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 8 

Abstract 9 

The complex cellular network was formed by the interacting gene modules. Building 10 

the high-quality RNA-seq-based Gene Co-expression Network (GCN) is critical for 11 

uncovering these modules and understanding the phenotypes of an organism. Here, 12 

we established and analyzed the RNA-seq-based GCNs in two monocot species rice 13 

and maize, and two eudicot species Arabidopsis and soybean, and subdivided them 14 

into co-expressed modules. Taking rice as an example, we associated these modules 15 

with biological functions and agronomic traits by enrichment analysis, and discovered 16 

a large number of conditin-specific or tissue-specific modules. In addition, we also 17 

explored the regulatory mechanism of the modules by enrichment of the known 18 

cis-elements, transcription factors and miRNA targets. Their coherent enrichment with 19 

the inferred functions of the modules revealed their synergistic effect on the gene 20 

expression regulation. Moreover, the comparative analysis of gene co-expression was 21 

performed to identify conserved and species-specific functional modules across 4 22 

plant species. We discovered that the modules shared across 4 plants participate in the 23 

basic biological processes, whereas the species-specific modules were involved in the 24 

spatiotemporal-specific processes linking the genotypes to phenotypes. Our research 25 

provides the massive modules relating to the cellular activities and agronomic traits in 26 

several model and crop plant species. 27 
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Introduction 31 

The complex cellular network formed by the interacting macromolecules underlie an 32 

organism’s phenotypes 1-3. Biomolecules are often thought to organize into interacting 33 

modules (functional building blocks) for completing a specific biological process 4-6. 34 

This standpoint is supported by the fact that many observable phenotypic variances 35 

are often not determined by a single gene but by a set of interacting genes 7. 36 

Systematic reconstructing a complete map of these interacting molecular modules are 37 

crucial for understanding an organism’s genetic architecture underlying phenotypes.  38 

Several methods have been developed to find functional gene modules by utilizing 39 

transcriptome data. Differential Expression (DE) analysis uses traditional statistical 40 

hypothesis testing-based approach, such as t-test, F-test, ANOVA or negative binomial 41 

test for assessing statistical significance of an observed expression change of each 42 

individual gene by comparing the between-conditions variation and within-condition 43 

variation, which can reveal the genes related to specific experimental conditions or 44 

sample types 8-10. However, differentially expressed genes are only a proxy for finding 45 

the key molecular modules related to our concerned biological questions because of 46 

highly dynamic transcriptome in different types of cells, tissues and experimental 47 

conditions 11. Complementary with the DE analysis, differential gene co-expression 48 

analysis aims to identify a group of differently co-expressed genes under two or more 49 

conditions, which has been applied to discern condition-specific gene co-regulation 50 

patterns 12-15. Differential co-expression analysis is especially effective in detecting 51 

biologically important genes that have less dramatic expression changes for certain 52 

conditions 16,17. Other than the two methods above, bi-clustering analysis is an 53 

approach that performs simultaneous clustering on genes and conditions across a wide 54 

range of transcriptome experiments. This method can discern the groups of genes that 55 

demonstrate similar expression patterns underlying the specific conditions but behave 56 

independently under other conditions. Though bi-clustering can identify a broad set of 57 

overlapping modules and thus present a global perspective on transcriptional network, 58 

genome-wide application of this approach is generally hampered by its inherent high 59 

computational complexity 18. Gene co-expression meta-analysis is another powerful 60 

method, which adopted the all experimental conditions to build co-expression network. 61 

When compared with bi-clustering analysis 19-23, its simplicity make it a powerful tool 62 

for identifying transcriptional modules.  63 

In this study, using the ensemble pipeline used to build the rice RNA-seq-based Gene 64 

Co-expression Network (GCN) (unpublished method, under review), we further built 65 

the RNA-seq-based GCN in one monocot species of maize and two eudicot species of 66 

Arabidopsis and soybean and delineate them into co-expressed modules. Taking rice 67 
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as an example, we associated the modules with biological functions and agronomic 68 

traits, and found a large number of condition-specific and tissue-specific modules. In 69 

addition, we also investigated the transcriptional regulatory mechanisms of modules 70 

by integrating known cis-element, transcription factors and miRNA targets. Moreover, 71 

we performed the comparative analysis of co-expressions across the 4 plant species to 72 

find the conserved and species-specific functional modules. Our research revealed the 73 

massive gene modules associating with the cellular activities and agronomic traits in 74 

several model and crop plant species, which provides a valuable data source for plant 75 

genetics research and breeding.  76 

Results 77 

Topological and biological properties of RNA-seq-based GCNs 78 

The topological and biological properties of 4 RNA-seq-based GCNs built using the 79 

ensemble inference pipeline were analyzed. All these networks show the small-world 80 

characteristic with an average path length between any two nodes are smaller than 7 81 

