1101/137851doi: bioRxiv preprint 

https://doi.org/10.1101/137851
http://creativecommons.org/licenses/by/4.0/


 11 

a	summed	prediction-error	term	along	with	the	covariance	between	potential	causes	to	distinguish	the	212	

unique	effect	of	actions	from	background	effects.	Furthermore,	the	caudate	appears	to	be	a	key	point	of	213	

integration	of	the	covariance	term	and	prediction-error;	it	segregates	the	summed	prediction-error	into	214	

separate	update	values	for	each	causal	belief.	Thus,	this	model	represents	a	simple,	iterative	Bayesian	215	

model	of	change,	that	unlike	other	computational-level	models,22	provides	an	algorithmic	account	of	AO	216	

learning	that	can	be	instantiated	in	the	neural	code.23	217	

Many	results	have	emphasized	the	critical	role	of	the	medial	prefrontal	cortex	in	AO	learning,	however	the	218	

exact	nature	of	this	role	has	been	unspecified.	Indeed,	there	is	a	wealth	of	evidence	that	in	the	rat,	the	219	

prelimbic	region	of	the	medial	prefrontal	cortex	is	critical	for	the	acquisition	of	goal-directed	actions.2,24-29	220	

Computational	models	of	medial	prefrontal	cortex	function	in	humans	such	as	the	PRO	model1	assume	the	221	

dorsal	anterior	cingulate	signals	negative	prediction-errors	during	AO	learning,	consistent	with	other	222	

prediction-error	models.8	Such	models	only	offer	a	partial	explanation	of	the	results	we	observed	here:	The	223	

update	to	the	background	effect	(∆XO)	represents	the	learned	probability	of	the	noncontingent	outcome	224	

that	must	be	adjusted	against	the	probability	of	the	contingent	outcome.	This	is	consistent	with	negative	225	

prediction-errors	when	positive	changes	to	the	background	(+∆XO)	occur	in	the	context	of	a	negative	226	

covariance	term,	and	so	result	in	negative	changes	to	the	AO	contingency	(–∆AO).	At	other	times,	positive	227	

changes	to	the	background	probability	(+∆XO)	will	occur	in	line	with	changes	to	the	AO	contingency,	228	

consistent	with	positive	prediction-errors.	This	occurs	when	the	covariance	is	positive,	for	instance,	in	229	

situations	in	which	we	cannot	distinguish	the	unique	effect	of	our	actions	from	potential	background	230	

causes.			231	

Our	results	also	distinguished	a	separate	region	of	the	mPFC,	near	the	medial	surface	of	BA9,	whose	activity	232	

represented	updates	to	the	unique	effect	of	the	action	(∆AO)	and	replicated	the	involvement	of	the	mPFC	233	

in	an	independent	sample,	highlighting	the	reliability	of	the	current	findings	(Figure	6C).	We	further	showed	234	

using	PPI	(Figure	6D	&	E)	that	the	caudate	interacts	with	the	parietal	cortex	when	free	outcomes	are	235	

indistinguishable	from	the	earned	outcome	(i.e.,	when	there	was	no	signal	or	the	free	outcome	was	the	236	

same	as	the	earned	outcome).	The	selective	interaction	between	parietal	cortex	and	caudate	arises	under	237	

the	additional	demands	when	there	is	no	observable	information	to	distinguish	control.	When	238	
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noncontingent	outcomes	are	indistinguishable,	the	covariance	between	our	actions	and	the	background	is	239	

the	only	information	that	can	be	used	to	distinguish	them.	The	right	posterior	parietal	junction	identified	in	240	

the	PPI	was	the	same	cortical	region	identified	in	Experiment	1	as	tracking	the	covariance	term	(along	with	241	

the	caudate	in	the	subcortex).	It	also	overlaps	with	the	cortical	region	previously	implicated	in	learning	the	242	

transition	matrix	during	model-based	reinforcement	learning,30	suggesting,	across	studies	and	laboratories,	243	

that	this	region	represents	the	covariance	structure	of	the	environment.	While	PPI	does	not	indicate	the	244	

direction	of	influence,	these	results	are	consistent	with	a	network	extending	from	the	parietal	cortex	to	245	

caudate	to	mPFC,	which	tracks	the	covariance	between	actions	and	other	events	and	then	segregates	the	246	

error-term	to	learn	about	and	distinguish	between	the	influence	of	different	causes.		247	

We	found	the	competitive	allocation	of	causal	belief	to	actions	relative	to	the	background	is	a	form	of	248	

selective	learning	closely	related	to	cue-competition	models	in	associative	learning.8	An	important	249	

difference	is	the	covariance	matrix	of	the	Kalman	filter,	in	which	the	off-diagonal	terms	track	the	250	

covariation	between	events.	In	our	model,	the	covariance	allowed	the	learner	to	distinguish	or	segregate	251	

the	effects	of	an	action	from	the	background	in	the	absence	of	that	action,	as	shown	in	Figure	4.	This	252	

allowed	the	model	to	reason	counterfactually	about	what	would	have	happened	if	an	action	had	not	253	

occurred.	In	this	manner,	the	covariance	is	analogous	to	heuristically	motivated	formalizations	of	within-254	

