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Originality-Significance	Statement	1	

By	 combining	 DNA	 Stable	 Isotope	 Probing	 (DNA-SIP)	 with	multiplexed	 high	 throughput	2	

DNA	 sequencing	 (HTS-DNA-SIP),	 it	 is	 now	 possible	 to	 identify	 patterns	 of	 isotope	3	

incorporation	 for	 thousands	 of	 microbial	 taxa.	 HTS-DNA-SIP	 has	 enormous	 potential	 to	4	

reveal	 patterns	 of	 carbon	 and	 nitrogen	 exchange	within	microbial	 food	webs.	 A	 current	5	

limitation	 is	 that,	 due	 to	 the	 expense	 of	 these	 experiments,	 it	 has	 been	 impossible	 to	6	

evaluate	 the	 accuracy	 of	 DNA-SIP	 methods.	 We	 have	 developed	 a	 model	 that	 simulates	7	

DNA-SIP	data,	and	we	use	the	model	to	systematically	evaluate	and	validate	the	accuracy	of	8	

DNA-SIP	 analyses.	 This	 model	 can	 determine	 the	 analytical	 accuracy	 of	 DNA-SIP	9	

experiments	 in	 a	 range	 of	 contexts.	 Furthermore,	 the	 ability	 to	 predict	 experimental	10	

outcomes,	as	a	function	of	experimental	design	and	community	characteristics,	should	be	of	11	

great	use	in	the	design	and	interpretation	DNA-SIP	experiments.	12	

Summary	13	

DNA	Stable	isotope	probing	(DNA-SIP)	is	a	powerful	method	that	identifies	in	situ	 isotope	14	

assimilation	by	microbial	taxa.	Combining	DNA-SIP	with	multiplexed	high	throughput	DNA	15	

sequencing	 (HTS-DNA-SIP)	creates	 the	potential	 to	map	 in	 situ	 assimilation	dynamics	 for	16	

thousands	of	microbial	 taxonomic	units.	However,	 the	accuracy	of	methods	 for	analyzing	17	

DNA-SIP	 data	 has	 never	 been	 evaluated.	 We	 have	 developed	 a	 toolset	 (SIPSim)	 for	18	

simulating	 HTS-DNA-SIP	 datasets	 and	 evaluating	 the	 accuracy	 of	 methods	 for	 analyzing	19	

HTS-DNA-SIP	data.	We	evaluated	two	different	approaches	to	analyzing	HTS-DNA-SIP	data:	20	

“high	resolution	stable	isotope	probing”	(HR-SIP)	and	“quantitative	stable	isotope	probing”	21	

(q-SIP).	HR-SIP	was	highly	specific	and	moderately	sensitive,	with	very	few	false	positives	22	
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but	potential	for	false	negatives.	In	contrast,	q-SIP	had	fewer	false	negatives	but	many	false	23	

positives.	 We	 also	 found	 HR-SIP	 more	 robust	 than	 q-SIP	 with	 respect	 to	 experimental	24	

variance.	 Furthermore,	 we	 found	 that	 the	 detection	 sensitivity	 of	 HTS-DNA-SIP	 can	 be	25	

increased	 without	 compromising	 specificity	 by	 evaluating	 evidence	 of	 isotope	26	

incorporation	over	multiple	windows	of	buoyant	density	(MW-HR-SIP).	SIPSim	provides	a	27	

platform	 for	 determining	 the	 accuracy	 of	 HTS-DNA-SIP	 methods	 across	 a	 range	 of	28	

experimental	 parameters,	 which	 will	 be	 useful	 in	 the	 design,	 analysis,	 and	 validation	 of	29	

DNA-SIP	experiments.		30	

	31	

Introduction	32	

Stable	 isotope	 probing	 of	 nucleic	 acids	 (DNA-SIP	 and	 RNA-SIP)	 is	 a	 powerful	 culture-33	

independent	 method	 for	 linking	 microbial	 metabolic	 functioning	 to	 taxonomic	 identity	34	

(Radajewski	 et	 al.,	 2003).	 In	 particular,	 DNA-SIP	 has	 been	 used	 extensively	 to	 identify	35	

microbial	 assimilation	 of	 various	 13C-	 and	 15N-labeled	 substrates	 in	 a	 multitude	 of	36	

environments	(Uhlík	et	al.,	2009).	DNA-SIP	identifies	microbes	that	assimilate	isotope	into	37	

their	 DNA	 (“incorporators”)	 by	 exploiting	 the	 increased	 buoyant	 density	 (BD)	 of	38	

isotopically	 labeled	 (“heavy”)	DNA	 relative	 to	unlabeled	 (“light”)	DNA.	For	 example,	 fully	39	

13C-	and	15N-labeled	DNA	will	increase	in	BD	by	0.036	and	0.016	g	ml-1,	respectively	(Birnie	40	

and	Rickwood,	1978).		41	

	42	

Ideally,	 isopycnic	 centrifugation	 could	 be	 used	 to	 completely	 separate	 labeled	 and	43	

unlabeled	DNA	 fragments	based	solely	on	 this	difference	 in	BD.	However,	 several	 factors	44	

besides	 BD	 can	 impact	 the	 position	 of	 DNA	 in	 isopycnic	 gradients.	 For	 example,	 G	 +	 C	45	
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content	variation	across	a	single	genome	can	produce	unlabeled	DNA	fragments	that	vary	46	

in	BD	by	up	to	0.03	g	ml-1,	while	G	+	C	content	variation	between	microbial	genomes	can	47	

cause	the	average	BD	of	unlabeled	DNA	fragments	to	vary	by	up	to	0.05	g	ml-1	(Youngblut	48	

and	Buckley,	2014).	In	addition,	DNA	in	SIP	experiments	will	often	be	partially	labeled	as	a	49	

consequence	 of	 isotope	 dilution	 from	 unlabeled	 endogenous	 substrates.	 Therefore,	 it	 is	50	

unlikely	that	nucleic	acid	SIP	experiments	will	ever	achieve	complete	separation	of	labeled	51	

and	unlabeled	DNA.	52	

		53	

In	 the	 absence	 of	 complete	 separation	 between	 labeled	 and	 unlabeled	 DNA,	 isotope	54	

incorporators	must	be	 identified	using	 some	statistical	procedure	 suitable	 for	 comparing	55	

the	BD	distributions	of	DNA	fragments	from	labeled	and	unlabeled	samples	(Pepe-Ranney	56	

et	 al.,	 2016a).	 The	 use	 of	multiplexed	 high	 throughput	 sequencing	with	 DNA-SIP	 (“HTS-57	

DNA-SIP”)	 makes	 it	 possible	 to	 sequence	 SSU	 rRNA	 amplicons	 across	 many	 density	58	

gradient	 fractions	 and	 simultaneously	 determine	 the	 BD	 distributions	 for	 thousands	 of	59	

taxa.	The	problem	then	becomes	one	of	identifying	those	taxa	that	have	increased	in	BD	in	60	

the	isotopically	labeled	samples	relative	to	the	corresponding	unlabeled	controls.	61	

	62	

Different	 analytical	 approaches	 have	 been	 applied	 to	 HTS-DNA-SIP	 datasets	 to	 identify	63	

changes	in	DNA	BD	in	response	to	isotopic	labeling.	These	include	“high	resolution	stable	64	

isotope	 probing”	 (HR-SIP)	 and	 “quantitative	 stable	 isotope	 probing”	 (q-SIP),	 which	 both	65	

analyze	 SSU	 rRNA	 amplicons	 across	 numerous	 gradient	 fractions	 (Hungate	 et	 al.,	 2015;	66	

Pepe-Ranney	et	al.,	 2016a;	Pepe-Ranney	et	al.,	 2016b).	However,	 these	methods	differ	 in	67	

the	 statistical	 procedures	 used	 to	 detect	 taxa	 that	 incorporate	 isotopic	 label.	 HR-SIP	68	
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identifies	isotopically	labeled	taxa	by	evaluating	the	sequence	composition	of	high	density	69	

“heavy”	 fractions	 using	 a	 differential	 abundance	quantification	 framework	 that	 evaluates	70	

sequence	 count	 data	 in	 isotopically	 labeled	 samples	 relative	 to	 their	 corresponding	71	

unlabeled	 controls.	 Differential	 abundance	 between	 the	 “heavy”	 fractions	 of	 labeled	 and	72	

control	 gradients	 is	measured	with	DESeq2	 (Love	et	 al.,	 2014),	which	uses	 sophisticated	73	

statistical	methods	to	reduce	technical	error	and	increase	analytical	power	for	analysis	of	74	

microbiome	 data	 (McMurdie	 and	 Holmes,	 2014).	 In	 a	 very	 different	 approach,	 q-SIP	75	

transforms	SSU	rRNA	relative	abundance	values	by	using	qPCR	estimates	of	total	SSU	rRNA	76	

gene	copies	present	within	gradient	fractions.	These	normalized	data	are	used	to	estimate	77	

average	BD	 for	each	 taxon	across	density	gradients	 for	both	 isotopically	 labeled	 samples	78	

and	 corresponding	 unlabeled	 controls	 (Hungate	 et	 al.,	 2015).	 Incorporators	 are	 then	79	

determined	by	using	a	permutation	procedure	 to	 identify	 those	 taxa	whose	BD	shifts	are	80	

unlikely	to	occur	as	a	result	of	chance.	81	

	82	

While	 DNA-SIP	 is	 a	 powerful	 method	 for	 the	 discovery	 and	 characterization	 of	83	

microorganisms	 in	 situ,	 systematic	 assessment	 of	 the	 specificity	 or	 sensitivity	 of	 this	84	

method	 has	 not	 been	 performed.	 Empirical	 validations	 of	 DNA-SIP	 methods	 typically	85	

include	only	one	or	a	few	organisms	(Lueders	et	al.,	2004;	Buckley	et	al.,	2007;	Cupples	et	86	

al.,	2007;	Wawrik	et	al.,	2009;	Andeer	et	al.,	2012),	and	such	approaches	do	not	adequately	87	

replicate	the	complexity	of	the	DNA	fragment	BD	distributions	expected	in	a	typical	DNA-88	