(Table S2). The distributions of node degrees obey the truncated power-laws where 82 

most nodes have a few co-expression partners with only a small ratio of hub nodes 83 

associating with a large number of partners (Fig.S1). We found that hub genes (with 84 

degree >200) were more functionally diversified than random ones in all four species 85 

(Wilcoxon rank sum test, p-value=8.46E-3 for Arabidopsis, p-value=6.23E-4 for rice, 86 

p-value=1.18E-7 for maize and p-value=2.20E-4 for soybean). This indicated that the 87 

hub genes of the co-expression networks might not be necessary to participate in 88 

central biological functions but provide the cross talks between different biological 89 

processes 24. On the other hand, we found that the likelihood of a gene to be essential 90 

increases with its degree, betweenness and closeness centricity, and they were more 91 

conserved across all plants (Fig.S2-S5). The negative correlation between the degrees 92 

(K) and the clustering coefficients (C) of genes revealed hierarchical and modular 93 

natures of these networks and the possible synergistic regulation of gene expression 94 

(Fig.S6) 21. 95 

Function and synergistic regulation of rice co-expression modules 96 

One important feature of co-expression network is the modular structure, with genes 97 

sharing more connections within the module than between the modules. We adopted 98 

the Markov CLustering (MCL) method to obtain 772 gene co-expression modules (the 99 

number of genes > 5) in rice (Dataset 3). Of these modules, 771 modules are enriched 100 

in GO terms, pathways, protein functional domains or Tos17 mutant phenotypes. We 101 

found that the genes in co-expression modules shared more similar biological roles 102 
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than the random selected genes (Wilcoxon rank sum test, p-value = 5.06E-07). Based 103 

on the enriched functions and gene expression patterns, we selected 12 gene modules 104 

participating in fundamental and condition-specific processes for further analysis (see 105 

Supplementary Text, Dataset 4, Dataset 5, Fig.S7-Fig.S10 for details). Among them, 5 106 

gene modules are involved in photosynthesis; 4 modules are related to development of 107 

the reproductive organs, 2 modules were associated with cell cycle regulation and 2 108 

modules were related to stress responses. For example, we found that two modules 109 

showing the pollen specific expression patterns (Fig.1) include a large amount of 110 

genes involving in the cell division, pollen germination, pollen tube growth and pollen 111 

sperm cell differentiation (Dataset 6). 112 

The expression of a gene is often controlled by multiple factors such as transcription 113 

factors and miRNAs 25. Here, we further explored the regulation mechanisms of the 114 

co-expressed modules. We found known cis-elements in 770 modules, and found that 115 

208 modules were enriched with targets of the same microRNAs and 291 modules 116 

were enriched with genes co-expressed with the common transcription factors. We 117 

also observed that the pairs of genes within co-expression modules, on average, have 118 

more common transcription factors and target genes of the same microRNAs than 119 

pairs of genes within random modules (Wilcoxon rank sum test, p-value=2.49E-28 for 120 

transcription factor and p-value=2.94E-28 for microRNA target). All these results 121 

suggested that the transcription factors or microRNAs tend to coordinately regulate 122 

targets sharing similar biological functions. 123 

We found many examples in which the modules were simultaneously regulated by 124 

multi-factors. The most obvious example is the Module #5 involved in cell cycle and 125 

floral organ development, whose genes were linked together by two TCP transcription 126 

factors (LOC_Os11g07460 and LOC_Os02g42380), one CPP transcription factors 127 

(LOC_Os03g43730) and three miRNAs (osa-miR396, osa-miR156 and osa-miR529) 128 

(Fig.2 and Dataset 7). LOC_Os11g07460 was co-expressed with 69 genes, in which 129 

34 genes were associated with cell cycle, cell proliferation, cell differentiation, floral 130 

organ development and other development processes. Similarly, LOC_Os03g43730 131 

was connected with 51 genes, 25 of these genes were associated with cell cycle and 132 

plant development processes. And LOC_Os02g42380 was associated with 41 genes, 133 

in which 19 genes involving in cell division and floral organ development. We found 134 

that 22 genes were associated with at least two of three key transcription factors 135 

mentioned above; of these genes, 16 genes play important roles in cell division, cell 136 

proliferation, cell differentiation and floral organ development. Moreover, we found 137 

that 3 genes were linked to three transcription factors above simultaneously, i.e. 138 

