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ABSTRACT

Inference of networks representing dependency relationships is a key tool for un-
derstanding data derived from biological systems. It has been shown that nonlinear
relationships and non-Gaussian noise aid detection of directions of functional de-
pendencies. In this study we explore how far generalised independence criteria for
statistical independence proposed in the literature are better suited to the inference
of networks compared to standard independence criteria based on linear relation-
ships and Gaussian noise. We compare such criteria within the framework of the PC
algorithm, a popular network inference algorithm for directed acyclic dependency
graphs. We also propose and evaluate a method to apply unconditional indepen-
dence criteria to assess conditional independence and a method to simulate data
with desired properties from experimental data. Our main finding is that a recently
proposed criterion based on distance covariance performs well compared to other
independence criteria in terms of error rates, speed of computation, and need of
fine-tuning parameters when applied to experimental biological datasets.
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1. Introduction

1.1. Motivation

Biological systems are driven by complex regulatory processes. In the analysis and
reconstruction of such processes graphical models play a crucial role. Using network
inference algorithms it is possible to derive regulatory models from high-throughput
data, for example, from gene or protein expression data. A wide variety of network
inference algorithms have been designed and implemented and necessitate common
platforms for assessment, for example, the DREAM network inference challenges [11],
to provide objective means for choosing reliable inference algorithms.

Inference algorithms are based on a variety of statistical principles. However, most
rely on some form of estimating or testing the similarity or correlation between genes,
for example, GeneNet [15] and MutRank [14], or on mutual information as does CLR
[3] and RelNet [2], or on regression and feature selection as does MRNET [13] and
Genie3 [9].
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Using independence criteria for network inference have been suggested in contexts
outside biological networks [10] and form the basis of the classic PC algorithm and its
many variations [16]. Such algorithms exploit d-separation, the equivalent of statistical
independence for graph structures, for the inference of directed acyclic dependency
graphs (see for example, [16]).

Linear dependencies and Gaussian noise are typically assumed for most applications
of the PC algorithm to continuous data. However, such assumptions are likely to be too
restrictive in the case of many experimental datasets. Moreover, as a series of studies
have shown (for example, [8]), the simplifying assumptions of linearity and Gaussian
noise make it even more difficult to establish functional dependencies and their direc-
tions. They constitute limiting cases where for two dependent variables, for example,
it becomes impossible to infer the direction of their functional dependency. These ar-
guments strongly suggest that inference algorithms based on statistical independence
should exploit nonlinear dependencies and non-Gaussian noise. The idea of combining
the PC algorithm with a generalised independence criterion, the Hilbert-Schmidt In-
dependence Criterion or HSIC, as independence oracle for conditional independence
was proposed in [26] but not made operational.

The contribution of our study is threefold. First, we compare the performance of
several independence criteria on biological experimental data. In particular, we com-
pare the linear-Gaussian, the HSIC, and a further criterion based on distance, the
Distance Covariance Criterion or DCC [24, 25], within the framework of the PC al-
gorithm, when applied to protein expression data. Second, since not all criteria are
available in a version that allows for testing conditional independence, we propose and
test an approach that relies on residuals and requires only an unconditional version
of an independence criterion. Third, the true network is rarely known when assessing
algorithms. Hence, we also propose a simulation method that, starting from experimen-
tal data and a target network, produces simulated data according to the dependency
structure of a target network but which are otherwise as close to the original data
as possible in their noise characteristics and functional (possibly nonlinear) forms of
dependencies. We demonstrate that such simulated dataset can be used successfully
for differentiating between the performance of independence criteria for network in-
ference. Finally, we make all algorithms and data available as a package for the R
statistical environment [17].

We emphasise that the current study is not proposing a new inference algorithm and
does not attempt to compare the performance of the PC algorithm to other network
inference algorithms. Our aim is rather to compare and assess the relative merits of
various independence criteria for network inference within the framework of a typical
inference approach such as the PC algorithm and to explore problems and suggest
solutions for their implementation and application to experimental data.

In the following sections we describe a representative dataset. We then provide some
background on the inference of directed acyclic graphs using statistical independence as
well as two generalised independence criteria. In the Results section their performance
is compared on simulated as well as the original data.

1.2. Data

In order to assess general independence criteria for the inference of biological regulatory
networks, we turn to a well studied dataset on protein expression from Sachs et al.
[20]. The study comprises eight experimental datasets of single cell measurements.
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Figure 1.: Summary of known dependencies (after [20]).

Each dataset reports the expression level of eleven proteins: RAF, MEK, ERK (aka
P44.42), PLCγ, PIP2, PIP3, PKC, AKT, PKA, JNK, P38. The number of observations
(cells) varies from 700 to 900 cells per dataset. Each dataset is characterised by the
quantitative value of protein expression response to a specific stimulatory cue or an
inhibitory intervention (listed in Table A1 in the supplementary material).

Protein expression levels were obtained by flow cytometry [20] measuring modifica-
tion states of proteins, such as phosphorylation through antibodies. These are single
cell measurements with each cell representing an independent observation. Only a
few protein modifications are monitored. For example, PKC phosphorylates RAF at
S497, S499, S259, however, only antibodies for RAF S259 were available. Consequently,
some dependencies between protein states might be missed. Despite these shortcom-
ings, some links between proteins are well established and shown in Figure 1 according
to [20].