SIP	experiment	(Youngblut	and	Buckley,	2014).	DNA-SIP	experiments	vary	in	the	diversity	89	

of	 the	 target	 community,	 DNA	 G	 +	 C	 content	 distribution,	 the	 number	 of	 incorporators,	90	

incorporator	 relative	 abundance,	 and	 the	 atom	 %	 excess	 of	 labeled	 DNA.	 Systematic	91	
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evaluation	of	method	accuracy	should	address	the	effects	that	all	of	these	variables	have	on	92	

the	 sensitivity	 and	 specificity	 of	 detecting	 isotope	 incorporators.	 Since	 DNA-SIP	93	

experiments	 are	 costly,	 technically	 difficult,	 and	 laborious,	 it	 is	 not	 practical	 to	 perform	94	

empirical	assessment	across	this	full	range	of	variables.		95	

	96	

Fortunately,	 the	 physics	 of	 isopycnic	 centrifugation	 have	 been	 well	 characterized	97	

mathematically,	and	the	behavior	of	 individual	DNA	fragments	 in	CsCl	gradients	 is	highly	98	

reproducible	 and	 predictable	 from	 first	 principles	 (Meselson	 et	 al.,	 1957;	 Fritsch,	 1975;	99	

Birnie	and	Rickwood,	1978).	In	addition,	genome	sequences	are	available	for	thousands	of	100	

diverse	 microorganisms,	 and	 these	 genomes	 can	 be	 used	 to	 generate	 DNA	 fragments	101	

representative	of	community	DNA	(Youngblut	and	Buckley	2014).	Hence,	we	can	simulate	102	

realistic	 HTS-DNA-SIP	 data	 for	 in	 silico	 microbial	 communities	 that	 differ	 in	 diversity	103	

(richness,	 evenness,	 and	 composition),	 where	 the	 relative	 abundance,	 genome	 G	 +	 C	104	

content,	 and	 atom	%	 excess	 isotope	 are	 defined	 for	 discrete	 DNA	 fragments	 from	 every	105	

genome.	 We	 have	 developed	 a	 computational	 toolset	 for	 simulating	 HTS-DNA-SIP	 data	106	

(SIPSim)	 and	 used	 this	 simulation	 framework	 to	 systematically	 and	 objectively	 evaluate	107	

how	changes	in	key	SIP	experimental	parameters	affect	HTS-DNA-SIP	accuracy.		108	

	109	

Results	110	

Model	validation	and	parameter	estimation	111	

The	 SIPSim	 model	 starts	 with	 a	 set	 of	 user-designated	 genomes	 and	 user-designated	112	

experimental	 parameters	 (e.g.	 number	 of	 gradient	 fractions,	 desired	 community	113	

characteristics,	 desired	 isotopic	 labeling	 characteristics)	 as	 described	 (see	 Experimental	114	
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Procedures	 and	 Supporting	 Information).	 Briefly,	 the	 genomes	 are	 fragmented	 as	 would	115	

occur	during	DNA	extraction,	 isotopic	 labeling	 is	 applied	 to	 some	number	of	 genomes	as	116	

specified	 by	 the	 user,	 the	 BD	 distributions	 are	 determined	 for	 each	 DNA	 fragment	 and	117	

fragment	collections	are	then	binned	into	gradient	 fractions,	 fragments	are	sampled	from	118	

each	fraction	as	would	occur	during	amplification	and	DNA	sequencing	of	SSU	rRNA	genes,	119	

and	then	the	relative	abundance	is	calculated	for	each	OTU	(Figure	1).	The	model	produces	120	

results	 that	 are	 highly	 similar	 to	 those	 observed	 in	 empirical	 experiments,	 including	 the	121	

ability	to	detect	DNA	fragments	throughout	the	density	gradient	(Figure	2).	122	

	123	

The	development	of	the	simulation	model	was	guided	by	established	centrifugal	theory	and	124	

by	 comparison	 of	 simulated	 results	 to	 empirical	 data	 (as	 in	 Experimental	 Procedures	 in	125	

Supporting	Information).	First,	we	performed	a	simple	evaluation	of	model	performance	by	126	

recreating	results	 from	a	prior	DNA-SIP	experiment	with	Methanosarcina	barkeri	MS	and	127	

Methylobacterium	 extorquens	 AM1	 (Lueders	 et	 al.,	 2004)	 (Figure	 S1).	 Simulated	 DNA	128	

distributions	(both	in	terms	of	total	DNA	and	SSU	rRNA	gene	amplicon	copies)	significantly	129	

and	 strongly	 correlated	 with	 the	 empirical	 data	 for	 both	 taxa	 (p	 <	 0.003	 for	 all	130	

comparisons;	see	Table	S1).	In	addition,	the	simulated	SSU	rRNA	gene	amplicon-fragment	131	

BD	distributions	were	shifted	0.007	g	ml-1	toward	the	middle	of	the	BD	gradient	relative	to	132	

the	shotgun-fragments	 (“total	DNA”),	 a	phenomenon	also	observed	 in	 the	empirical	data.	133	

This	central	tendency	for	SSU	rRNA	amplicon-fragments	reflects	G	+	C	conservation	of	the	134	

rrn	operon,	as	previously	described	(Youngblut	and	Buckley,	2014).		135	

	136	
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Next,	we	 determined	whether	 the	 simulation	 accurately	modeled	 variation	 in	 BD	within	137	

complex	mixtures	of	unlabeled	DNA	by	comparing	simulation	results	 to	empirical	 results	138	

obtained	with	unlabeled	DNA	from	soil.	For	this	purpose	we	used	empirical	data	from	an	139	

experiment	(Youngblut	et	al.,	in	prep.)	in	which	DNA	was	extracted	from	soil	microcosms	at	140	

1,	3,	6,	14,	30,	and	48	days	following	the	addition	of	an	unlabeled	carbon	source	mixture.	141	

These	 six	DNA	samples	were	equilibrated	 in	CsCl	 gradients,	 fractionated	by	BD,	 and	SSU	142	

rRNA	 gene	 amplicons	were	 sequenced	 for	 ~24	 fractions	 from	 each	 gradient.	 Simulation	143	

input	included	1147	microbial	genomes	(see	Experimental	Procedures),	hence	the	soil	data	144	

was	 resampled	 to	 1147	OTUs	 in	 order	 to	 standardize	 the	 richness	 of	 the	 simulated	 and	145	

empirical	 data.	 Ideally,	 we	 could	 map	 SSU	 rRNA	 sequences	 from	 soil	 to	 all	 bacterial	146	

genomes	 available	 in	 public	 databases,	 but	 genome	 composition	 can	 vary	 dramatically	147	

across	taxa	that	have	 identical	SSU	rRNA	gene	sequences.	Since	the	genome	sequences	of	148	

taxa	 in	 the	empirical	HTS-DNA-SIP	dataset	 cannot	be	confidently	assigned	 to	genomes	 in	149	

existing	 databases,	 a	 direct	mapping	 of	 taxa	 (and	 their	 genomes)	 between	 the	 empirical	150	

and	 simulated	 datasets	 was	 not	 possible.	 We	 therefore	 employed	 metrics	 that	 capture	151	

variation	 in	DNA	 fragment	BD	distributions	within	density	 gradients,	 and	which	 thereby	152	

allow	 for	 gradient	 to	 gradient	 comparison	 of	 DNA	 BD	 distributions	 (see	 Supporting	153	

Information).	154	

	155	

The	empirical	BD	distributions	 (Figure	S2)	 show	 that	 temporal	 change	 in	 soil	mesocosm	156	

community	 composition	 caused	 dramatic	 shifts	 in	 the	 Shannon	 diversity	 of	 ‘heavy	157	

fractions’	 even	 in	 the	 absence	 of	 isotopic	 labeling	 (Figure	 S2B),	 with	 heavy	 fraction	158	

diversity	increasing	at	later	time	points.	Moreover,	taxonomic	similarity	within	a	gradient	159	
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is	 auto-correlated	 across	 the	 BD	 gradient	 (Figure	 S2C).	 Lastly,	 variance	 in	 amplicon	160	

fragment	 BD	 is	 positively	 correlated	 with	 OTU	 relative	 abundance	 in	 the	 community	161	

(Figure	 S2D),	with	 highly	 abundant	OTUs	 found	 throughout	 the	 CsCl	 gradient.	We	 found	162	

that	 the	 simulation	model	 was	 able	 to	 recapitulate	 these	 results	 across	 a	 wide	 range	 of	163	

parameter	space,	and	that	the	variance	between	simulated	and	empirical	results	was	less	164	

than	 that	 observed	 between	 replicate	 empirical	 samples	 (Figure	 S3).	 We	 used	 these	165	

comparisons	to	determine	model	parameter	values	(Table	S2),	which	provided	the	best	fit	166	

to	 the	 actual	 behavior	 of	 DNA	 fragments	 in	 CsCl	 gradients	 (as	 described	 in	 Supporting	167	

Information).	168	

	169	

The	influence	of	isotope	incorporation	on	HTS-DNA-SIP	accuracy	170	

We	hypothesized	 that	both	 the	number	of	 taxa	 that	 incorporate	 isotope	and	 the	atom	%	171	

isotope	 incorporation	 per	 taxon	would	 substantially	 affect	 the	 accuracy	 of	 HTS-DNA-SIP	172	

methods.	 To	 test	 these	 predictions,	 we	 simulated	 HTS-DNA-SIP	 datasets	 for	 both	 13C-173	

labeled	 samples	 and	 unlabeled	 controls	 (3	 replicates	 of	 each),	 while	 varying	 both	 the	174	

number	 of	 incorporators	 (1,	 5,	 10,	 25,	 or	 50	 %	 of	 taxa)	 and	 the	 atom	 %	 isotope	175	

incorporation	for	each	taxon	(0,	15,	25,	50,	or	100	atom	%	excess	13C).	Taxa	in	the	control	176	

were	 always	 set	 to	 0	%	 isotope	 incorporation.	 Each	 simulation	was	 replicated	 10	 times,	177	

with	differing	taxa	randomly	designated	as	incorporators	in	each	replicate.	We	evaluated	4	178	

methods	 used	 to	 analyze	 HTS-DNA-SIP	 data:	 Heavy-SIP,	 q-SIP,	 HR-SIP,	 and	 MW-HR-SIP.	179	