event	learning	(e.g.,	negative	alpha)	which	allows	learning	about	absent	events	in	recent	versions	of	cue-255	

competition	models.31,32	Our	simple	Kalman	filter	thus	combines	key	features	of	contemporary	associative	256	

learning	and	model-based	reinforcement	learning.	257	

These	results	also	make	an	important	contribution	to	the	common	claim	that	goal-directed	learning	is	258	

analogous	to	MBRL.	In	general,	MBRL	is	concerned	with	building	a	model	of	the	environment,	given	the	259	

state	caused	by	each	action	(i.e.,	the	covariance	or	transition	matrix).	In	such	models,	“state	prediction-260	

errors”	and	the	covariance	matrix	they	update30	only	describe	the	contiguity	between	states	and,	as	a	261	

result,	the	covariance	matrix	cannot	learn	or	accurately	represent	a	causal	relationship.	By	contrast,	causal	262	

learning	is	not	concerned	with	the	transition	probabilities	between	different	states,	but	rather	the	trade-263	

offs	between	competing	contingencies	to	determine	whether	that	state	was	cause	by	an	action	or	not.	This	264	

is	a	primary	difference	between	causal	models	and	MBRL.	The	question	of	which	action	caused	which	state	265	
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is	arguably	more	fundamental	to	goal-directed	learning.	For	example,	the	prediction-errors	we	observed	266	

here	are	critically	different	from	“state	prediction-errors”	because	they	are	adjusted	for	the	probability	that	267	

another	state	(the	background)	may	also	cause	the	outcome.	This	adjustment	leads	to	a	representation	of	268	

the	unique	causal	strength	of	our	actions.	Hence,	an	important	implication	of	this	proposal	is	that	MBRL	per	269	

se	may	be	sufficient	for	maximizing	reward	but	it	does	not	provide	a	complete	account	of	goal-directed	270	

learning	since	it	is	unable	to	calculate,	and	so	is	insensitive	to,	the	causal	relationship	between	actions	and	271	

states.	272	

Unlike	some	other	computational	models	of	causal	learning,	the	causal	estimates	learned	by	our	Kalman	273	

filter	converge	to	∆P,	a	normative	measure	of	causal	strength.	Other	researchers	have	argued	that	∆P	does	274	

not	provide	the	best	approximation	of	human	causal	inference	because	changing	the	base-rate	probability	275	

of	an	outcome	while	holding	∆P	constant	modulates	causal	judgements	(e.g.,	“the	base-rate	illusion”).	276	

However	the	base-rate	illusion	is	considerably	weaker	in	free-response,	instrumental	learning	where	trials	277	

are	not	explicitly	segmented.33-36	Furthermore,	when	learning	about	causal	effects,	active	intervention	is	a	278	

more	reliable	guide	to	causal	relations	than	is	sheer	observation,	largely	because	actions	constitute	one	279	

basic	way	to	control	for	possible	alternative	causes.37-40	Humans	are	able	to	reason	suppositionally	or	280	

counterfactually	about	what	would	be	expected	to	happen	if	an	intervention	is	made	or	not	made,	and	281	

midbrain	dopamine	neuron	firing41	along	with	our	Bayesian	model	reflects	these	counterfactual	action	282	

values.	For	these	reasons,	AO	learning	may	not	suffer	the	same	biases	as	other	forms	of	causal	learning	that	283	

are	based	on	passive	observation.	284	

In	conclusion,	learning	about	the	causal	effects	of	our	actions,	as	required	for	goal-directed	learning	and	as	285	

investigated	here,	appears	to	reflect	features	of	traditional	associative	models	such	as	competition	for	286	

predictive	value,	as	well	as	modern	conventions	such	as	environmental	structure	(covariance).	In	our	hands,	287	

these	features	were	combined	in	a	highly	simplified,	iterative	Kalman	filter	that	learned	a	probability	288	

distribution	over	action-outcome	contingencies	to	provide	a	novel	account	of	AO	learning.	In	our	results	289	

there	was	impressive	agreement	across	experiments	and	replications	that	distinct	regions	of	a	290	

corticostriatal	network	distinguished	the	unique	causal	effect	of	actions	from	those	of	the	background.	291	

More	generally,	the	results	revealed	how	our	neuroanatomy	performs	Bayesian	computations,	consistent	292	
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with	growing	evidence	that	the	brain	learns	and	make	decisions	on	the	basis	of	probability	293	

distributions.23,42-44		294	

	295	

Methods 296	

Participants.	297	

In	Experiment	1,	31	right-handed	English	speaking	volunteers,	aged	between	19	and	51	(mean	age	30.5)	298	

were	scanned.	One	participant	was	removed	due	to	excessive	head	movement	(>	2	mm),	thus	n	=	30	(18	299	

females).	On	the	basis	of	a	power	analysis	(Supplementary	Material),	scans	from	23	right-handed,	English	300	

speaking	volunteers,	aged	between	17	and	32	(mean	age	26)	were	considered	for	Experiment	2.	Three	301	

participants	were	removed	due	to	excessive	head	movement	(>	2	mm),	thus	n	=	20	(11	females).	All	302	

participants	were	free	of	food	allergies,	neurological	or	psychiatric	disease,	and	psychotropic	drugs,	and	303	

reported	strong	liking	of	the	snack	foods	we	provided	as	reward.	Informed	consent	to	participate	was	304	

obtained	and	the	study	was	approved	by	the	Human	Research	Ethics	Committee	at	the	University	of	Sydney	305	