The graph in Figure 1 serves a twofold purpose. First, by exploiting the graph struc-
ture and by resampling the data, as described in more detail in the Results section,
we generate datasets with characteristics close to real experimental datasets, but with
known dependencies. They will serve as test sets for comparing the performance of
inference algorithms. Second, using the original datasets, the graph provides a gold
standard for measuring performance of algorithms on experimental data. Several limi-
tations need to be kept in mind though. For some edges the direction of causal influence
remains ambiguous. All inference algorithms considered here are based on the assump-
tion that the dependency structure can be represented by a directed acyclic graph.
Such assumption is likely to hold only approximately true in real datasets. Also the
selection of proteins is by no means complete and it is likely that latent, unobserved
variables induce additional dependencies. However, since we are primarily interested
in a comparison of performances of independence criteria, these limitations are less
problematic for the present study. There is no reason to belief that these inaccuracies
in the knowledge of the true network should favor one approach unfairly over another.
Conclusions about the relative merits of independence criteria based on the current
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datasets should generalise well to other data.
Figure A1 in the supplementary material shows boxplots for each variable and

pairwise scatterplots between variables of dataset 8. Some dependencies are clear and
close to linear, for example, RAF to MEK. Other dependencies are far less obvious,
for example, RAF to PKC. This pattern of clear marginal dependencies between some
of the related protein pairs but not all of them, is present in all eight datasets, as a
reminder that network inference is not easily reducible to simple marginal correlation.

1.3. Probabilistic graphical models

We recall some terminology for probabilistic graphical models. For a full and compre-
hensive introduction see, for example, [23]. A graph G = (V,E) has vertices V and
edges E ⊆ V ×V. An edge between two nodes V1 and V2 can be either undirected,
symbolically V1 − V2, or directed, symbolically V1 → V2. For a directed edge V1 → V2,
V1 is a parent of V2 and V2 is a child of V1. Two vertices connected by an edge or
directed edge are adjacent. For a set of vertices W the set of all parents is denoted
by PaG(W). The degree d(V ) of a node V is the number of nodes adjacent to V .
A sequence of nodes (V1, . . . , Vn), Vi ∈ V, forms a path if neighbouring nodes are
connected. A directed path has all its edges directed in the same direction. A path is
a cycle if (V1 = Vn).

A directed graph contains only directed edges. It is a directed acyclic graph (DAG)
if it contains no directed cycles. A graph is undirected if it contains only undirected
edges and mixed if it contains both types of edges. A DAG is compatible with a mixed
graph if the graphs agree on the directed edges. A collider (v-structure) is a triplet
〈V1, V2, V3〉 ⊂ V such that {V1, V3} ∈ PaG(V2) and (V1, V3) /∈ E.

In a probabilistic graphical model the nodes V are associated with random variables
with a joint probability distribution P. We will denote the random variables and the
corresponding vertices by the same identifiers. In this study we are concerned with
continuous variables and hence assume P is continuous and that it has a density f .
For sets X, Y, Z of variables with conditional probability densities f(X,Y | Z),
f(X | Z), and f(Y | Z), X and Y are conditionally independent given Z (denoted
by X ⊥P Y | Z), if f(X,Y | Z) = f(X | Z)f(Y | Z). A probability distribution
P over the node set V is called Markov with respect to a DAG G if it permits the
factorization

f(V) =
∏
X∈V

f(X | PaG(X)) (1)

Symbolically, X ⊥G Y | Z indicates that for a graph G, which is associated with
a set of random variables V, and vertex sets X,Y,Z ∈ V, factorization (1) implies
that X is independent of Y conditioned on Z. With this notation in place we see
that P is Markov with respect to G if X ⊥G Y | Z implies X ⊥P Y | Z for all
sets X, Y, and Z, that is, all independencies implied by G are in P. If, conversely,
X ⊥P Y | Z implies X ⊥G Y | Z, that is, all independencies of P are implied by G,
P is faithful to G. That is, if a distribution P is Markov and faithful with respect
to a graph G, the graph represents all and only the independencies of P as captured
in factorization (1). We will also say that G represents P faithfully in this case. Two
DAGs are Markov equivalent if each distribution is Markov to either both or none of
them. Consequently, in this case the two graphs are indiscernible based on probabilistic
independency relationships alone.
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1.4. PC algorithm

The PC algorithm [23] is a constraint based method for finding a DAG G that repre-
sents P faithfully. More precisely, if such graph exists, the algorithm returns a partially
directed graph (PDAG), a mixed graph so that there exists at least one DAG which is
compatible with the PDAG and represents P faithfully. The PDAG also has the prop-
erty that for any undirected edge there exist two DAGs compatible with the PDAG,
both representing P faithfully, but with the edge oriented in opposite directions. In
this sense the PDAG is maximally oriented. If P can be represented faithfully by a
DAG G and if there exists an independence oracle that returns, for each query triplet
X, Y, Z, whether X ⊥P Y | Z or not, [23] show that the PC algorithm returns a
maximally oriented PDAG that is compatible with G.