Heavy-SIP	 involved	 simply	 identifying	 as	 incorporators	 all	 taxa	 observed	 in	 “heavy”	180	

gradient	fractions	of	labeled	gradients,	which	provided	a	baseline	of	accuracy	for	the	more	181	

complex	HTS-DNA-SIP	analyses.	q-SIP	and	HR-SIP	were	performed	as	described	in	Hungate	182	
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et	 al.,	 (2015)	 and	 Pepe-Ranney	 et	 al.,	 (2016a),	 respectively.	 MW-HR-SIP	 was	 performed	183	

similarly	to	HR-SIP,	but	with	multiple	overlapping	“heavy”	buoyant	density	windows	(see	184	

Experimental	Procedures).		185	

	186	

As	 expected,	 both	 the	 number	 of	 incorporators	 and	 the	 amount	 of	 isotope	 incorporated	187	

affected	 accuracy	 (Figure	 3).	 However,	 the	 effect	 of	 these	 parameters	 on	 specificity	 and	188	

sensitivity	 varied	 depending	 on	 the	 analytical	 method	 (Figure	 3).	 Specificity	 is	 the	189	

proportion	of	true	negatives	observed	out	of	all	true	negatives	expected,	and	so	specificity	190	

declines	 in	direct	 relation	 to	an	 increase	 in	 the	number	of	 false	positives.	For	example,	 a	191	

specificity	 of	 0.8	would	 generate	 200	 false	 positives	 in	 a	 sample	 of	 1000	unlabeled	 taxa.	192	

Specificity,	as	measured	across	a	wide	range	in	parameters,	was	highest	for	MW-HR-SIP	(1	193	

±	0;	ave.	±	s.d.)	and	HR-SIP	(1	±	0),	substantially	lower	for	q-SIP	(0.88	±	0.06),	and	very	low	194	

for	Heavy-SIP	(0.28	±	0.16)	(Figure	3).		195	

	196	

Sensitivity	is	the	fraction	of	true	positives	observed	out	of	all	true	positives	expected.	For	197	

example,	a	sensitivity	of	0.7	means	that	a	method	failed	to	detect	30	%	of	the	incorporators	198	

present.	 Both	 q-SIP	 and	Heavy-SIP	 had	 relatively	 high	 sensitivity	 (median	 values	 of	 0.91	199	

and	0.93,	respectively),	and	the	sensitivity	of	these	methods	was	largely	insensitive	to	the	200	

atom	 %	 excess	 of	 DNA	 and	 the	 number	 of	 incorporators	 (Figure	 3).	 In	 contrast,	 the	201	

sensitivities	of	both	HR-SIP	and	MW-HR-SIP	were	highly	responsive	to	the	atom	%	excess	202	

of	 DNA,	 and	 the	 number	 of	 incorporators	 (Figure	 3).	 For	 these	 methods,	 sensitivity	203	

declined	in	proportion	to	the	atom	%	excess	13C	label	in	DNA.		204	

	205	
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Balanced	accuracy	 is	 calculated	as	 the	mean	of	 specificity	and	sensitivity.	We	observed	a	206	

tradeoff	in	balanced	accuracy	in	relation	to	the	atom	%	excess	13C	of	DNA.	MW-HR-SIP	had	207	

the	 highest	 accuracy	 when	 %	 atom	 excess	 13C	 exceeded	 50	 %,	 but	 q-SIP	 had	 higher	208	

accuracy	 at	 lower	 levels	 of	 isotope	 incorporation	 (Figure	 3).	 This	 tradeoff	 in	 balanced	209	

accuracy	resulted	from	a	difference	in	the	tolerance	for	false	positives.	For	example,	MW-210	

HR-SIP	 produced	 nearly	 zero	 false	 positives	 but	 as	 a	 result	 of	 its	 high	 specificity,	 it	 lost	211	

sensitivity	at	lower	levels	of	isotope	incorporation.	In	contrast,	q-SIP	detected	labeled	taxa	212	

across	a	wider	range	of	isotope	incorporation,	but	it	did	so	at	the	cost	of	a	large	number	of	213	

false	positives.		214	

	215	

The	influence	of	community	variation	on	HTS-DNA-SIP	accuracy	216	

All	 HTS-DNA-SIP	 analyses	 rely	 upon	 comparisons	 made	 between	 isotopically	 enriched	217	

experimental	 treatments	 and	 their	 corresponding	 unlabeled	 controls.	 In	 real	 SIP	218	

experiments	 the	 composition	of	 replicate	post	 incubation	 communities	 are	 likely	 to	 vary	219	

somewhat	 as	 a	 result	 of	 sample	 heterogeneity	 and	 incubation	 effects.	 However,	 the	220	

simulations	 described	 above	 assume	 random	 sampling	 from	 identical	 pre-fractionation	221	

(post-incubation)	community	structures.	We	hypothesized	that	an	increase	in	variation	in	222	

community	 composition	 between	 treatment	 and	 control	 samples	 would	 decrease	 the	223	

accuracy	 of	 HTS-DNA-SIP	 analyses.	 To	 test	 this	 hypothesis,	 we	 generated	 simulations	 in	224	

which	isotope	incorporation	was	held	constant	(100		atom	%	excess	13C;	10	%	of	OTUs	are	225	

incorporators)	but	beta-diversity	was	varied	among	3	replicate	treatment	and	3	replicate	226	

control	 samples.	We	 varied	 beta-diversity	 in	 two	ways:	 i)	 using	 permutation	 to	 vary	 the	227	

rank	 abundance	 of	 a	 fixed	 proportion	 of	 community	 members	 and	 ii)	 varying	 the	228	
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proportion	 of	 taxa	 shared	 between	 communities.	 For	 each	 simulation	 scenario,	 we	229	

calculated	 the	mean	Bray-Curtis	distance	among	communities	 in	order	 to	provide	a	 real-230	

world	metric	for	gauging	the	potential	accuracy	of	actual	DNA-SIP	experiments.		231	

	232	

As	hypothesized,	increased	beta-diversity	among	samples	had	a	substantial	impact	on	the	233	

accuracy	of	HTS-DNA-SIP	methods	(Figure	4).	Accuracy	was	impacted	more	by	the	number	234	

of	 taxa	shared	between	samples	 than	by	differences	 in	 taxon	abundance	(Figure	S4).	The	235	

sensitivity	of	q-SIP	declined	as	beta-diversity	 increased,	 falling	to	0.64	±	0.04	(ave.	±	s.d.)	236	

when	samples	shared	80	%	of	their	OTUs	(Figure	S4).	In	contrast,	the	sensitivities	of	MW-237	

HR-SIP	and	Heavy-SIP	were	least	affected	by	changes	in	beta-diversity	and	these	methods	238	

had	 the	 highest	 sensitivity	 overall	 (0.81	 ±	 0.04	 and	 0.82	 ±	 0.03	 at	 80	 %	 shared	 OTUs,	239	

respectively;	 ave.	 ±	 s.d.).	 Increasing	 the	 beta-diversity	 of	 samples	 had	 little	 effect	 on	 the	240	

specificity	of	q-SIP	but	diminished	slightly	the	specificity	of	HR-SIP	and	MW-HR-SIP	(Figure	241	

4).	Despite	these	declines,	HR-SIP	and	MW-HR-SIP	maintained	specificity	that	was	greater	242	

than	or	equal	q-SIP	and	Heavy-SIP	throughout	most	parameter	space	(Figure	4).		243	

	244	

Of	the	methods	evaluated,	MW-HR-SIP	had	the	highest	balanced	accuracy	across	the	widest	245	

range	of	parameters	 tested	 (Figure	4).	Regardless,	 the	balanced	accuracy	 for	MW-HR-SIP	246	

was	negatively	affected	by	an	increase	in	beta-diversity,	falling	from	0.98	±	0.02	to	0.86	±	247	

0.02	 (ave.	 ±	 s.d.)	 when	 the	 Bray-Curtis	 dissimilarity	 between	 samples	 was	 increased	248	

beyond	0.5	(Figure	4).	These	results	highlight	the	overall	negative	impact	that	sample-to-249	

sample	 variation	 has	 on	 HTS-DNA-SIP	 accuracy,	 and	 the	 importance	 of	 minimizing	250	
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experimental	 variation	 between	 unlabeled	 controls	 and	 labeled	 treatments	 in	 SIP	251	

experiments.	252	

		253	

Using	HTS-DNA-SIP	data	to	quantify	atom	%	excess	254	

So	 far	 we	 have	 focused	 on	 the	 accuracy	 of	 HTS-DNA-SIP	 methods	 with	 respect	 to	 the	255	

identification	of	taxa	that	incorporate	isotope	into	their	DNA.	However,	changes	in	DNA	BD	256	

can	 also	 be	 used	 to	 quantify	 the	 isotope	 enrichment	 of	 DNA	 from	 particular	 taxa.	 Two	257	

approaches	have	been	used	to	evaluate	 isotope	enrichment	from	HTS-SIP	data:	q-SIP	and	258	

ΔBD,	with	the	latter	being	a	complementary	analysis	to	HR-SIP	(Pepe-Ranney	et	al.,	2016a).	259	