LOC_Os11g07460, LOC_Os02g42380 and LOC_Os03g43730). These three genes 139 
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were involved in flower morphogenesis, post-embryonic development and meristem 140 

growth. In addition to the transcription factors, the target genes of osa-miRNA156, 141 

osa-miRNA396 and osa-miRNA529 were also captured and enriched in the same 142 

module. Two of these three miRNAs (osa-miRNA156 and osa-miRNA396) play 143 

important roles in the cell division and organ development of the Arabidopsis thaliana 144 
26-28. The common target LOC_Os08g39890 of osa-miRNA156 and osa-miRNA529 145 

was co-expressed with LOC_Os07g03250, which was related to the reproduction and 146 

development processes and was linked to two key transcription factors described 147 

above (LOC_Os03g43730 and LOC_Os11g07460) and one MADS-box family gene. 148 

These results showed that synergistic regulation of co-expressed modules by multiple 149 

transcription factors and miRNAs. 150 

Furthermore, for the 12 modules mentioned above, we observed the strong coherence 151 

among the enriched transcription factors; known motifs and the enriched functions of 152 

modules (see Supplementary Text and Dataset 4 for details). For example, we found 153 

that two DBB transcription factors, 3 G2-like transcription factors and 5 CO-like 154 

transcription factors were tightly co-expressed with genes of photosynthesis modules 155 

(Table 1). In addition, 18 known cis-regulatory elements involving in light regulation 156 

are also enriched in these modules (Table 2). In another instance, we observed that the 157 

TCP, CPP and E2F/DP family of transcription factors are strongly linked to cell cycle 158 

modules (Table 2). And the known cell cycle motifs of E2FCONSENSUS, E2FAT and 159 

E2FANTRNR are also enriched (Table 2). For the pollen-specific modules, M-type 160 

transcription factors are tightly linked, and three known cell cycle cis-elements 161 

E2FCONSENSUS, E2FANTRNR and E2FAT were enriched (Table 1 and Table 2). In 162 

terms of stress response modules, WRKY, MYB, NAC and ERF transcription factors 163 

are linked with them. And three known stress response elements WBOXATNPR1, 164 

MYB1AT and ELRECOREPCRP1 are enriched (see Table 1 and Table 2). The less 165 

prevalent miRNA target enrichment in modules indicates that the biological functions 166 

of miRNAs and their target genes were diversified under evolution 29. Though the 167 

enrichment of miRNA targets in modules is infrequent, the roles of miRNAs and their 168 

targets can be inferred by the enriched functions of modules. 169 

Co-expression modules controlling rice important agronomic traits  170 

We asked whether the genes associating with common agronomic traits were placed 171 

and enriched in the co-expression modules. Interestingly, we found genes relating to 172 

the same agronomic traits were co-placed in the common modules (Table 3), which is 173 

consistent in functions with the agronomic trait. Firstly, it is expected that Module #7 174 

whose genes were enriched in the agronomic traits of source activity. Secondly, 175 
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Module #5 and Module #10 (modules participating in cell cycle) contain a large 176 

number genes relating to the agronomic traits of sterility and dwarf. Thirdly, genes 177 

associated with the agronomic trait of panicle flower were enriched in the Module #30. 178 

In addition, we also found that both Module #1 and Module #6 (containing the large 179 

number of pathogenesis-related transcription factors) whose genes were enriched in 180 

the agronomic traits relating to various resistances. Interestingly, we observed a 181 

module related to physiological trait of eating quality, and genes in this module were 182 

involved in starch biosynthesis, which is consistent with the fact that the component 183 

and molecular structure of starch are correlated with rice eating quality 30,31. These 184 

obtained results suggested that genes controlling the same agronomic traits were 185 

intrinsically clustered together in the network. According to the ranking of the number 186 

of links with known agronomic trait genes, we selected top 10 candidate biochemical 187 

function known and unknown genes associated with the dwarf, source activity, 188 

sterility and eating quality from Module #5, Module #7, Module #10 and Module #33, 189 

respectively. Indeed, some of these genes are likely associated with the agronomic 190 

traits, according to their molecular functions, which can provide guidance for future 191 

molecular breeding (Dataset 8). Particularly, we also observed that two QTL/GWAS 192 