The PC algorithm consists of three distinct phases. The first (skeleton) phase finds
the skeleton of the PDAG, that is, it finds all adjacencies based on an independence
oracle. The second (collider) phase finds all colliders (Vi, Vk, Vj) and directs edges
Vi → Vk and Vj → Vk. The third (transitive) phase applies the Meek rules [12] to
extend all directions found in the collider phase to the rest of the PDAG ([12, 26] give
a succinct description of details).

In addition, the PDAG can be extended using background knowledge about the
direction of some of its undirected edges. If the background knowledge is compatible
with the underlying distribution P, iterative application of an extended set of Meek
rules results in an a PDAG-K (PDAG with background knowledge) that again is
maximally oriented in the sense that for each undirected edge there exist two DAGs
compatible with the PDGA-K and both representing P faithfully as well as agreeing
with the background knowledge, but which contain opposite directions of the edge (see
[12] for details).

In practical applications with finite samples an independence oracle is usually un-
available and is replaced by a statistical test of independence. Throughout the paper
we use tests (described in detail in the next section) that allow us to reject the null
hypothesis of independence in terms of p-values, that is, low p-values indicate depen-
dencies. A consequence of sampling error is that the PC algorithm might not produce
the correct PDAG, but might instead produce a graph with under or over predicted
edges, wrong directions of edges, doubly directed edges directed in both directions,
and even cycles. In most circumstances it is appropriate for the algorithm to return
such ambiguous graph and leave it to the user to decide which edges or directions to
ignore.

A fixed cutoff level α is used for all decisions on independence in the PC algorithm.
Since edges indicate dependencies, higher levels of α usually result in the acceptance
of more edges and denser graphs.

1.4.1. Additive Noise model

Tests for conditional independence are based on certain assumptions. A popular one
is that dependencies between a child and its parents can be modelled by a linear
function with additive independent Gaussian noise. Unfortunately, apart from being
rarely fulfilled in practise, these assumptions make it actually more difficult to identify
directions of influence between variables. Several authors, for example, [8] or [26],
therefore assume more general noise models. In additive noise models the dependency
of a variable on its parents is modelled by a nonlinear function and additive noise (not
necessarily Gaussian), that is, Vi = fi(PaG(Vi)) + εi, with εi independent for each i.
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If data are generated by such process the assumption of an additive noise model,
which includes the linear Gaussian noise case, has a twofold advantage. First, inde-
pendence tests used in the PC algorithm based on nonlinearity and general noise
distributions are more accurate than tests based on assumptions of linearity or Gaus-
sian noise distributions resulting in a more accurate PDAG. Second, exploiting the
inherent improvement in establishing the correct direction for undirected edges, more
edges can be directed than through consideration of independence relationships alone
(as in the PDAG). Meek’s rules [12] for background knowledge can then be applied
to obtain a PDAG-K to direct additional edges of the PDAG. This is achieved in the
generalised transitive phase algorithm in [26] who show that it results in maximally
directed mixed graphs for a slightly wider class of models than just additive noise
models.

2. Methods

Our aim is to employ the PC algorithm and to apply a generalised transitive orientation
phase to obtain a PDAG-K representing a probability distribution according to the
additive noise model. For this purpose we need to specify an independence oracle that is
suitable for nonlinear relationships and non-Gaussian noise. In the following we provide
a summary of two criteria, the Hilbert-Schmidt Independence Criterion or HSIC and
the Distance Covariance Criterion or DCC, and describe our implementations.

[21] show that the DCC is actually a version of the HSIC for a specific kernel.
However, here we apply the HSIC with the widely used squared exponential kernel as
explained in the following. In a way, comparing the HSIC with the DCC in this study is
comparing the HSIC with two very different kernels, one motivated by a popular choice
of the kernel function, the other rather indirectly via a distance correlation approach.
However, the computational requirements and implementation issues of HSIC (with a
squared exponential kernel) and of DCC are very different, as we discuss now.

We assume we have n samples vi from a set of variables V sampled from a distribu-
tion P. We are interested in establishing independence of subsets of variables X ⊆ V
and Y ⊆ V or their independence conditioned on variables Z ⊆ V. We denote the
measurements corresponding to X, Y, and Z for sample i by xi, yi, and zi.

As outlined above the PC algorithm requires an independence oracle that states
whether X ⊥P Y or X ⊥P Y | Z based on samples v1, . . . , vn. [26] suggest using the
HSIC as independence oracle for the PC algorithm. In the following we will compare
the performance of the two independence criteria, the Hilbert-Schmidt Independence
Criterion or HSIC and the Distance Covariance Criterion or DCC. We call the PC
algorithm based on HSIC, following [26], kernel-PC or kPC, and, in analogy, the PC
algorithm based on DCC, distance-PC or dPC. We will define further variants of the
kPC below.

2.1. Hilbert-Schmidt Independence Criterion

For a comprehensive introduction to the HSIC see for example [22] or [4]. For our
purposes it is sufficient to describe the calculation of the HSIC statistic for a finite
sample {(x1, y1), . . . , (xn, yn)}. The HSIC is based on a kernel function, a similar-
ity function between sample points. As kernel function we use a Gaussian kernel
k(xi, xj) = exp(−‖xi−xj‖22/(2λ)), where the kernel width λ is a parameter that needs
to be carefully selected (see the Results section). Let K and L be the Gram matrices
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associated with kernel functions k and l, that is Ki,j = k(xi, xj) and Li,j = l(yi, yj).