Both	 ΔBD	 and	 q-SIP	 derive	 quantitative	 estimates	 from	measuring	 taxon	 BD	 shifts	 (and	260	

thus	 atom	 %	 excess)	 in	 the	 labeled	 treatment	 gradient(s)	 versus	 their	 unlabeled	261	

counterparts.	The	ΔBD	method	attempts	to	measure	the	extent	of	the	BD	shift	directly	from	262	

the	compositional	sequence	data,	while	q-SIP	utilizes	relative	abundances	transformed	by	263	

qPCR	 counts	 of	 total	 SSU	 rRNA	 copies.	 Therefore,	 ΔBD	 accuracy	 likely	 suffers	 from	264	

compositional	effects	inherent	to	HTS	datasets,	while	q-SIP	accuracy	is	dependent	on	qPCR	265	

accuracy	and	variation.	266	

	267	

We	assessed	the	quantification	accuracy	of	both	methods	using	the	simulations	described	268	

previously,	where	either	the	amount	of	isotope	incorporation	or	sample	beta-diversity	was	269	

varied.	We	found	that	ΔBD	produced	estimates	of	isotope	incorporation	that	were	closer	on	270	

average	 to	 the	 true	 value	 compared	 to	 q-SIP,	 but	 ΔBD	 values	 had	much	 higher	 variance	271	

than	 q-SIP	 estimates	 (Figure	 5).	 Furthermore,	 the	 variance	 in	 ΔBD	 atom	 %	 excess	 13C	272	

estimates	increased	substantially	with	even	moderate	increases	in	beta-diversity	between	273	
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samples,	 while	 the	 q-SIP	 estimations	 were	 largely	 invariant	 across	 the	 simulation	274	

parameter	 space	 (Figure	 S5A).	However,	mean	 q-SIP	 values	 consistently	 underestimated	275	

the	 true	 13C	atom	%	excess	by	30.2-39.2%	(Figure	5B).	Overall,	quantitative	estimates	of	276	

isotope	 incorporation	 for	 individual	 taxa	 were	 less	 variable	 with	 q-SIP,	 though	 q-SIP	277	

consistently	miss-estimated	actual	levels	of	isotope	enrichment.		278	

	279	

Discussion	280	

Our	 simulation	 framework	 (SIPSim)	 provides	 a	 tractable	 platform	 for	 evaluating	 the	281	

accuracy	of	DNA-SIP	methods	and	 for	developing	new	methods	 to	analyze	DNA-SIP	data.	282	

Given	 the	 laborious	 nature	 of	 DNA-SIP	 experiments,	 it	 is	 impossible	 to	 use	 empirical	283	

analyses	with	mock	 communities	 to	 evaluate	 the	 range	 of	 parameter	 values	 that	 can	 be	284	

investigated	 through	 simulation.	 In	 addition,	 both	 the	 physics	 of	 density	 gradient	285	

centrifugation	and	the	physical	properties	of	genomic	DNA	are	well	established,	making	the	286	

simulation	 of	 DNA-SIP	 data	 both	 tractable	 and	 reliable.	Without	 rigorous	 assessment	 of	287	

DNA-SIP	methods,	it	is	difficult	to	determine	the	likelihood	of	false	negatives	(Type	II	error)	288	

and	 false	 positives	 (Type	 I	 error)	 across	 the	 wide	 range	 of	 experimental	 conditions	 in	289	

which	DNA-SIP	has	been	employed	in	the	literature.	Issues	of	Type	I	and	Type	II	statistical	290	

error	are	compounded	in	the	analysis	of	HTS-DNA-SIP	by	the	nature	of	HTS	data,	where	it	291	

is	necessary	to	make	many	thousands	of	comparisons	to	identify	those	OTUs	that	change	in	292	

response	 to	 treatment.	 This	 multiple	 comparison	 problem	 has	 major	 implications	 for	293	

statistical	power	and	the	likelihood	of	false	detection	(Paulson	et	al.,	2013).	We	have	used	294	

SIPSim	 to	 test	 the	effects	of	multiple	parameters	on	 the	accuracy	of	 current	methods	 for	295	

analyzing	 HTS-DNA-SIP	 data.	 Furthermore	 we	 used	 observations	 from	 the	 model	 to	296	
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develop	MW-HR-SIP,	an	analytical	approach	with	balanced	accuracy	higher	than	any	other	297	

current	method,	with	a	higher	sensitivity	than	HR-SIP,	a	higher	specificity	than	q-SIP	and	298	

Heavy-SIP,	and	a	higher	robustness	to	inter-sample	beta-diversity	than	all	other	currently	299	

available	methods.		300	

	301	

Although	 both	HR-SIP	 and	 q-SIP	 use	 high	 throughput	 SSU	 rRNA	 amplicon	 sequencing	 of	302	

many	 gradient	 fractions,	 their	 different	 approaches	 for	 detecting	 isotope	 incorporators	303	

result	 in	 substantial	 differences	 in	 sensitivity	 and	 specificity.	 In	 q-SIP,	 taxon	 relative	304	

abundance	 is	 transformed	 using	 qPCR	 data	 to	 estimate	 counts	 of	 SSU	 rRNA	 gene	 copies	305	

across	 gradient	 fractions;	 however,	 this	 approach	 resulted	 in	 a	 large	 number	 of	 false	306	

positives	 (8	 ±	 0.3	 to	 15	 ±	 0.7	 %	 of	 the	 unlabeled	 taxa	 evaluated	 were	 misidentified	 as	307	

labeled;	Figure	3	and	Figure	4).	Moreover,	the	number	of	false	positives	detected	by	q-SIP	308	

increased	dramatically	 in	response	to	variation	 in	community	structure	between	samples	309	

(Figure	 4).	 In	 contrast,	 HR-SIP	 had	 negligible	 false	 positives	 under	 a	 wide	 range	 of	310	

parameters	(Figure	3	and	Figure	4),	but	had	lower	sensitivity	(more	false	negatives)	than	311	

other	methods.	However,	we	 found	 that	 the	 sensitivity	 of	HR-SIP	was	 improved	without	312	

compromising	 specificity	 by	 using	 a	multi-window	 analysis	 (MW-HR-SIP)	 in	 place	 of	 the	313	

single	 window	 analysis	 used	 in	 HR-SIP.	 MW-HR-SIP	 has	 high	 sensitivity	 and	 specificity	314	

across	a	range	of	experimental	parameters,	provided	that	the	atom	%	excess	13C	of	DNA	is	315	

in	 the	 range	 of	 50-100%	 (Figure	 3).	 At	 lower	 levels	 of	 isotope	 incorporation,	 q-SIP	 has	316	

better	sensitivity,	but	this	sensitivity	comes	at	the	cost	of	detecting	a	large	number	of	false	317	

positives	 (i.e.	 low	 specificity).	 This	 tradeoff	 between	 specificity	 and	 sensitivity	 can	 be	318	

contextualized	 by	 considering	 a	 community	 that	 contains	 1045	 unlabeled	 taxa	 and	 55	319	
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labeled	taxa.	If	these	55	taxa	are	labeled	at	50%	atom	excess	13C,	both	methods	do	a	good	320	

job	detecting	truly	 labeled	taxa	(MW-HR-SIP:	51	±	2;	q-SIP:	50	±	2),	but	q-SIP	detects	 far	321	

more	false	positives	(MW-HR-SIP:	0	±	1;	q-SIP:	126	±	8).	If	these	55	taxa	are	instead	labeled	322	

at	25%	atom	excess	13C	then	MW-HR-SIP	detects	 fewer	 labeled	taxa	than	q-SIP	(MW-HR-323	

SIP:	33	±	3;	q-SIP:	50	±	2),	but	q-SIP	still	detects	far	more	falsely	labeled	taxa	(MW-HR-SIP:	324	

1	 ±	 0;	 q-SIP:	 122	 ±	 8).	 In	 these	 examples,	 about	 71%	 of	 the	 taxa	 identified	 by	 q-SIP	 as	325	

labeled	are	actually	unlabeled.	326	

	327	

When	 considering	 the	 relative	 importance	 of	 sensitivity	 versus	 specificity	 for	 DNA-SIP	328	

experiments,	 the	 ability	 to	 detect	 taxa	 that	 incorporate	 isotope	 is	 only	 useful	 if	 those	329	

identifications	can	be	made	with	high	confidence	(i.e.	with	a	low	number	of	false	positives).	330	

Therefore,	 based	 on	 our	 results,	 MW-HR-SIP	 is	 the	 most	 robust	 method	 for	 identifying	331	

isotope	incorporators	from	HTS-DNA-SIP	data.	In	addition	to	its	high	specificity	and	better	332	

ability	to	handle	variance	between	replicate	samples,	MW-HR-SIP	has	the	added	advantage	333	

of	 not	 requiring	 qPCR	 to	 be	 performed	 on	 each	 gradient	 fraction.	 It	 should	 be	 noted,	334	

however,	 that	 the	 primary	 objective	 for	which	MW-HR-SIP	was	 designed	 is	 the	 accurate	335	

detection	of	labeled	taxa,	regardless	of	level	of	isotopic	enrichment,	while	a	major	goal	of	q-336	

SIP	is	to	quantify	the	atom	%	excess	of	individual	taxa.	337	

	338	

In	 regards	 to	methods	 used	 to	 quantify	 the	 atom	%	 excess	 of	 individual	 taxa	 from	HTS-339	

DNA-SIP	data,	we	found	that	the	utility	of	q-SIP	or	ΔBD	varied	depending	on	the	hypothesis	340	

being	evaluated.	ΔBD	produced	more	accurate	estimates	of	mean	13C	atom	%	excess	than	q-341	

SIP	(Figure	5	and	Figure	S5),	and	so	this	approach	may	be	suitable	when	seeking	to	make	342	
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relative	comparisons	in	the	degree	of	labeling	between	large	groups	of	taxa	(as	described	in	343	

Pepe-Ranney,	et	al.,	2016).	However,	the	high	variability	of	this	approach	causes	ΔBD	to	be	344	

unreliable	in	determining	differences	in	atom	%	excess	13C	at	the	scale	of	individual	OTUs.	345	