(HREC	no.	12812).	Participants	were	reimbursed	$45	AUD	in	shopping	vouchers,	in	addition	to	the	snack	306	

foods	they	earned	during	the	test	session.	307	

AO	contingency	degradation	task.	308	

In	each	experiment,	participants	were	instructed	not	to	eat	three	hours	prior	the	appointment.	Pre-testing	309	

involved	obtaining	preference	ratings	on	a	7-point	scale	for	each	of	three	snacks	(M&Ms,	BBQ	flavored	310	

crackers,	chocolate	cookies),	from	which	the	two	most	similarly	preferred	snacks	were	selected	for	the	311	

experiment.		312	

Experiment	1	involved	learning	two	AO	contingencies	concurrently.	Participants	were	instructed	they	could	313	

liberate	snack	foods	(BBQ	flavored	crackers	and	M&Ms)	from	a	vending	machine	by	tilting	it	to	the	left	or	314	

right	(by	pressing	either	a	left	or	right	button),	and	that	sometimes	the	vending	machine	would	also	release	315	

a	snack	for	free.	They	were	also	instructed	to	find	the	best	action	for	releasing	snacks.	Outcomes	were	316	

indicated	by	the	presentation	of	a	visual	stimulus	depicting	the	snack	for	1-s	duration	(	a	particular	snack	317	

food,	e.g.,	M&M	or	BBQ	cracker),	during	which	further	outcomes	could	not	be	earned.	The	relationship	318	
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between	actions	and	outcomes	were	constant	across	blocks	for	each	participant	(e.g.,	left	=	M&M	and	right	319	

=	BBQ	crackers	for	all	blocks).	Each	block	lasted	120-s,	and	the	software	controlling	the	task	PsychoPy2	320	

v1.8,	45,46	divided	each	block	into	120	one-second	intervals	to	determine	the	outcome	rate.	Participants	321	

were	unaware	of	the	1-s	intervals,	and	they	responded	freely	using	the	index	finger	on	their	right	hand	to	322	

press	the	left	or	right	button	on	a	Lumina	MRI-compatible	response	pad	(LU-400,	Cedrus	Corporation,	CA).	323	

An	action	(tilt	left	or	tilt	right)	earned	a	particular	outcome	with	a	probability	P	=		0.2	if	that	action	had	324	

occurred	in	the	preceding	1-s	interval.	If	both	actions	occurred	in	the	preceding	interval	then	only	the	most	325	

recent	action	was	considered	for	reinforcement.	A	free	outcome	was	delivered	with	P	=	0.2	if	neither	action	326	

had	been	made.	This	schedule	ensured	two	important	features:	1)	that	there	was	no	serendipitous	327	

contingency	between	an	action	and	a	free	outcome,	which	would	result	in	a	higher	reward	contingency	for	328	

the	contingent	action16,	and	2)	the	earned	outcome	appeared	at	a	varying	interval	up	to	one	second	after	a	329	

successful	action,	which	is	sufficient	to	introduce	ambiguity	into	the	perceived	AO	contingency.47	330	

Participants	completed	six	blocks;	the	outcome	(BBQ	cracker	or	M&M)	that	was	subject	to	contingency	331	

degradation	was	counterbalanced	across	blocks	(ABBAAB).	At	the	end	of	each	block,	participants	rated	how	332	

causal	each	action	was	with	respect	to	each	outcome	on	a	Likert	scale	from	1	(not	at	all)	to	7	(very	causal).	333	

A	follow-up	test	was	conducted	after	the	scan.	The	test	setting,	duration	and	programmed	AO	334	

contingencies	in	the	follow-up	test	were	exactly	the	same	as	in	the	scanner,	with	the	addition	of	a	1-s	335	

yellow	light	cue	displayed	on	the	front	of	the	virtual	vending	machine	immediately	prior	to	the	delivery	of	336	

each	free	reward.	At	the	end	of	all	testing,	participants	received	all	snacks	that	had	been	delivered	337	

onscreen	during	test.	338	

Experiment	2	involved	learning	a	single	AO	contingency.	The	session	was	arranged	in	12	blocks	of	60-s	339	

duration,	and	in	each	block	the	participant	responded	freely	for	a	single	snack	food	reward	340	

(counterbalanced	between	BBQ	crackers	and	M&Ms).	As	before,	in	each	block	the	positive	contingency	was	341	