The centred Gram matrices are K̃ = HKH, L̃ = HLH, where H = In− 1
n1n1

T
n (here

In is the n-dimensional identity matrix and 1n is a vector of ones of length n). An

estimate ĤX,Y of the HSIC is then given by

ĤX,Y = H(x, y) =
1

n2
tr(K̃L̃) (2)

where tr(A) is the trace (sum of diagonal elements) of a matrix A. Generally, H(x, y)
is close to 0 when X and Y are independent. [4] also provide an estimator for a
conditional version HX⊥⊥Y |Z of the HSIC for a sample set (xi, yi, zi), i = 1, . . . , n as

ĤX⊥⊥Y |Z = H(x, y | z)

=
1

2
tr(K̃L̃− 2K̃M̃(M̃ + εIn)−2M̃L̃+ K̃M̃(M̃ + εIn)−2M̃L̃M̃(M̃ + εIn)−2M̃)

(3)

where K̃, and L̃ are defined as above for x, and y, and M̃ is the analogous Gram
matrix for z. ε is a regularization parameter that needs to be carefully selected (see

the Results section). The calculation of ĤX⊥⊥Y |Z is computationally very expensive,
but some simplifications are introduced in [26].

If we use the PC algorithm with the HSIC as independence oracle we obtain algo-
rithm kPC.

2.2. Tests of (unconditional) independence for kPC

[5] suggest two ways of calculating a p-value for the HSIC statistic (2), a permutation
test and a test based on an approximation using the Gamma distribution.

Permutation test. The first test is a simple permutation test where r permutations
of the form y(j) = {yρj(i)}, j = 1, . . . , r, for permutations ρj of sample indices are
created. The proportion of permutations ρj for which the HSIC estimator (2) is larger
than the HSIC of the original dataset, that is H(x, y(j)) > H(x, y), is an estimate of the
p-value for rejecting the null hypothesis of independence. The underlying assumption
is that permuting y removes any dependency between x and y.

Computing H(x, y) is expensive with complexity O(n3), n the sample size. [26]
suggested an incomplete Cholesky factorization with m steps to reduce the complexity
to O(nm3) for a chosen m < n. That is, K and L are approximated by K̃ ≈ UxDxU

T
x ,

with the matrix of eigenvectors Ux and the matrix of eigenvalues Dx of size n ×
m and m × m, respectively. Similarly L̃ ≈ UyDyU

T
y . This factorization is suitable

since, with quickly decaying kernel functions, Gram matrices often have a low effective
rank. Instead of permuting the entries of y and recalculating the Gram matrix, we
exploit the one-to-one relationship between samples yi and the rows and columns of
the Gram matrix L, since L(i, j) = l(yi, yj) (with a symmetric kernel function l). In the
calculation of H(x, y(i)) we use L(j) = PjLP

T
j ≈ PjUyDyU

T
y P

T
j , with a permutation

matrix Pj permuting rows according to permutation ρj . This means that an incomplete
Cholesky decomposition needs to be performed only once for all permuted datasets
y(i), and consequent values H(x, y(i)) can be obtained simply by permuting coordinates

of the eigenvectors in Uy (K̃ is kept the same).
Gamma Test. The value of the asymptotic distribution of the empirical estimate

H(x, y) of the HSIC under the null hypothesis of independence is approximated by a
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Gamma distribution: H(x, y) ∼ Gam(α, θ) where α is the shape parameter and θ is
the scale parameter calculated as

α =
E[ĤX,Y ]2

Var(ĤX,Y )
, θ =

Var(ĤX,Y )

E[ĤX,Y ]

To compute this distribution we use estimates of the mean and the variance from
sample points under the null hypothesis as provided by theorems 3 and 4 in [5]. The
p-value is then obtained as upper-tail quantile of H(x, y).

2.3. Test of conditional independence for kPC

In the PC algorithm an oracle for conditional independence X ⊥P Y | Z is required.
We explore two approaches. The first, permutation-cluster test suggested by [26], is
based on a conditional version of HSIC from [4]. The alternative test we propose here
is based on residuals. It is simpler in that it only requires an unconditional version of
the HSIC and can be readily applied to other independence criteria for which there is
no conditional version readily available that allows integration of a conditioning set of
variables, as in the case of the DCC.

Permutation-cluster test. As suggested in [26], in order to obtain a p-value for
rejecting independence based on the estimator (3) for conditional HSIC criterion, the
samples are clustered according to the Euclidean distance between the z coordinates of
samples. Sample labels of y are only permuted within each cluster, thus ensuring that
the permuted samples break dependency between x and y for an approximately fixed
z but retain their dependency on z. For the clustering we use a k-means algorithm [[6]]
(R function kmeans()). A larger number of clusters is desirable to achieve an almost
constant z within each cluster. On the other hand, enough samples are required in
each cluster to achieve a permutation of labels that breaks any conditional dependency
between x and y. For the sample sizes considered here, good results were obtained with
a constant cluster number of 10.