Alternatively,	 q-SIP	 produced	much	more	 stable	 estimates	 of	 atom	%	 excess	 13C	 among	346	

individual	 taxa,	 but	 the	 method	 resulted	 in	 systematic	 underestimates	 of	 isotope	347	

incorporation.	348	

		349	

The	SIPSim	framework	makes	it	possible	to	both	evaluate	hypothetical	outcomes	of	DNA-350	

SIP	experiments	before	they	are	performed	and	to	evaluate	the	accuracy	of	HTS-DNA-SIP	351	

data	analysis	methods.	For	brevity,	we	have	only	focused	on	a	few	key	variables	that	could	352	

affect	the	accuracy	of	HTS-DNA-SIP	methods.	However,	SIPSim	can	also	be	used	to	assess	353	

the	 accuracy	 of	 DNA-SIP	 methods	 across	 a	 range	 of	 possible	 real-world	 scenarios.	 For	354	

instance,	 spatial	 or	 population-level	 heterogeneity	 could	 result	 in	 taxa	 that	 are	 not	355	

homogeneously	 labeled	 (Lennon	 and	 Jones,	 2011).	 Such	 systematic	 heterogeneity	 in	356	

labeling	would	manifest	as	“split”	(bimodal	or	multimodal)	distributions	of	DNA	fragments	357	

in	an	isopycnic	gradient.	It	would	be	challenging	to	evaluate	such	scenarios	empirically,	but	358	

SIPSim	can	be	readily	used	to	evaluate	a	range	of	such	scenarios.	SIPSim	can	also	be	used	to	359	

evaluate	the	effect	of	sequencing	depth	on	the	statistical	power	needed	to	resolve	isotope	360	

incorporation	 in	 rare	 taxa.	 Such	 information	 should	 be	 useful	 in	 planning	 HTS-DNA-SIP	361	

experiments,	to	ensure	that	the	experiment	has	a	reasonable	chance	of	success	before	it	is	362	

performed.	 Finally,	 SIPSim	 provides	 a	 toolkit	 for	 developing	 and	 improving	 analytical	363	

methods	 used	 in	 DNA-SIP	 experiments.	 For	 example,	 a	 hybrid	 method	 that	 combines	364	
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aspects	of	MW-HR-SIP	and	q-SIP	may	be	able	to	produce	robust	incorporator	identification	365	

while	also	providing	accurate	estimates	of	the	atom	%	excess	of	individual	taxa.		366	

	367	

Conclusion	368	

With	 our	 newly	 developed	 simulation	 toolset,	 we	 determined	 that	 MW-HR-SIP	 has	 the	369	

highest	accuracy	of	currently	available	methods	for	identifying	taxa	that	have	incorporated	370	

isotope	 in	 HTS-DNA-SIP	 experiments.	 The	 use	 of	 MW-HR-SIP	 resulted	 in	 a	 negligible	371	

number	 of	 false	 positives	 and	 its	 ability	 to	 detect	 true	positives	 varied	 in	 relation	 to	 the	372	

isotopic	 enrichment	 of	 DNA.	 Generally,	 we	 found	 that	 the	 specificity	 of	 all	 HTS-DNA-SIP	373	

methods	declined	with	increased	beta-diversity	among	replicate	samples.	Thus,	given	that	374	

accuracy	declined	most	 rapidly	between	a	mean	Bray-Curtis	distance	of	0	and	0.2	 for	 all	375	

methods	evaluated	(Figure	4),	we	recommend	that	researchers	strive	for	mean	Bray-Curtis	376	

distances	 of	 <0.2	 among	 replicate	 samples	 used	 in	 SIP	 experiments	 (i.e.	 between	377	

treatments	and	their	corresponding	controls).	378	

	379	

Experimental	Procedures	380	

Theory	underlying	the	simulation	framework	381	

DNA	 stable	 isotope	 probing	 employs	 isopycnic	 centrifugation	 to	 separate	 isotopically	382	

enriched	(“heavy”)	DNA	molecules	from	unlabeled	(“light”)	DNA	based	on	their	differences	383	

in	 buoyant	 density	 (BD).	 Isopycnic	 centrifugation	 is	 distinguished	 from	 other	384	

centrifugation	methods	in	that	centrifugation	is	carried	out	long	enough	to	both	generate	a	385	

density	gradient	(typically	using	CsCl	for	DNA-SIP)	and	have	all	macromolecules	of	interest	386	

reach	 sedimentation	 equilibrium,	which	 is	 the	 point	 at	 which	 sedimentation	 rates	 equal	387	
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rates	of	diffusion	(Hearst	and	Schmid,	1973;	Birnie	and	Rickwood,	1978).	Empirical	studies	388	

have	shown	that	the	average	BD	(ρ)	of	a	mixture	of	DNA	molecules	is	linearly	related	to	the	389	

average	G	+	C	content	for	that	collection	of	molecules:		390	

	391	

⍴ = 0.098[𝐺 + 𝐶]+ 1.66	 	 	 	 	 (1)	392	

	393	

where	 [G	 +	 C]	 is	 the	 mole	 fraction	 of	 G+C	 content	 (Schildkraut	 et	 al.,	 1962;	 Birnie	 and	394	

Rickwood,	 1978).	 In	 addition,	 empirical	 studies	 have	 also	 shown	 that	 homogeneous	395	

mixtures	of	DNA	molecules	form	a	Gaussian	distribution	in	an	isopycnic	gradient	when	at	396	

sedimentation	 equilibrium	 (Meselson	 et	 al.,	 1957;	 Fritsch,	 1975).	 Therefore,	 in	 order	 to	397	

model	 the	BD	distribution	of	a	heterogeneous	set	of	genomic	DNA	 fragments,	 a	Gaussian	398	

distribution	 must	 be	 estimated	 for	 each	 homogeneous	 subset	 of	 molecules	 rather	 than	399	

using	discrete	BD	values	 (as	described	 in	Supporting	 Information).	Based	on	 the	work	of	400	

Meselson	 and	 colleagues	 (Meselson	 et	 al.,	 1957),	 Fritsch	 (1975)	 derived	 an	 equation	401	

describing	 time	 to	 reach	 sedimentation	 equilibrium,	which	 can	 be	 reworked	 to	 calculate	402	

the	standard	deviation	(σ)	of	the	Gaussian	distribution:	403	

	404	

𝜎 =  !
!(!! !.!")	 	 									 	 	 	 	(2)	405	

	406	

𝛾 = !!!!!!!
!°(!!!!!)

	 	 	 	 	 	 (2.1)	407	

	408	
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where	L	 is	 the	effective	 length	of	 the	gradient	(cm),	t	 is	 time	 in	seconds,	ω	 is	 the	angular	409	

velocity	(radians	sec-1),	rp	is	the	distance	of	the	particle	from	the	axis	of	rotation	(cm),	s	is	410	

the	 sedimentation	 coefficient	 of	 the	 particle,	 β°	 is	 the	 coefficient	 specific	 to	 the	 density	411	

gradient	medium	(e.g.	CsCl);	pp	and	pm	are	the	maximum	and	minimum	distances	between	412	

the	 gradient	 and	 axis	 of	 rotation	 (cm)	 (Fritsch,	 1975).	 By	 assuming	 that	 sedimentation	413	

equilibrium	 has	 been	 reached	 for	 all	 macromolecules	 of	 interest,	 Clay	 and	 colleagues	414	

derived	 a	 simplified	 equation	 for	 determining	 σ	 from	 the	 calculations	 in	 (Schmid	 and	415	

Hearst,	1972):	416	

	417	

𝜎 = !"#
!!!!!!

	 	 	 	 	 (3)	418	

	419	

where	ρ	 is	 the	BD	of	 the	particle,	R	 is	 the	universal	gas	constant,	T	 is	 the	 temperature	 in	420	

Kelvins,	 β	 is	 a	 proportionality	 constant	 for	 aqueous	 salts	 of	 specific	 densities,	 G	 is	 a	421	

buoyancy	factor	as	described	in	(Clay	et	al.,	2003),	MC	is	the	molecular	weight	per	base	pair	422	

of	DNA,	and	l	 is	the	fragment	length	(bp).	For	most	DNA-SIP	experiments,	the	assumption	423	

of	sedimentation	equilibrium	for	all	DNA	fragments	is	likely	to	be	unrealistic	for	relatively	424	

short	 DNA	 fragments	 (e.g.	 <	 4	 kb),	 given	 that	 the	 time	 to	 equilibrium	 rises	 dramatically	425	

with	 decreasing	 fragment	 length	 (Meselson	 et	 al.,	 1957;	 Birnie	 and	 Rickwood,	 1978;	426	

Youngblut	and	Buckley,	2014).	However,	the	ultracentrifugation	durations	used	in	typical	427	

DNA-SIP	 experiments	 should	 still	 generally	 produce	 small	 σ	 values	 for	 short	 DNA	428	

fragments	 according	 to	Eq.	2	 (Neufeld	et	al.,	 2007).	Therefore,	 equation	Eq.	3	provides	a	429	
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good	 approximation	 for	 modeling	 the	 BD	 distribution	 of	 DNA	 in	 density	 gradients	430	

generated	in	typical	DNA-SIP	experiments.		431	

	432	

The	distribution	of	a	heterogeneous	mixture	of	DNA	fragments	in	an	isopycnic	gradient	can	433	

thus	be	modeled	by	integrating	the	Gaussian	distributions	of	each	homogeneous	subset	of	434	