P(O|A)	=	0.2	in	every	second	a	response	was	made.	The	probability	of	a	free	outcome	in	every	second	when	342	

no	response	was	made,	i.e.,	P(O|~A),	varied	between	0,	0.1	and	0.2	across	blocks	in	a	counterbalanced	343	

order.	Conversely,	ΔP	varied	from	0.2,	0.1	to	0.	In	addition,	Experiment	2	varied	whether	the	free	outcome	344	

was	the	same	snack	or	a	different	snack	as	the	earned	outcome	in	each	block,	in	an	ABBA	order.	In	half	the	345	
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blocks	the	earned	and	free	outcomes	were	different	which	effectively	signaled	the	free	outcomes	and	346	

allowed	the	participant	to	discern	the	causal	effect	of	their	actions.	For	the	other	half	of	blocks	the	free	347	

outcomes	were	the	same	snack	food	as	the	earned	outcome,	thus	making	it	difficult	to	discern	unique	348	

causal	effects.		349	

Behavior	data	analysis	350	

The	behavioral	data	consisted	of	the	rate	of	responding	during	each	block	and	the	causal	ratings	obtained	351	

at	the	end	each	block.	Experiment	1	tested	for	differences	between	Con	and	Deg	actions	in	the	proportion	352	

of	total	responses,	as	well	as	mean	causal	ratings.	In	each	case,	a	Shapiro-Wilk	test	confirmed	the	data	did	353	

not	violate	the	assumption	of	normality	and	differences	were	assessed	by	paired	t-tests	(two-tailed).	354	

Experiment	2	tested	the	main	effect	of	the	outcome	condition	(Same	versus	Different	free	outcomes)	and	355	

its	linear	interaction	with	the	contingency	condition	(∆P	=	0.2,	0.1,	and	0.0),	using	a	2	x	3	repeated	356	

measures	ANOVA	(two-tailed).	Mauchly’s	test	was	used	to	detect	violations	of	sphericity,	in	which	case	the	357	

Greenhouse-Geisser	correction	was	applied.	358	

Model-based	analysis.		359	

For	each	of	the	learning	models	described	below,	the	real-time	occurrence	of	outcomes	was	modelled	with	360	

a	logistic	function	f(x)	=	1	/	(1	+	e∞(D-k))	to	produce	a	binary	result	(0,1)	determining	whether	the	outcome	361	

will	or	will	not	be	associated	with	the	prior	action.	D	is	the	delay	between	the	previous	action	and	outcome,	362	

and	k	is	the	temporal	threshold	included	as	a	free	parameter	in	the	model-fitting	described	below.	363	

Prediction-error	learning.	The	prediction-error	model	adopted	a	standard	delta	rule	exemplified	in	the	364	

Rescorla-Wagner	model8	and	adapted	for	vector-valued	predictions	in	modern	reincarnations.1		This	allows	365	

multiple	action	outcomes	to	be	predicted	simultaneously,	each	with	its	own	summed	error-term.	In	this	366	

model,	the	predicted	outcome	ô	is	a	weighted	sum	of	actions	and	background	cues	(ô	=	Va).	Updates	to	the	367	

weights	(V)	occur	by	the	prediction	error:	368	

∆V	=	!(o	–	Va)	 	 	 	 	 	 (1)	369	
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where	!	is	a	free	parameter	controlling	the	learning	rate.	In	this	way,	the	model	replicates	the	prediction-370	

error	learning	of	the	Kalman	algorithm	below,	but	without	adjustment	by	a	covariance	matrix	so	all	changes	371	

are	restricted	to	actions	on	the	current	trial.		372	

Model-Based	Reinforcement	Learning.	The	MBRL	model	was	adapted	from	the	FORWARD	model	described	373	

in	Glascher	et	al	(2010),	which	uses	experience	with	state	transitions	to	update	an	estimated	matrix	of	374	

transition	probabilities.	The	transition	matrix	(T)	held	the	current	estimate	of	the	probability	of	375	

transitioning	from	action	a	(a	binary	vector	indicating	one	of	three	possibilities:	make	action	A1,	make	376	

action	A2,	or	Wait)	to	an	outcome	state	o	(a	binary	vector	indicating	one	of	three	possibilities:	outcome	O1	377	

delivered,	outcome	O2	delivered,	or	no	outcome	delivered	[background	state]).	Wait	actions	occurred	at	378	

the	end	of	every	second	in	which	no	other	action	occurred.	In	the	T	matrix,	the	different	actions	were	379	

represented	in	different	columns,	while	the	different	outcomes	were	represented	in	different	rows.	The	380	

transitions	were	initialized	to	uniform	distributions	connecting	each	action	and	outcome.	Upon	each	step,	381	

having	taken	action	a	and	arrived	in	outcome	state	o,	the	FORWARD	learner	estimates	the	expected	382	

outcomes	on	the	basis	of	the	current	transition	matrix	(ô	=	Ta),	and	computes	a	state	prediction-error	∆T:		383	