Residuals test. As a simpler alternative to obtain p-values for the conditional
HSIC we propose to test residuals for independence based on any unconditional test
of independence. The residuals rx and ry are obtained by regressing x and y on z in a
nonlinear fashion. The regression removes the dependencies between x and y due to z
and consequently the residuals should be independent if X ⊥P Y | Z. For regression
we use a generalized additive model (GAM, see [7]) as implemented in the R function
gam() in the library mgcv [27, 28] with default settings). That is, we regress y on a set
of variables xi, i ∈ {1, . . . , p} as y = f0 +

∑p
i=1 fi(xi) + ε where fi are spline functions

(selected by cross-validation) and ε is Gaussian noise. We have now the option of using
either the permutation or Gamma test of section 2.2 on the residuals.

2.4. Distance covariance

The distance covariance has been suggested as an alternative measure of independence
to the HSIC by [24] and [25]. An estimate of the distance covariance for a set of n
samples {(x1, y1), . . . , (xn, yn)} is obtained as follows. For variable X we define

akl = ‖xk − xl‖ξ2, āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl
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ā·· =
1

n2

n∑
k,l=1

ak,l Ak,l = ak,l − āk· − ā·l + ā··

with the power parameter ξ. Similarly, we define

Bk,l = bk,l − b̄k· − b̄·l + b̄··

for the variable Y . An estimator for the distance covariance is then obtained as

V̂2n(X,Y ) = ν(x, y) =
1

n2

n∑
k,l=1

AklBkl

If we use the PC algorithm with the DCC as independence oracle we obtain algo-
rithm dPC.

2.5. Test of (unconditional) independence for dPC

The independence test is already implemented by R in the energy package [19] with
the function dcov.test(). The test is implemented as a permutation test. The output
p-value is calculated as 1+m

1+p where m is the number of replicates which are greater than

the observed value of the statistic dCov(X,Y) and p is the total number of replicates
(personal communication with M.L.Rizzo).

2.6. Test of conditional independence for dPC

We generalize the test of the previous Section 2.5 to a conditional version by applying
the (unconditional) independence test to residuals formed as in section Residuals test
of 2.3.

3. Results

We first investigate the effectiveness of the independence criteria in finding dependen-
cies in small simulated examples and explore parameter settings. We continue with a
larger scale example with data simulated by permutation resampling from real data.
Finally we present our results for the datasets from [20].

3.1. Testing unconditional independence criteria

We expect the effectiveness of the independence criteria to depend crucially on the
signal to noise ratio. We therefore tested the HSIC and DCC on 300 samples simulated
from Y ∼ sin(X) +N (0, σ2), X ∼ U(0, 10) for varying noise levels σ2 and signal range
of 2 from −1 to 1. X and Y are dependent, hence independence should be rejected
with low p-values. The simulated data are shown in the figure A2 in the supplementary
material. Table 1 lists p-values for combinations of methods from Sections 2.2 and 2.5
and varying noise levels σ. All the p-values are a mean of 100 replications of the
test. The size of the simulated sample is 300, as this is a reasonably typical sample
size for high-throughput experiments. At σ = 10 variables X and Y are effectively

9

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2017. ; https://doi.org/10.1101/138669doi: bioRxiv preprint 

https://doi.org/10.1101/138669
http://creativecommons.org/licenses/by/4.0/


independent. As expected the p-value is less and less reliable for detecting dependency
for samples with increasing noise levels. In this simple test both criteria, HSIC and
DCC, behave similarly.

Table 1.: Testing independence criteria. All the p-value estimates are the mean of 100
p-values from repetitions for each of the three tests. The size of the simulated sample
is 300. The DCC and HSIC p-values are obtained from 1000 permutations each.

Test σ = 1 σ = 2 σ = 5 σ = 10

HSIC permutation < 0.001 0.04 0.37 0.48
HSIC gamma 4e-13 0.04 0.38 0.49
DCC < 0.001 0.06 0.37 0.47
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Figure 2.: Dependency of p-values of HSIC and DCC tests on varying parameters,
kernel width λ for HSIC and index ξ for DCC.

The HSIC depends on a kernel width parameter λ. Figures 2a) to c) show p-values for
different HSIC tests when the kernel width λ varies from 0.001 to 1000. We note that in
order to reject independence successfully λ needs to be chosen carefully, particularly
with higher noise. If λ is very small, then k(x, y) ≈ 0 for almost all x 6= y, and
the Gram matrix is close to the identity matrix. If λ is too large, then k(x, y) ≈ 1,
for all x, y and the Gram matrix is ill-conditioned. In either case any dependency
variables is hard to detect. Based on these figures we choose a kernel width in the
range λ ∈ (0.5, 9). Furthermore we observe that the permutation and Gamma tests
both with and without incomplete Cholesky decomposition always give very similar
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results for this range of λ. Therefore, for further analysis we will use the Gamma test
with an incomplete Cholesky decomposition since it is computationally most efficient
(as seen in Figure A4 of the supplementary material).

Figure 2d) shows the dependency of p-values on the power parameter ξ of the DCC.
For simplicity we set ξ = 1, although smaller values might work even better.

3.2. Comparison of network inference algorithms

The performances of the algorithms are compared using ROC curves sensitivity over
specificity while varying the p-value cutoff required by the oracle for statistical inde-
pendence in the PC algorithm. Unless otherwise stated we will focus on the absence
and presence of edges in the inferred graphs ignoring their direction when calculating
specificity and sensitivity.