DNA	fragments,	where	the	mean	of	each	Gaussian	is	determined	by	Eq.	1	and	the	standard	435	

deviation	 derived	 from	 Eq.	 3.	 In	 this	way,	 the	 BD	 distribution	 for	 a	 given	 genome	 in	 an	436	

isopycnic	gradient	can	be	modeled	by	the	following	steps:	simulate	genome	fragmentation	437	

resulting	 from	 DNA	 extraction,	 bin	 gDNA	 fragments	 with	 respect	 to	 length	 and	 G	 +	 C	438	

content,	 model	 Gaussian	 distribution	 for	 each	 fragment	 bin,	 and	 then	 integrate	 these	439	

distributions	to	describe	the	cumulative	DNA	distribution	in	the	gradient.		440	

	441	

We	 found	 that	 empirical	DNA	 fragment	 distributions	 differed	 from	 the	 expectations	 of	 a	442	

strictly	 Gaussian	model	 (Figure	 S2),	 and	 we	 determined	 that	 these	 differences	 could	 be	443	

reconciled	on	the	basis	of	established	principles	of	fluid	mechanics	(as	described	below	and	444	

in	 Supporting	 Information).	 Based	 on	 empirical	measurements,	 we	 found	 that	most	 taxa	445	

with	relative	abundances	>	0.1%	are	detected	in	all	gradient	fractions	when	unlabeled	DNA	446	

is	 subjected	 to	 CsCl	 gradient	 centrifugation	 and	 SSU	 rRNA	 amplicon	 sequencing	 is	447	

performed	across	a	wide	range	of	density	gradient	fractions	(Figure	S2).	This	observation	448	

is	 in	general	 congruence	with	observations	 in	 the	 literature	 (Birnie	and	Rickwood,	1978;	449	

Lueders	 et	 al.,	 2004;	 Leigh	et	 al.,	 2007),	 but	 it	 does	 not	match	 the	 expectation	 that	DNA	450	

fragment	distributions	 are	 strictly	Gaussian,	 since	 the	Gaussian	model	 predicts	 that	DNA	451	

fragments	 should	 be	 undetectable	 (i.e.	 probability	 density	 <	 1e-7)	 at	 either	 end	 of	 the	452	
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density	 gradient	 (Figure	 S6).	We	 explain	 the	 difference	 between	 observed	 and	 expected	453	

DNA	distributions	as	a	function	of	fluid	mechanics	during	gradient	reorientation.		454	

	455	

During	 isopycnic	centrifugation,	 the	buoyant	density	gradient	 forms	perpendicular	 to	 the	456	

axis	 of	 rotation	 (Figure	 S7),	 and	 gradient	 reorientation	 during	 centrifuge	 deceleration	 is	457	

dramatic,	especially	for	vertical	rotors	(Flamm	et	al.,	1966).	While	the	distortion	of	the	BD	458	

gradient	during	reorientation	has	been	shown	to	be	minimal	in	the	aggregate	(Fisher	et	al.,	459	

1964;	Flamm	et	al.,	1966),	the	inevitable	presence	of	a	diffusive	boundary	layer	along	the	460	

tube	wall	 is	sufficient	to	entrain	quantities	of	DNA,	which	are	small	but	should	be	readily	461	

detectable	 by	 high	 throughput	 sequencing	 methods.	 The	 flow	 field	 that	 occurs	 during	462	

gradient	 reorientation	 entrains	 along	 the	 tube	 wall	 a	 volume	 with	 a	 dimension	463	

proportional	to	flow	velocity,	fluid	viscosity,	and	surface	topography	(Tritton,	1977;	Cohen	464	

and	Dowling,	2012).	Following	gradient	reorientation,	DNA	from	the	entrained	volume	will	465	

combine	 with	 DNA	 from	 the	 reoriented	 volume,	 thereby	 introducing	 a	 small	 amount	 of	466	

non-BD-equilibrium	DNA	into	each	gradient	fraction	(Figure	S7).	The	ability	of	the	diffusive	467	

boundary	to	introduce	non-BD-equilibrium	DNA	into	gradient	fractions	can	be	modeled	as	468	

a	function	of	rotor	geometry	(Figure	S7).	Assuming	sedimentation	equilibrium,	BD	(⍴)	can	469	

be	directly	related	to	the	distance	from	axis	of	rotation	(Birnie	and	Rickwood,	1978):		470	

	471	

𝑥 =  (𝑝 − 𝑝!)
!!°

!!
+ 𝑟!! 	 	 	 	 	 (4)	472	

	473	
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From	 this	 calculation,	 the	 location	 of	 DNA	molecules	 in	 the	 centrifuge	 tube,	 both	 during	474	

centrifugation	 and	 fractionation,	 can	 be	 ascertained	 by	 using	 simple	 trigonometry	 along	475	

with	 knowledge	 of	 centrifuge	 tube	 dimensions	 and	 angle	 to	 the	 axis	 of	 rotation.	 A	 full	476	

description	 of	 the	 calculations	 along	 with	 an	 example	 can	 be	 found	 at	477	

https://github.com/nick-youngblut/SIPSim.	The	 fraction	of	 a	 taxon’s	DNA	 fragments	 that	478	

are	in	the	boundary	layer	(Dti)	is	modeled	as:		 	479	

	480	

𝐷!" = 𝐴!"𝛾 + 𝛼	 	 	 	 	 	 (5)	481	

	 	482	

where		Ati	is	the	pre-fractionation	community	relative	abundance	of	taxon	t	in	gradient	i,		γ	483	

is	 a	 weight	 parameter	 determining	 the	 contribution	 of	 Ati	 to	 Ab,	 and	 α	 is	 the	 baseline	484	

fraction	DNA	in	Ab.			485	

	486	

Assimilation	of	the	commonly	used	isotopes	13C	and	15N	into	genomic	DNA	produces	linear	487	

shifts	 in	 BD,	 with	 a	 maximum	 shift	 of	 0.036	 and	 0.016	 g	 ml-1,	 respectively	 (Birnie	 and	488	

Rickwood,	1978).	Thus	the	shift	in	BD	(ρ)	can	be	modeled	as:	489	

	490	

⍴!"! = 𝐼!,!"#𝐴! + ⍴!"! 	 	 	 	 (6)	491	

	492	

where	 Ii,max	 is	 the	maximum	possible	BD	shift	 if	 100%	atom	excess	 for	 isotope	 i,	A	 is	 the	493	

atom	%	excess	of	isotope	i,	and	ρ12C		is	the	buoyant	density	at	0%	atom	excess.		494	

	495	
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SIP	data	simulation	framework	overview	496	

Based	 on	 the	 theory	 described	 above,	 our	 SIP	 data	 simulation	 framework	 simulates	 the	497	

distribution	 of	 gDNA	 fragments	 in	 isopycnic	 gradients	 at	 sedimentation	 equilibrium.	498	

Furthermore,	it	generates	the	HTS-DNA-SIP	datasets	obtained	from	fractionating	isopycnic	499	

gradient(s)	and	performing	high	throughput	sequencing	on	many	of	the	gradient	fractions.	500	

Our	framework	also	implements	all	of	the	HTS-DNA-SIP	analysis	methods	assessed	in	this	501	

study	 (Heavy-SIP,	 HR-SIP,	 MW-HR-SIP,	 q-SIP,	 and	 ΔBD)	 and	 evaluates	 their	 accuracy	 of	502	

identifying	 incorporators	 or	 quantifying	 BD	 shifts.	 An	 overview	 of	 our	 simulation	503	

framework	is	shown	in	Figure	1.	504	

	505	

Our	simulation	framework	is	a	modular	collection	of	steps	that	can	be	grouped	in	workflow	506	

stages	 that	are	 further	broken	down	 into	steps	(Figure	1).	The	 input	 is	a	set	of	reference	507	

genomes	in	fasta	format	and	a	text	file	designating	the	experimental	design,	which	includes	508	

the	number	of	gradients	for	labeled	treatments	and	unlabeled	controls.		509	

	510	

Stage	1	involves	generating	a	BD	distribution	of	gDNA	fragments	for	each	genome.	Step	1a	511	

involves	 simulating	 the	 pool	 of	 gDNA	 fragments	 that	 is	 extracted	 from	 SIP	 incubation	512	

samples	and	then	loaded	into	the	isopycnic	gradients.	If	amplicon	sequence	data	(e.g.	SSU	513	

rRNA)	is	to	be	generated,	amplicons	from	only	the	fragments	containing	the	PCR	template	514	

(“amplicon-fragments”)	are	sequenced,	while	shotgun	metagenomic	sequencing	can	target	515	

all	 gDNA	 fragments	 (“shotgun-fragments”).	 If	 ≥	 1	 PCR	 primer	 set	 is	 provided,	 amplicon-516	

fragments	are	generated	from	genomic	regions	fully	encompassing	genome	locations	that	517	

produced	 amplicons	 by	 in	 silico	 PCR.	 Alternatively,	 shotgun-fragments	 are	 randomly	518	
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generated	 from	 all	 possible	 genomic	 locations.	 The	 fragment	 size	 distribution	 is	 user-519	

defined	(Table	S2).		520	

	521	

As	described	in	Eq.	1	&	3,	the	length	and	G	+	C	content	of	a	DNA	fragment	can	be	used	to	522	

calculate	a	probability	distribution	of	its	location	in	the	gradient,	assuming	sedimentation	523	

equilibrium.	Step	1b	uses	the	fragments	simulated	in	Step	1a	to	generate	a	2-dimensional	524	

Gaussian	 kernel	 density	 estimation	 (KDE)	 for	 each	 taxon,	 which	 describes	 the	 joint	525	

probability	of	obtaining	fragments	with	a	certain	length	and	G	+	C	content	from	that	taxon.	526	

From	this	2D-KDE,	a	large	number	of	[length,	G	+	C]	vectors	can	be	simulated	efficiently	for	527	

more	precise	estimations	of	the	fragment	BD	distributions.	Fragment	BD	distributions	are	528	

calculated	for	each	taxon	in	Step	1c	by	sampling	[length,	G	+	C]	vectors	 from	the	2D-KDE	529	

and	calculating	Gaussian	distribution	from	each,	where	the	mean	is	based	on	Eq.	1	and	the	530	

standard	deviation	based	on	Eq.	3.	The	collection	of	Gaussian	distributions	for	all	fragments	531	

for	each	taxon	is	integrated	into	a	BD	distribution	for	all	fragments	of	a	taxon	with	Monte	532	