∆T	=	!(o	–	ô)	 	 	 	 	 	 (2)	384	

Updates	to	the	transition	matrix	T	of	the	observed	transition	occur	via	∆T:	385	

T(i)	=	T(i)	+	∆T	 	 	 	 	 	 (3)	386	

where	i	is	the	column	corresponding	to	the	taken	action.	387	

Kalman	algorithm.	The	aim	of	the	Kalman	algorithm	was	to	learn	the	unique	causal	weight	of	each	action	388	

over	and	above	the	background	(i.e.,	∆P).	The	algorithm	builds	a	probabilistic	representation	of	the	causal	389	

weights	(w)	of	each	input	(actions	and	background	cues)	predicting	each	outcome	(o),	representing	causal	390	

beliefs.	The	causal	beliefs	are	represented	by	a	multivariate	normal	density	N(w|µ,C)	with	a	prior	Gaussian	391	

distribution,	and	after	observing	each	outcome	the	causal	weights	are	updated	by	changes	in	the	mean	and	392	

variance	of	each	distribution	(see	below).	The	mean	µ	represents	the	belief	in	the	unique	causal	strength	393	

while	the	variance	C	captures	the	uncertainty	around	that	belief.	When	the	variance	is	large,	there	is	large	394	
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uncertainty	regarding	the	true	causal	strength.	The	updating	equations	for	the	mean	and	variance	of	the	395	

causal	weight	have	the	following	form:	396	

∆µ	=	(v	+	aTCa)–1	(o	–	µT
a)Ca	 	 	 	 (4)	397	

∆C	=	–(v	+	aTCa)–1	CaaTC		 	 	 	 (5)	398	

where	v	is	a	free	parameter	capturing	outcome	variance.	For	each	second,	the	execution	of	an	action	and	399	

the	constant	background	context	are	represented	as	a	binary	input	vector	(a)	and	an	outcome	vector	(o)	400	

represents	the	delivery	of	the	outcomes	(O1	and	O2).	The	first	term	(v + aTCa)–1		represents	the	total	401	

certainty	(inverse	sum	of	outcome	uncertainty	and	belief	uncertainty	)	and	it	governs	the	learning	rate.	µTa	402	

is	a	vector	representing	the	learned	causal	weights	on	the	basis	of	the	current	inputs	(a).	The	difference	403	

between	the	observed	outcome	and	learned	causal	weights	(o – µTa)	is	a	vector	of	outcome-specific	404	

prediction	errors,	each	of	which	represents	a	summed	error-term	for	O1	and	O2.	The	rightmost	term	Ca	is	405	

the	product	of	the	covariance	matrix	and	input	vector,	and	it	allows	for	changes	to	the	mean	belief	about	406	

actions	otherwise	correlated	with	the	background	context	but	absent	on	the	present	trial.	In	this	manner,	407	

the	Kalman	filter	is	able	to	distinguish	the	unique	influence	of	actions	from	the	context	during	408	

noncontingent	outcomes.	Importantly,	the	covariation	between	each	action	and	the	background	are	409	

tracked	in	the	off-diagonal	elements	of	C,	which	allowed	us	to	test	a	unique	prediction	of	this	model.	Thus	410	

changes	to	the	mean	beliefs	(∆µ)	depend	on	the	prediction-error	as	well	as	the	covariance	matrix	C.	411	

Null	model.	For	comparison,	we	also	described	a	null	model	without	any	temporal	dynamics	but	ideal	412	

asymptote	performance.	The	null	model	assumed	that	the	probability	of	taking	each	action	was	413	

proportional	to	the	final	∆P	obtained	in	each	block,	so	Qright	=	∆Pright	and	Qleft	=	∆Pleft.	414	

Policy.	The	policy	of	each	model	was	the	same.	In	each	learning	model,	each	action	had	a	unique	causal	415	

relationship	with	two	outcomes	representing	the	belief	regarding	that	particular	AO	contingency	(e.g.,	µa,o).	416	

So	for	each	action,	we	selected	the	highest	causal	belief	associated	with	that	action	Qa	=	arg	maxa	µa,o	and	417	

then	used	it	to	probabilistically	explain	the	action	choices	of	each	participant	using	the	softmax	rule:	418	

πright	=	"#Qright	/	("#Qright	+	"#Qleft)	 	 	 	 (6)	419	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 14, 2017. ; https://doi.org/10.1101/137851doi: bioRxiv preprint 

https://doi.org/10.1101/137851
http://creativecommons.org/licenses/by/4.0/


 19 

Bayesian	model	comparison.	We	generated	observation	models	based	on	the	three	learning	models	420	

described	above	as	well	as	the	null	model,	and	fit	them	to	each	subject’s	behaviour	separately	using	421	

maximum-likelihood	estimation.	A	non-linear	optimization	was	achieved	using	the	fmincon	function	in	422	

MATLAB	R2014B	(The	Mathworks	Inc.,	MA,	USA)	over	100	random	starting	values	for	each	subject.	We	423	

measured	the	overall	goodness	of	fit	using	the	average	likelihood	per	trial	of	the	best	fit	model	for	each	424	

subject.	The	average	likelihood	per	trial	was	calculated	as	the	exponent	of	the	sum	of	log	likelihoods	425	

divided	by	the	number	of	trials	(responses)	for	each	subject.	We	compared	models	by	aggregating	the	426	

probability	of	the	data	given	the	model	over	each	subject’s	fit	(single-subject	Bayesian	Information	Criterion	427	

[BIC]	score)	to	estimate	the	model	evidence	for	the	full	dataset.	The	aggregate	for	each	model	was	then	428	

compared	to	compute	a	Group	Bayes	Factor	(GBF).	We	also	report	the	number	of	subjects	for	whom	429	

individual	model	comparison	gave	the	same	answer	as	the	GBF	and	the	positive	evidence	ratio	(PER),	where	430	