Three types of datasets are considered: data simulated from a simple known network,
data obtained by permuting residuals after fitting a network to data from [20], and
finally the original data from the same study. Parameters of the algorithms were fixed
as in Table 2.

For easy reference we label the algorithms as follows. The standard PC algorithm as
implemented in the R package pcalg with the gaussCItest criterion (implementing
Fisher’s z-test for correlation) is labelled PC. The PC algorithm based on the DCC
from Section 2.4 is labelled dPC. The PC algorithm based on the HSIC from Section 2.1
is labelled kPC. The kPC version based on the Permutation-cluster test of Section 2.3
is labeled kPC-Clust. The kPC version based on the Residuals test of Section 2.3 with
the Gamma approximation is labelled kPC-Resid.

Table 2.: Free parameters for kPCs and dPC.

Parameter kPC-Clust kPC-Resid dPC

# of Permutations 300 300 500
Kernel width λ 1 1 NA
Regularization parameter ε 0.1 NA NA
# of clusters 30 NA NA

3.2.1. Data simulated from artificial network

The relationships between the nodes are described in Figure 3b. Since the network con-
tains nonlinear relationships and non-Gaussian noise, as expected, the PC algorithm
performed worst. Close to perfect performance was achieved by dPC, kPC-Clust and
kPC-Resid. Figure A3a shows the spread of ROC curves when simulating data repeat-
edly. dPC, kPC-Resid, and kPC-Clust outperformed PC in 100, 98, and 100 out of
100 cases, respectively.

3.2.2. Data simulated by resampling

Next we compared the performance of the algorithms on samples obtained by fitting a
plausible network to data in [20] and resampling residuals. In this way we still control
the structure of the underlying network but obtain more realistic noise distributions.

As outlined in the introduction, the data consist of eight datasets of expression levels
of eleven proteins, each dataset obtained after specific experimental interventions. Here
we present only the results from the dataset 7, the rest is provided in the supplementary
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X2 ∼ U [0, 3]

X3 ∼ sin(X1) +X2 + 0.6U [0, 1]

X4 ∼ N [0, 1]

X5 ∼ X3 +X4 + 2U [0, 1]

X6 ∼ N [0, 1]

X7 ∼ N [0, 1]

X8 ∼ X6 +X3
7 +N [0, 1]

X9 ∼ X2
7 +N [0, 1]

(b) Relationships between
the nodes
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example.

Figure 3.: Toy simulated example on 9 nodes and 300 observations.

material in Figure A5. Protein PKC was inhibited for dataset 7. Since PKC was
externally modified no causal arcs lead into PKC. The network is that of Figure 1
with arcs into PKC removed.

For the simulation we used the causal model of Figure 4a. The data generation
starts from parentless nodes (PKC and PKA). These variables are assigned the original
values from the samples in the experimental dataset. Next, recursively iterating over
nodes whose parents already have assigned values, a generalised additive model similar
to section 2.3 is fitted to obtain mean estimates and residuals for the experimental
sample values of the focus node when regressing on the values previously assigned to
its parents. These residuals are permuted before being added to mean estimates to
obtain resampled values to assign to the focus node.

This procedure ensures that only the assumed dependencies as captured in the non-
linear regressions on parents are maintained, while all other dependencies are removed
by permuting residuals. On the other hand, the noise characteristics of the original
data are maintained to some degree. In particular, some focus nodes show little func-
tional dependence on their parents, that is, a very low signal to noise ratio. This is
a characteristic of experimental data as well. In order to explore the influence of this
signal to noise ratio, additional data sets are simulated with residuals scaled down
by a factor k before being added to mean estimates, improving on the signal to noise
ratio.

Figure 4b shows that all the PC versions based on general independence criteria
significantly outperform the traditional PC algorithm. dPC, kPC-Resid and kPC-Clust
result in areas under the ROC curve of greater than 0.8 while that of PC is only 0.67.
Performance is worse than for the toy example above. This is mainly due to a small
signal to noise ratio for many relationships: on visual inspection many relationships
in Figure 1 are hardly noticeable in the data. This results in the regression step not
capturing much signal. On the other hand, real data are likely to show this type of
noise characteristics. The effect of varying the scaling factor k for the residual noise
is shown in Figure 5. Generally, as expected, with lower noise performance improves.
The dPC version is responding well to lower noise.
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(a) Graph to simulate from the Dataset 7.
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Figure 4.: Data simulated from the Dataset 7, with non-reduced noise.