Carlo	error	estimation,	which	involves	sampling	BD	values	from	the	collection	of	Gaussian	533	

distributions	 and	 estimating	 a	 probability	 density	 function	 (PDF)	 of	 the	 fragment	 BD	534	

distribution	 as	 a	 one-dimensional	 Gaussian	 KDE.	 The	 result	 is	 a	 list	 of	 KDEs,	 with	 each	535	

describing	the	probability	of	detecting	the	gDNA	fragments	of	a	taxon	at	any	point	along	the	536	

isopycnic	 gradient.	 These	 fragment	 BD	 distributions	 are	modified	 in	 steps	 1d	 and	 1e	 by	537	

adding	 diffusive	 boundary	 layer	 (DBL)	 effects	 (see	 Theory)	 and	 isotope	 incorporation,	538	

respectively.	 The	 “smearing”	 due	 to	 DBL	 effects	 is	 modeled	 as	 a	 uniform	 distribution	539	

describing	 the	 increased	 fragment	BD	uncertainty,	and	 this	uncertainty	 is	 integrated	 into	540	

the	fragment	BD	distributions	by	Monte	Carlo	error	estimation	as	in	Step	3b.	The	BD	shift	541	
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due	 to	 isotope	 incorporation	 is	modeled	 in	 a	 similar	manner,	 except	BD	uncertainty	 is	 a	542	

result	 of	 inter-	 and	 intra-population	 variation	 in	 the	 amount	 of	 isotope	 incorporated.	543	

Variation	 of	 isotope	 incorporation	 is	 modeled	 as	 a	 hierarchical	 set	 of	 mixture	 models	544	

(weighted	sets	of	standard	distributions;	such	as	two	Gaussians),	where	the	parameters	for	545	

intra-population	mixture	models	that	describe	the	amount	of	isotope	incorporated	by	each	546	

individual	 are	 themselves	defined	by	 inter-population	mixture	models	 that	describe	how	547	

isotope	incorporation	varies	among	taxa.		548	

	549	

Stage	 2	 involves	 simulating	 the	 isopycnic	 gradients	 for	 a	 particular	 experimental	 design.	550	

Step	2a	 involves	simulating	 the	BD	range	size	of	each	 fraction	of	each	gradient.	Sizes	are	551	

drawn	from	a	user-defined	distribution.	Step	2b	involves	simulating	the	relative	abundance	552	

distribution	 of	 taxa	 in	 the	 gDNA	 pools	 loaded	 into	 each	 gradient	 (“pre-fractionation	553	

communities”).	 The	 abundance	distribution	of	 each	pre-fractionation	 community	 is	 user-554	

defined	and	can	vary	among	gradients.	Furthermore,	 the	amount	of	 taxa	 shared	or	 rank-555	

abundances	permutated	among	communities	(i.e.	the	beta-diversity)	is	user-defined.		556	

	557	

Stage	3	involves	generating	a	HTS-DNA-SIP	dataset	based	on	the	fragment	BD	distributions	558	

simulated	in	Stage	1	along	with	the	isopycnic	gradient	data	generated	in	Stage	2.	In	Step	3a,	559	

an	 OTU	 (taxon)	 abundance	 table	 is	 generated	 by	 sampling	 from	 the	 fragment	 BD	560	

distributions	of	each	taxon	generated	in	Stage	1,	with	sampling	depth	determined	by	pre-561	

fractionation	community	abundances	simulated	in	Step	2b.	The	subsampled	fragments	are	562	

then	binned	into	gradient	fractions	simulated	in	Step	2a.	The	resulting	OTU	table	lists	the	563	

number	of	gDNA	fragments	of	each	taxon	in	each	gradient	fraction	in	each	gradient.	If	the	564	
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simulated	fragments	are	amplicons,	then	PCR	amplification	efficiency	biases	are	simulated	565	

in	Step	3b	based	on	the	PCR	kinetic	model	described	in	Suzuki	and	Giovannoni		(1996).	The	566	

model	assumes	that	efficiencies	decrease	as	the	product	concentration	increases	due	to	an	567	

increased	 propensity	 of	 single	 stranded	 products	 to	 re-anneal	 to	 their	 homologous	568	

complements.	 Sequence	 data	 is	 simulated	 in	 Step	 3c	 by	 subsampling	 from	 the	 table	 of	569	

fragment	 counts	 (the	 DNA	 fragment	 pool),	 which	 produces	 a	 final	 table	 (“HTS-DNA-SIP	570	

dataset”)	of	taxon	relative	abundances	in	each	gradient	fraction	in	each	gradient.			571	

	 	572	

SIP	data	simulation	framework	parameters	573	

Unless	 stated	 otherwise,	 we	 made	 the	 following	 assumptions	 for	 all	 simulations	 in	 this	574	

study.	Community	abundance	distributions	were	simulated	as	lognormal	distributions	with	575	

a	mean	of	10	and	a	standard	deviation	of	2.	All	taxa	were	shared	among	communities,	and	576	

no	rank-abundances	were	permuted	(unless	otherwise	stated	as	for	when	evaluating	beta-577	

diversity	 effects).	 The	 total	 number	 of	 fragments	 in	 each	 gradient	 was	 1e9.	 Gradient	578	

fragment	BD	range	sizes	were	sampled	 from	a	normal	distribution,	with	a	mean	of	0.004	579	

and	a	 standard	deviation	of	0.0015.	 SSU	 rRNA	amplicon-fragments	were	 simulated	using	580	

the	V4-targeting	16S	rRNA	primers:	515F	and	927R	(5’-GTGYCAGCMGCMGCGGTRA-3’;	5’-581	

CCGYC	AATTYMTTTRAGTTT-3’),	as	used	by	Pepe-Ranney	and	colleagues	(Pepe-Ranney,	et	582	

al.,	2016a).	The	amplicon-fragment	size	distribution	was	a	left-skewed	normal	distribution	583	

with	a	mean	of	~12	kb,	which	is	similar	to	size	distributions	produced	from	common	bead	584	

beating	cell	lysis	methods	(Kauffmann	et	al.,	2004;	Roh	et	al.,	2006;	Thakuria	et	al.,	2008).	A	585	

total	 of	 1e4	 amplicon-fragments	 were	 simulated	 per	 genome,	 which	 equated	 to	 >	 100X	586	

coverage	for	the	genomic	region	of	 interest.	Monte	Carlo	error	estimation	was	conducted	587	
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with	 1e5	 sampling	 replicates.	 Ultracentrifugation	 conditions	were	 set	 as	 in	 Pepe-Ranney	588	

and	colleagues	(Pepe-Ranney	et	al.,	2016a),	with	a	Beckman	TLA-110	rotor	spun	at	5.5e4	589	

rpm	 for	 66	 hours	 at	 20°C	 and	 an	 average	 density	 gradient	 1.7	 g	 ml-1.	 Inter-population	590	

variation	in	isotope	incorporation	was	binary	(either	0	%	or	X	%	atom	excess),	and	intra-591	

population	variation	was	set	to	zero.	Two	key	parameters	were	estimated	from	empirical	592	

HTS-DNA-SIP	 data:	 the	 bandwidth	 (smoothing	 factor)	 for	 kernel	 density	 estimation,	 and	593	

the	gamma	parameter	in	Eq.	5.	See	Table	S2	for	a	full	listing	of	simulation	parameters.		594	

	595	

Implementing	HTS-DNA-SIP	analyses	596	

The	 HR-SIP	 method	 was	 performed	 as	 described	 in	 (Pepe-Ranney	 et	 al.,	 2016a;	 Pepe-597	

Ranney	et	al.,	2016b).	Briefly,	we	used	a	“heavy”	BD	window	of	1.71-1.75	g	ml-1,	a	sparsity	598	

cutoff	 of	 0.25	 (i.e.	 OTUs	 must	 be	 present	 in	 >25%	 of	 samples),	 a	 log2	 fold	 change	 null	599	

threshold	 of	 0.25,	 and	 a	 false	 discovery	 rate	 cutoff	 of	 10	 %.	 ΔBD	 was	 determined	 as	600	

described	 by	 Pepe-Ranney	 and	 colleagues	 (Pepe-Ranney	 et	 al.,	 2016a),	 with	 OTU	601	

abundances	 linearly	 interpolated	 across	 20	 evenly	 spaced	 values	 across	 the	 gradient	 BD	602	

range.	603	

	604	

We	 hypothesized	 that	 HR-SIP	 sensitivity	 could	 be	 improved	 by	 altering	 the	 “heavy”	 BD	605	

window	(1.71-1.75	g	ml-1)	in	which	sequence	composition	is	compared	between	treatment	606	

and	 control.	 We	 evaluated	 different	 approaches	 and	 found	 that	 the	 analysis	 of	 multiple	607	

windows	(hereby	called	“MW-HR-SIP”)	resulted	in	a	significant	improvement	in	sensitivity	608	

relative	 to	 HR-SIP.	 MW-HR-SIP	 evaluated	 sequence	 composition	 within	 BD	 windows	 of:	609	

1.70-1.73,	1.72-1.75,	1.74-1.77	g	ml-1	(Figure	S8)	while	adjusting	for	multiple	comparisons.		610	
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	611	

q-SIP	was	conducted	as	described	in	Hungate	and	colleagues	(Hungate	et	al.,	2015),	with	90	612	

%	 confidence	 intervals	 calculated	 from	 1000	 bootstrap	 replicates.	 The	 variance	 among	613	

qPCR	replicates	was	modeled	based	on	the	qPCR	data	provided	in	Table	S2	of	Hungate	et	614	

al.,	(2015).	Specifically,	we	found	the	qPCR	count	variance	(σ2)	to	increase	as	a	function	of	615	

the	 mean	 (μ).	 The	 following	 polynomial	 regression	 was	 found	 to	 best	 describe	 this	616	

relationship	and	was	used	for	simulating	all	qPCR	count	values:		617	

	618	

𝜎! = 5889+ 𝜇 + 0.714𝜇!	 	 	 	 	 (7)	619	

	620	

where	μ	was	set	as	the	total	number	of	simulated	DNA	fragments	in	the	gradient	fraction	621	

(designated	in	the	OTU	table	from	Step	4a).		622	

	623	

Datasets	624	

The	genome	dataset	used	to	simulate	genomic	DNA	fragments	was	obtained	from	Genbank	625	