“positive”	evidence	for	one	model	versus	another	exists	if	the	log	Bayes	factor	is	larger	than	three	(Kass	&	431	

Raftery,	1995).	432	

Image	data	analysis		433	

MRI	data	were	acquired	on	a	3-Tesla	GE	Discovery	using	a	32-channel	head	coil.	A	T1-weighted	high-434	

resolution	structural	scan	was	acquired	for	each	subject	for	screening	and	registration	with	a	1-mm3	voxel	435	

resolution	(TR:	7200	ms,	TE:	2.7	ms,	176	sagittal	slices,	1-mm	thick,	no	gap,	256	x	256	x	256	matrix).	For	436	

BOLD	acquisition,	we	acquired	echo	planar	image	(EPI)	volumes	comprising	52	axial	slices	in	an	ascending	437	

interleaved	acquisition	order	(TR:	2910	ms,	TE:	20	ms,	FA:	90	degrees,	FOV:	240	mm,	matrix:	128	x	128,	438	

acceleration	factor:	2,	slice	gap:	0.2	mm)	with	a	voxel	resolution	of	1.88	x	1.88	x	2.0	mm.	Slices	were	angled	439	

15	degrees	from	AC-PC	to	reduce	signal	loss	in	the	OFC.	In	Experiment	1,	343	EPIs	were	acquired	while	in	440	

Experiment	2,	260	EPIs	were	acquired.	441	

Data	were	analysed	using	SPM8	(www.fil.ion.ucl.ac.uk/spm).	Preprocessing	and	statistical	analysis	were	442	

conducted	separately	for	each	experiment.	The	first	four	images	were	automatically	discarded	to	allow	for	443	

T1	equilibrium	effects,	then	images	were	slice	time	corrected	to	the	middle	slice	and	realigned	with	the	first	444	

volume.	The	structural	image	was	coregistered	to	the	mean	functional	image,	segmented	and	warped	to	445	

MNI	space.	The	warp	parameters	were	then	used	to	normalise	the	resampled	functional	images	(2	mm3).	446	
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Images	were	then	smoothed	with	a	Gaussian	kernel	of	8-mm	full-width	half	maximum	to	improve	447	

sensitivity	for	group	analysis.		448	

Model-based	fMRI	analysis		449	

For	each	first-level	GLM	analyses,	we	constructed	a	vector	of	delta	values	for	action	causal	beliefs	(∆AO)	450	

and	background	causal	beliefs	(∆XO),	generated	with	the	parameters	provided	by	the	group	maximum	451	

likelihood	estimation	(MLE).48	For	∆AO,	the	delta	values	were	taken	for	the	current	action	contingency	(i.e.,	452	

A1-O1	or	A2-O2),	while	for	∆XO	the	delta	values	were	taken	for	the	current	outcome	(B-O1	or	B-O2).	To	453	

test	for	brain	activity	tracking	the	unique	changes	in	each	vector,	we	entered	∆AO	and	∆XO	as	parametric	454	

modulators	of	a	stick	function	that	included	both	response	and	reward	times	in	an	event-related	design.	455	

While	these	update	signals	will	fluctuate	independently,	there	will	be	some	collinearity	when	the	456	

covariance	is	zero.	Collinearity	is	a	problem	when	trying	to	determine	unique	effects	associated	with	each	457	

regressor.	However,	the	variance	inflation	factor	can	be	used	to	indicate	if	a	collinearity	problem	is	present.	458	

The	variance	inflation	factor	was	1.23,	which	is	within	the	bounds	of	a	conservative	threshold	<	5.49	459	

Nevertheless,	to	remove	any	residual	collinearity	between	these	regressors,	each	regressor	was	entered	as	460	

the	second	modulator	to	ensure	it	was	adjusted	for	the	prior	regressor	using	the	default	orthogonalize	461	

routine	in	SPM.49	Each	GLM	also	contained	rating	periods	and	six	movement	parameters.	Betas	were	462	

estimated	with	a	128-s	high-pass	filter	and	AR1	correction	for	auto-correlation.	The	resulting	beta	images	463	

were	included	in	a	group-level	random	effects	analysis	in	SPM	one-sample	t-tests.	SPM	F-contrasts	(two-464	

tailed)	were	used	to	create	whole-brain	statistical	parametric	maps,	corrected	for	multiple	comparisons	465	

using	a	voxel-level	FWE-p	<	.05.	SPM	t-contrasts	(one-tailed)	were	used	in	each	ROI	analysis,	corrected	for	466	

multiple	comparisons	using	FWE	(svc)	in	the	case	of	anatomical	ROIs	(Experiment	1)	and	uncorrected	at	p	<	467	