Figure A3b in the supplementary material shows ROC curves for repeated simu-
lations. The dPC, kPC-Resid, and kPC-Clust outperform the PC algorithm 99, 93,
and 91 out of a 100 repetitions. To provide some insight into the variability of these
results for different datasets, we show results for all simulated data from all 8 datasets
in the supplementary material in Figure A5. Qualitatively the results are similar to
that for dataset 7 presented here. In particular, the standard PC algorithm is almost
always performing worst (except for dataset 2) and the dPC algorithm has a slight
edge. Reducing noise helps improving results as shown in Figures A6, A7 and A8 for
most of the dataset and algorithm combinations.
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(c) kPC-Clust

Figure 5.: Signal to noise ratio effect on efficiency of the algorithms

3.2.3. Original data

Finally we tested all the algorithms on the original data from [20]. Again we only show
the results on dataset 7 here, the rest of the results are provided in the supplementary
material in Figure A9. We expect to find the skeleton of the graph in Figure 6a derived
from Figure 1 as in the previous section. In Figure 6b we see the ROC curves for four
versions of the PC algorithms. Results are very similar to the ones seen for simulated
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data: dPC and kPCs outperform PC and are quite similar among themselves, with
dPC having a slight edge. We may conclude that independence criteria based PC
versions are a significant improvement on the traditional PC algorithm on the real
data as well as the simulated one.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(a) Skeleton of the graph we expect to find
from the Dataset 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity
S

en
si

tiv
ity

dPC, auc = 0.78
kPC−Resid, auc = 0.74
kPC−Clust, auc = 0.74
PC, auc = 0.62

(b) ROC curves to compare kPCs, dPC
and PC algorithms on the Dataset 7.

Figure 6.: ROC curves for dataset 7.

3.3. Combining all datasets

The eight datasets of [20] have slightly different dependence structures due to variation
in the external interventions. Combining information from all datasets should improve
reconstruction of the underlying graph structure. To test this intuition we combine
a consensus graphical structure from networks fitted to each dataset. Two types of
consensus networks are obtained. The first takes edges that appear in at least one of
the individual networks (labelled union network). The second calculates the typical
average occurrence of edges over all edges in the union network and over all eight
networks. Then only those edges of the union network are retained which occur (across
all eight networks) more often than this typical average. We label this network above-
average network. More sophisticated approaches are conceivable, however, here we only
wanted to investigate whether there is potential improvement by combining networks
at all, and the effect of the choice of an independence criterion on the consensus
network. We compare the output of our algorithm to the skeleton illustrated in Figure
7a derived from Figure 1 and corresponding ROC curves are shown in Figure 7b and
7c.

Combining networks results in a slight improvement overall compared to Figure 6
with a trade-off between sensitivity and specificity shifted between the two types of
combinations. The general independence criteria are again superior.

3.4. Discovering directions

So far we have looked at performance of algorithms when inferring the skeleton of a
DAG with undirected edges only. The PC algorithm adds an edge orienting phase ex-
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(c) Above-average network

Figure 7.: All 8 datasets combined.

ploiting collider patterns and transitive closure requirements as formalised in the Meek
rules [12] in the collider phase. Exploiting nonlinear relationships and non-Gaussian
noise additional edges might be oriented. This is achieved by the PC algorithm ex-
tended by the generalised transitive phase which incorporates background knowledge
emerging from testing directions exploiting nonlinearity and non-Gaussian noise.

With an imperfect independence oracle or data that do not strictly follow modelling
assumptions, ambiguities can arise when orienting edges, possibly leading to cycles and
doubly oriented edges. There are no general rules how to resolve such ambiguities. In
this section we ignore doubly oriented edges as undirected for the purpose of assessing
algorithms.

Table 3.: The fraction of correct among predicted orientations at different stages of
the algorithms.

Experimental data Simulated data
kPC Resid kPC Clust dPC kPC Resid kPC Clust dPC

Collider/Transitive 0 0 0 2/3 2/3 4/5
Generalised transitive 3/4 3/4 2/3 4/4 4/4 2/2
Total 3/4 3/4 2/3 6/7 6/7 6/7

Results comparing algorithms by fractions of correct out of predicted orientations
at various orientation phases are presented in Table 3. Free parameters were fixed as
in the Table 2. The generalized transitive phase adds many more orientations to those
found in the collider phase. For simulated data, this phase actually adds all the missing
orientations in the correct direction.

We illustrate some of the results from Table 3. Figure 8 shows the output graphs
of the orientation phases of algorithm kPC-Resid. There is one doubly oriented edge
emerging in the collider phase between AKT ↔ PIP3. This phase also orients one
edge in the wrong direction. Since there are no more colliders no further edge can be
oriented at that stage. However, exploiting nonlinearity and non-Gaussian noise it is
straightforward to orient the rest of the edges in the Generalised transitive phase.

Similarly, Figure 9 shows the output of the kPC-Resid on the real dataset 8. Unfor-
tunately the graph contains several triangles which make it impossible to orient any
edge in the collider phase. The generalised transitive phase can differentiate between
the oriented structures. Finally, for comparison with the kPC algorithm, Figure 10
shows the output of the dPC algorithm on simulated dataset 8. In contrast to the
kPC-Resid algorithm there are enough colliders present to allow the algorithm to ori-
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(c) Generalized transitive
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Figure 8.: Output of the kPC-Resid algorithm on the data simulated from dataset 8.
Color coding: dashed black undirected or doubly directed edges represent correctly
identified undirected edges, green directed edges represent correct, while red directed
edges represent incorrect orientations. Dashed black oriented edges are from the pre-
vious phase.
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Figure 9.: Output of the kPC-Resid algorithm on the dataset 8.
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Figure 10.: Output of the dPC algorithm on the data simulated from the dataset 8.