(Benson	 et	 al.,	 2008).	 From	a	 list	 of	 all	 bacterial	 genomes	 designated	 as	 “complete”,	 one	626	

representative	 was	 chosen	 per	 species	 in	 order	 to	 reduce	 the	 bias	 toward	 highly	627	

represented	species.	We	found	the	dataset	to	contain	a	rather	high	proportion	(~12	%)	of	628	

low	 G	 +	 C	 organisms	 (<	 30	%	 G	 +	 C);	 most	 of	 which	were	 obligate	 endosymbionts.	We	629	

randomly	sampled	a	subset	of	these	low	G	+	C	genomes	in	order	to	reduce	the	proportion	630	

of	low	G	+	C	organisms	to	just	1	%	of	the	genome	dataset.	The	resulting	dataset	consisted	of	631	

1147	bacterial	genomes.		632	

	633	
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In	order	to	simulate	empirical	data	from	Lueders	and	colleagues	(Lueders	et	al.,	2004),	the	634	

genome	 sequences	 of	Methanosarcina	 barkeri	MS	 and	Methylobacterium	 extorquens	 AM1	635	

were	 downloaded	 from	 Genbank.	 Amplicon-fragments	 were	 simulated	 with	 the	 primers	636	

Ar109f	 (5’-ACKGCTCAGTAACACGT-3’),	 Ar915r	 (5’-GTGCTCCCCCGCCAATTCCT-3’),	 Ba519f	637	

(5’-CAGCMGCCGCGGTAANWC-3’),	 and	Ba907r	 (5’-CCGTCAATTCMTTTRAGTT-3’).	 Atom	%	638	

excess	was	assumed	to	be	100	%,	and	isopycnic	centrifugation	conditions	were	simulated	639	

as	specified	in	Lueders	et	al.,	(2004).		640	

	641	

For	model	evaluation	(see	Supporting	Information	-	Results),	we	downloaded	the	genomes	642	

Clostridium	ljungdahlii	DSM	13528,	Escherichia	coli	1303,	and	Streptomyces	pratensis	ATCC	643	

33331	from	Genbank.		644	

	645	

The	 HTS-DNA-SIP	 dataset	 from	 Youngblut	 and	 colleagues	 consisted	 of	 SSU	 rRNA	MiSeq	646	

sequences	(V4	region)	of	~24	fractions	per	gradient	from	6	gradients	of	unlabeled	controls	647	

(Youngblut	et	al.,	in	prep.).	These	data	were	subsampled	to	obtain	a	total	richness	equal	to	648	

the	1147	OTUs	 in	our	reference	genome	dataset.	The	sequence	data	 is	available	 from	the	649	

NCBI	under	BioProject	PRJNA382302.			650	

	651	

Software	implementation	652	

The	 SIP	 simulation	 framework	 was	 mostly	 written	 in	 Python	 v2.7.11,	 with	 some	653	

accompanying	 code	written	 in	C++	v4.9.2	and	R	v3.2.3	 (R	Core	Team,	2016).	MFEprimer	654	

v2.0	 was	 used	 to	 perform	 in	 silico	 PCR	 (Qu	 et	 al.,	 2009).	 The	 software,	 along	 with	655	

documentation	and	examples,	can	be	found	at	https://github.com/nick-youngblut/SIPSim.	656	
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All	 genomes	 were	 downloaded	 from	 Genbank	 with	 the	 R	 package	 genomes	 v2.12.0	657	

(Stubben,	 2014),	 and	 all	 data	 analysis	 was	 conducted	 in	 R	with	 the	 following	 packages:	658	

ggplot2	v2.1.0,	dplyr	v0.4.3,	tidyr	v	0.4.1,	and	cowplot	v0.6.2.		659	

	660	

Further	methodological	details	are	provided	in	the	Supporting	Information.	661	

	662	
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Figure	Legends	795	

Figure	1.			The	SIPSim	simulation	workflow	involves	three	major	stages,	which	are	broken	796	

down	 into	multiple	 steps.	 Stage	 1	 involves	 generating	 a	 buoyant	 density	 distribution	 of	797	

gDNA	fragments	for	each	genome.	Stage	2	involves	simulating	the	isopycnic	gradients	for	a	798	

particular	experimental	design.	Stage	3	 involves	generating	a	HTS-DNA-SIP	dataset	based	799	

on	 the	 fragment	 BD	 value	 distributions	 simulated	 in	 Stage	 1	 along	 with	 the	 isopycnic	800	

gradient	data	generated	in	Stage	2.	The	output	is	a	table		(“HTS-DNA-SIP	dataset”)	of	taxon	801	

relative	abundances	in	each	gradient	fraction	in	each	gradient.	See	Experimental	Procedures	802	

for	a	more	detailed	description	of	the	simulation	workflow.	803	

	804	

Figure	2.	Compositional	effects	can	distort	and	obscure	BD	shifts	resulting	from	13C	isotope	805	

incorporation.	 The	 plots	 show	 DNA	 fragment	 distributions	 resulting	 from	 simulation	 of	806	

1147	 taxa	 (one	 color	 per	 taxon)	 within	 CsCl	 gradient	 pairs	 consisting	 of:	 a	 12C-control	807	

(“control”)	and	a	13C-treatment	(“treatment”)	gradient.	For	 this	simulation,	all	 taxa	 in	 the	808	

control	gradient	had	0%	atom	excess	13C,	while	10%	of	taxa	in	the	treatment	gradient	were	809	

randomly	 assigned	 100%	 atom	 excess	 13C.	 “Pre-sequencing	 simulation”	 (top)	 and	 “Post-810	

sequencing	simulation”	(middle,	and	bottom)	show	fragment	BD	distributions	before	and	811	

after	simulating	the	effect	of	uniform	random	sampling	which	results	from	high	throughput	812	

sequencing	 of	 all	 gradient	 fractions	 at	 an	 equal	 number	 of	 sequences.	 The	 “absolute	813	

abundance”	(top	and	middle)	 indicates	the	number	of	DNA	fragments	 from	each	taxon	 in	814	

each	 gradient	 fraction,	 while	 “relative	 abundance”	 (bottom)	 indicates	 the	 relative	815	

abundance	of	each	 taxon.	Note	 that	 the	 top	plot	represents	 the	actual	amplicon-fragment	816	

distributions	in	an	isopycnic	gradient	at	equilibrium,	while	the	bottom	plot	represents	the	817	
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sampled	 fragment	 distributions	 obtained	 after	 high	 throughput	 sequencing.	 The	 dashed	818	

vertical	 line	 is	 provided	 as	 a	 point	 of	 reference	 and	 designates	 the	 theoretical	 buoyant	819	

density	of	an	unlabeled	DNA	fragment	with	50	%	G	+	C	(as	modeled	in	Eq.	1).		820	

	821	

Figure	3.	HTS-DNA-SIP	methods	vary	in	accuracy	depending	on	the	13C	atom	%	excess	of	822	

DNA	and	the	number	of	taxa	that	incorporate	isotope.	Points	and	bars	represent	means	and	823	

standard	deviations,	respectively	(n	=	10	simulations).	Specificity	indicates	the	proportion	824	

of	 true	 negatives	 that	 are	 identified	 correctly	 and	 it	 is	 used	 to	 quantify	 false	 positives.	825	

Sensitivity	 indicates	 the	 proportion	 of	 labeled	 taxa	 (true	 positives)	 identified	 correctly.	826	

Balanced	accuracy	is	a	function	of	both	specificity	and	sensitivity.	The	x-axis	indicates	the	827	

amount	 of	 13C	 isotope	 present	 in	 taxa	 that	 are	 labeled,	 and	 different	 colors	 are	 used	 to	828	

indicate	the	percentage	of	taxa	that	have	incorporated	13C	as	indicated	by	the	legend.		829	

	830	

Figure	4.	HTS-DNA-SIP	methods	differ	in	their	sensitivity	to	community	dissimilarity	between	831	

replicate	 samples.	 Beta	 diversity,	 expressed	 as	 Bray-Curtis	 dissimilarity,	 was	 varied	832	

between	 simulated	 replicates	 (3	 replicates	 each	 for	 12C-control	 and	 13C-treatment	833	

gradients)	to	determine	the	effect	that	community	dissimilarity	between	replicates	has	on	834	

method	accuracy.	Variation	in	beta	diversity	was	simulated	by	systematically	varying	two	835	

parameters:	 the	percent	of	 taxa	shared	between	replicate	samples	(80,	85,	90,	95,	or	100	836	

%)	and	the	percent	of	taxa	whose	rank	abundances	that	were	permuted	(0,	5,	10,	15,	or	20	837	

%),	with	10	simulation	replicates	for	each	parameter	set.	The	blue	lines	are	LOESS	curves	838	

fit	 to	 accuracy	 values	 for	 all	 simulations	 (n	=	 250),	 and	 the	 grey	 regions	 represent	 99%	839	
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confidence	 intervals.	For	all	simulations,	10%	of	the	community	were	 incorporators	(100	840	

%	atom	excess	13C).		841	

	842	

Figure 5. ΔBD and qSIP vary in their accuracy at estimating 13C atom % excess of labeled DNA 843	

fragments. (A) The accuracy of both methods declines as the amount of 13C in DNA increases, 844	

but accuracy is not affected by the percent of taxa that are labeled; values indicate the mean and 845	

standard deviation (n = 10 simulations). (B) Probability density plots indicate that estimates of 846	

13C atom % excess made using ΔBD have greater variance than those made using qSIP, but both 847	

estimates systematically underestimate levels of isotope incorporation. Each vertical pair of 848	

panels indicates the probability density for estimates made across different levels of isotope 849	

incorporation (15, 25, 50, and 100 atom % excess), and the dashed line indicates the actual level 850	

of isotopic enrichment. For the calculation of probability density, 10 % of taxa were labeled 851	

using the level of enrichment indicated in each panel. 	852	
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