.001	(svc)	in	the	case	of	independent	functional	ROIs	(Experiment	2).	468	

DCM	analysis.	Each	of	the	volumes-of-interest	(VOI)	for	the	DCM	analysis	was	spatially	defined	according	to	469	

the	group	results	of	the	relevant	GLM	analysis.	The	BA9	VOI	was	defined	by	the	significant	cluster	from	the	470	

analysis	of	∆AO	in	the	group	results.	This	significant	group	cluster	was	used	to	construct	a	binary	mask	and	471	

this	mask	was	then	used	to	define	the	VOI	and	extract	the	first	eigenvector	for	all	individuals,	adjusted	for	472	

the	∆AO	and	∆XO	regressors.	All	subthreshold	voxels	within	the	mask	were	included	which	were	p	<	.5	473	
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(uncorrected),	which	roughly	corresponds	to	all	voxel	activity	positively	related	to	∆AO.	The	mPFC	VOI	was	474	

extracted	in	the	same	manner	but	using	the	significant	cluster	from	the	analysis	of	∆XO	in	the	group	475	

analysis.	The	caudate	VOI	was	defined	by	a	group	ROI	analysis	of	press	rate	restricted	to	the	striatum	(p	<	476	

.05,	small	volume	corrected),	with	a	single	cluster	of	48	voxels	in	the	right	caudate	(peak	MNI:	+15	+10	+6),	477	

and	otherwise	extracted	in	the	same	manner	as	other	VOIs.	478	

PPI	analysis.	The	psychological	term	was	the	block	condition,	whether	or	not	the	free	rewards	were	479	

distinguishable	within	that	block.	The	physiological	term	was	the	timeseries	from	the	anterior	caudate	in	480	

each	participant	(n	=	20)	using	a	group	fROI	mask	from	the	GLM	analysis	of	the	covariance.	We	constructed	481	

the	interaction	term	in	SPM8	(per	defaults)	and	included	all	three	terms	in	the	first-level	GLM.	Finally	we	482	

tested	for	regions	of	interaction	in	the	whole-brain,	corrected	for	multiple	comparisons	FDR	-q	<	.05.	483	

Data	availability		484	

The	analyses	in	this	report	were	conducted	by	RWM	(unblinded).	Data	is	available	upon	request.	485	

Unthresholded	statistical	maps	are	available	for	viewing	and	download	at	486	

http://neurovault.org/collections/VXWZKTWE/.	Experimental	programs	and	Matlab	code	to	generate	487	

simulations	can	be	downloaded	from	http://balleinelab.com	488	
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Table	1.	Model	evidence	and	comparison	scores	

	 Free	

parameters	

Negative	log	

likelihood	

LRT	X2	 LRT	p	 Pseudo-R
2
	 Relative	

Bayes	

Factor	(H1	

–	H0)	

No.	

favoring	

H1/H0	

model	

Kalman	filter	 v,	k,	and	#	 14,056	 $2
3	=	7,790	 	<	1E–30	 0.24	 1573	 22/6	

Prediction-
error	

a,	k,	and	#	 16,343	 $2
1	=	5,124	 <	1E–30	 0.13	 -506	 18/11	

MBRL	 a,	k,	and	#	 18,853	 $2
1	=	1,04	 .7E–15	 0.01	 –2959	 1/25	

Null	model	
(H0)	

#	 15,992	 $2
1	=	5,826	 <	1E–30	 0.13	 	 	

	

Legend:	For	each	model,	optimal	model	evidence	(aggregate	negative	log	likelihood	scores),	model	

significant	differences	from	chance	(Likelihood	ratio	test,	LRT),	model	fit	(Psuedo-R2),	as	well	as	Bayesian	

model	comparisons	among	each	alternate	model	relative	to	the	informed	model	(H0).	v	is	prediction	

uncertainty,	!	is	learning	rate,	k	is	the	AO	delay	temporal	threshold,	and	#	is	inverse	temperature	

(exploitation/exploration).			
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Figure 1. The action-outcome relationship in A) contingency space, where ∆P = P(O|A) – P(O|~A), 
that is, a positive ∆P exists when the conditional probability of an outcome given an action is greater 
than the probability of the outcome in the absence of the action (Con) while ∆P approaches zero as 
these conditional probabilities become equal (e.g., Deg); B) Outcome-specific degradation schedule 
where P(O1|A1) = P(O2|A2) while the addition of noncontingent outcomes (O2) produces differences 
in ∆P (i.e., ∆P = 0.4 and 0 for Con and Deg, respectively); C) Signaled schedule where the cue (pink) 
marks the noncontingent outcomes D) The action-outcome relationships presented onscreen 
(counterbalanced) in the degradation test in the MRI and E) the signaled follow-up test after the MRI, 
where a 1-s visual cue (yellow) indicated the delivery of each noncontingent outcome
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Figure 2