ent edges even in the collider phase. It orients four edges correctly, even though strictly
speaking a collider at MEK is inconsistent with a collider at ERK. The rest of the
edges gets oriented in the generalised transitive phase. Due to the two inconsistent
colliders the overall result is slightly inferior to that of the kPC-Resid algorithm.
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4. Discussion

The purpose of this study was to investigate how far probabilistic independence cri-
teria for continuous data that go beyond linear relationships and Gaussian noise can
improve the identification of edges and their orientation in a causal graph when ap-
plied to experimental data and data simulated in a realistic fashion from experimental
data. We analysed two different criteria proposed in the literature, the Hilbert-Schmidt
Independence Criterion or HSIC, and the Distance Covariance Criterion, or DCC in
the context of the popular PC algorithm that relies on measures of probabilistic inde-
pendence for network inference. The distance covariance is a natural extension of the
Pearson correlation parameter [25]. To our knowledge this is the first implementation
and application of the DCC to causal or network inference. All algorithms discussed
in this study are available as package for the R statistical environment [18].

Overall, our findings confirm that the performance of general independence criteria
is decisively better over that based on linear relationships with Gaussian noise on
simulated as well as experimental data in terms of correct undirected edges as well as
of correct directions. Secondly, we find only little difference between the performance
of the HSIC and DCC in general, with the DCC showing slightly better performance
for some datasets.

In order to assess the algorithms in a realistic scenario we applied them to a well-
known experimental dataset for which the network is approximately known based on
biological knowledge. Of course, this knowledge of the network might be inaccurate
and we therefore propose a generic way to simulate data based on experimental data
and an approximate or putative network structure that keeps much of the noise char-
acteristics of the original data but reproduces those and only those conditional depen-
dencies required by the network. As we demonstrate in our analysis these simulated
datasets form an excellent compromise between retaining much of the nonlinear and
non-Gaussian characteristics of the original data, but for an exactly known network.
As we see in our study one difficulty remains: if some arcs of the assumed network
are not supported by the data, for example, if there is little dependency in the data
in the first place between two variables which we wish to connect in the network, our
method is unable to create such dependency artificially. Nevertheless, as long as the
assumed network reflects most of the dependencies in the experimental data, the sim-
ulated data are useful for comparative studies between different algorithms as shown
in section 3.2.2.

The PC algorithm requires a test for conditional independence. Independence cri-
teria might, however, only be available in an unconditional form. We propose a simple
procedure, based on fitting nonlinear regressions, to adapt such criteria to the condi-
tional independence case. Since there is a conditional version of the HSIC available we
had an opportunity to compare the conditional HSIC (in algorithm kPC-Clust) with
our adaptation of the unconditional HSIC (in algorithm kPC-Resid). As can be seen
throughout the study, the adapted kPC-Resid version, particularly on experimental
and realistically simulated data, is performing comparably to the conditional version
with the conditional HSIC having a slight advantage. It is worth noting that kPC-Clust
involves calculating the empirical estimate of the conditional HSIC (3) which is com-
putationally significantly more expensive than the unconditional HSIC (2), therefore
in practice kPC-Clust can be up to 5− 10 times slower than kPC-Resid or dPC.

The empirical estimation of HSIC depends on parameters such as the kernel width λ
and the regularisation parameter ε. Here we used simulations to find sensible ranges
for these parameters. Another advantage of the DCC is that it is less affected by
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parameter choices, essentially only the power parameter ξ which can be safely set to
a value between 0.1 and 1 without affecting the results too much.

The PC algorithm is very restrictive in its assumptions on the dependency structure.
For example, cycles or unobserved variables are excluded. It would be interesting to see
whether inference techniques allowing such more complex assumptions benefit from
general independence criteria in the same way the PC algorithm does.

The PC algorithm is firmly based in a frequentist statistical framework. Bayesian in-
ference is often strongly dependent on specific noise models through the likelihood func-
tion. It needs to be explored how to incorporate independence criteria in a Bayesian
framework, possibly through a form of loss likelihood [1].
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Appendix A. Supplementary Material

Table A1.: Table of datasets

Set Intervention Size
1 General perturbation 853
2 General perturbation 902
3 Activation PKA 911
4 Inhibition AKT 723
5 Inhibition MEK1 810
6 Activation PKC 799
7 Inhibition PKC 848
8 Inhibition PIP2 913
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Figure A1.: Boxplot and pair plot of dataset 8 after log transformation.
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(a) y = sin(x) +N (0, 1), x = U(0, 10). (b) y = sin(x) +N (0, 4), x = U(0, 10).

(c) y = sin(x) +N (0, 25), x = U(0, 10). (d) y = N (0, 25), x = U(0, 10).

Figure A2.: Data simulated with nonlinear dependencies
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Figure A5.: ROC curves to compare kPCs, dPC and PC algorithms on data simulated
from the indicated datasets.
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Figure A6.: dPC effectiveness on data with varying noise levels, all eight datasets.
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Figure A7.: kPC-Resid effectiveness on data with varying noise levels, all eight
datasets.
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Figure A8.: kPC-Clust effectiveness on data with varying noise levels, all eight datasets.
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(e) Dataset 5.
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(f) Dataset 6.
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(g) Dataset 7.
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(h) Dataset 8.

Figure A9.: ROC curves to compare kPCs, dPC and PC algorithms on the real data.
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