Figure 2. Experiment 1 behavioural results (N = 30) A) Mean (shaded = SEM) probability of each action over 
time shows that on average the contingent action was gradually selected over the degraded action B) The 
mean (errorbars SEM) percent of contingent actions was significantly greater than degraded actions when 
free outcomes were unsignalled, paired t-test t29 = 4.15, ***p = .0002. However when free outcomes were 
signalled then degraded actions were restored, paired t-test t29 = 0.75, p = .46. C) Mean (errorbars SEM) 
causal judgments of the contingent action were greater than the degraded action when free outcomes were 
unsignalled, paired t-test t29 = 3.94, ***p < .0004, and this difference was removed when the free outcomes 
were signalled, paired t-test t29 = 0.88, p = .39. 
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Figure 3. Causality explains action selection better than reward in Experiment 1 (N 
= 30) A) The difference (in z-score units) in contingent over degraded actions and 
causal judgments among participants was correlated, F1,28 = 26.20, ***p = .00002 
(dotted lines 95% CI). B) No correlation existed between the number of contingent 
actions (blue, F1,28 = 0.07, p = .79), or degraded actions (red, F1,28 = 0.30, p = .59) 
and the total number of outcomes among participants. C) Frequency histogram of 
the experienced delays between actions and reward shows the distribution was 
similar for both actions, Kolmogorov-Smirnov D78 = 0.09, p = 0.99
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Figure 4. The Kalman algorithm changes beliefs over time 
according to a prediction-error adjusted for covariance A) 
Under a degradation schedule, belief in the action and 
background initially increase together as actions co-occur 
with outcomes. However with free outcomes, the belief in 
the background diverges from the action. B) Changes in 
the background and action occur in the same direction 
when covariance between the action and background is 
positive, but when the covariance is negative then beliefs 
move in opposite directions. C) Action and outcome 
events over time in this example
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Figure 5 Corticostriatal network for causal learning in Experiment 1, N = 30. A) Model-derived learning 
variables were tracked in the medial prefrontal cortex: Model updates to actions (∆AO) occurred in the 
medial prefrontal cortex (BA9) (violet voxels FWE cluster p = .007). At the same time, model updates to 
the background (∆XO) occurred in the dorsal anterior cingulate cortex (ACC), (blue voxels FWE cluster 
< .001); B) Cut-away representation showing the spatial relationship of the corticostriatal network, 
including model covariance in the right posterior parietal cortex (BA40) (red voxels FWE cluster p = ). C) 
ROI analysis in the striatum: Red voxels (image threshold p < .05 svc) in the anterior caudate tracked the 
covariance, while green voxels (image threshold p < .05 svc) in the caudate body tracked summed 
prediction-errors. Overlap is indicted in yellow. D) Sagittal view of ROI results. E) DCM showing the 
caudate integrates information from separate regions in the mPFC (dACC and BA9), modulated by the 
covariance between potential causes; F) An alternate DCM showing the caudate segregating information 
in the mPFC, modulated by the covariance between potential causes G) The probability the data supports 
the Segregate model (SEG) is more likely than the Integrate model (INT). H) Posterior probability of each 
model (INT vs SEG) generating the observed data
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Figure 6. Experiment 2 results (N = 20) A) Mean (errorbar SEM) total responses were signficantly higher when the 
free outcomes were different from earned outcomes, outcome main effect F1,19 = 12.57, p = .02. This difference 
decreased as ∆P increased, outcome by contingency interaction F1.5,38 = 7.24, p = .005. B) Mean (errorbar SEM) 
causal judgments were higher when free outcomes were different from earned outcomes (F1,19 = 33.82, p = .6E-4) 
and this difference decreased as ∆P increased, interaction F2,38 = 10.07, p = .002. C) Updates to the action ∆AO 
occurred in the BA9 fROI (violet, image threshold p < .001 svc) while updates to the background ∆XO occurred in 
the dorsal ACC fROI (blue, image threshold p < .001 svc) and the covariance was tracked in the caudate fROI 
(green, image threshold p < .001 svc). D) Illustrative results from a single subject showing the caudate and 
posterior parietal cortex interacted with the causal condition E) Right parietal junction activity interacted with 
caudate activity when noncontingent outcomes were indistinguishable from contingent outcomes (covariance 
from Experiment 1 shown in red for comparison), image thresold p < .001 unc.
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Supplementary Figure 1

Figure S1. Simulation results (mean and SEM of 
100 iterations) showing the temporal dynamics 
of learning and behaviour for each model at 
representative parameter values. A) Beliefs (u) 
and behaviour in the Kalman algorithm 
distinguish causal actions over time throughout 
parameter space B) V-values and behaviour of 
the PE model distinguish causal actions over 
time in a narrower range of paramter values C) 
State-action transitions (T) and behaviour in 
MBRL fails to distinguish causal actions

A Kalman algorithm B Prediction-error model

C MBRL
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Supplementary Figure 2

Figure S2. Simulation results showing the parameter space (of learning rate & tau) over which each 
model distinguishes the causal action during degradation. A) Beliefs (u) in the Kalman algorithm 
distinguish causal actions throughout parameter space, with the best distinction at low parameter 
values B) Behavior of the Kalman algorithm distinguishes causal actions throughout parameter space 
C) V-values in the PE model distinguish causal actions at low values of tau D) Behavior of the PE 
model partially distinguishes causal actions at low learning rates E) State-action transitions (T) in 
MBRL fail to distinguish causal actions F) Behavior of the MBRL fails to distinguish causal actions
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Supplementary Figure 3

Figure S3 Responses to the alternate AO contingency in the ventromedial prefrontal cortex (N = 30), F1,29 
= 18.08, FWE = .011,  including A) the medial orbitofrontal cortex and B) the anterior cingulate. Image 
thresholded at p < .001, uncorrected.
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Supplementary Figure 4

Figure S4. Power analysis of Experiment 1, using the mPFC 
response during ∆AO, indicated N > 20 would achieve 95 percent 
power
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