candidate genes of LOC_Os07g10495 and LOC_Os10g42299, related to leaf length, 193 

width, perimeter and area were placed in Module #7 32. As annotated in MSU project, 194 

these two genes are highly expressed in leaf and seedling relative to other tissues, and 195 

is the molecular components of plastid. Moreover, we also found that a QTL/GWAS 196 

candidate gene LOC_Os02g37850 associated with the spikelet fertility control were 197 

located in Module #10, this gene was involved in cell cycle and highly expressed 198 

reproductive organs of pistil and inflorescence 33. 199 

Comparative analysis of co-expression networks across multiple 200 

plants 201 

We performed a comparative analysis of gene co-expression networks across multiple 202 

plants to identify conserved and species-specific co-expressed functional modules 203 

across closely related or distant plant species. We first examined to what extent the 204 

co-expressions are conserved among species. Indeed, a significant proportion of the 205 

pairs of genes whose co-expressions are conserved between the different plants (see 206 

Supplementary Text, Table S3, Table S4, Table S5, Dataset 9 and Dataset 10 for 207 

details). As demonstrated in Fig.3, we can observe that the co-expressions are more 208 

conservative within monocotyledons or dicotyledons than between monocotyledons 209 

and dicotyledons. In addition, using the co-expression neighbors-based inference 34, 210 

we also found that the predicted functions of orthologous genes between species are 211 

more consistent than the random control genes (see Table S6 for details). 212 
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To analyze and compare the functional groups of these co-expression networks, we 213 

subdivided the network of each species into co-expressed functional modules based 214 

on co-expression link density and functional annotation similarity (for details, see 215 

Materials and Methods section). As a result, we here obtained 1396, 975, 1115 and 216 

1065 modules for rice, Arabidopsis, maize and soybean, respectively. To assess the 217 

quality and reliability of obtained modules, we calculated for each real module the 218 

fraction of genes that own at least one homologue in a second species and compared 219 

with random modules. As expected, we found that the most modules have either 220 

significantly less or more homologous genes in other species than the random 221 

modules (Fig.4 and Table S7).  222 

We next focused on identifying the conserved functional modules sharing homologous 223 

genes across species and species-specific functional modules without homologous 224 

genes, based on the enrichment analysis of orthology relationships between genes for 225 

each combination of functional modules between four plants (see Materials and 226 

Methods for details). We defined a conserved module as one having homologous 227 

modules in at least one of the other species. Modules with no homologue module in 228 

all other plants are considered as species-specific. We identified 735 highly conserved 229 

modules among all four species (Dataset 11) and 2942 less conserved modules shared 230 

only by 3 or 2 plant species. Fig.5 demonstrated the common enriched GO terms of 231 

the functional modules within conserved modules. As expected, most of the common 232 

enriched GO terms are related to basic biological process, such as DNA replication, 233 

nucleosome assembly, RNA metabolic process, tricarboxylic acid cycle and cellulose 234 

synthetic process. We found that 62 best match of conserved module pairs (the 235 

percentage of homologous genes between two modules > 30%) with the common 236 

enriched GO terms, 48 module pairs enriched the same known motifs (length >= 6bp) 237 

in at least two species. In addition to the conservative modules, we also found 874 238 

species-specific functional modules (Dataset 12). We observed that some species- 239 

specific functional modules whose genes are enriched in response to abiotic stresses, 240 

hormone stimuli and signal transduction, indicating a strong link between regulatory 241 

evolution and environmental adaptation. These results indicate that while a large 242 

amount of modules have been conserved under evolution, each species include more 243 

recently evolved modules linking genotype with phenotype. 244 

To describe the conserved and species-specific modules in details by examples, we 245 

further analyzed the inter-species conservation of 4 rice co-expression subnetworks as 246 

described in our previous literature (unpublished paper, under review) involving in 247 

cell wall metabolism, cell cycle, floral organ development and stress response process. 248 

We extended the single-species subnetworks into multi-species subnetworks by 249 
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utilizing co-expression links within species and orthology relationships between genes 250 

across species. Note that we built the cross-species subnetwork involved in floral 251 

organ development process by expanding AP3-guide (an Arabidopsis homolog of rice 252 

MADS16) subnetwork, since genes in the MADS16-guide subnetwork have too few 253 

homologs in other plants. As expected, we observed that co-expressions are strongly 254 

conserved across all plants for cell wall metabolism and cell cycle processes 255 

(Fig.S11-S12). In contrast, the co-expressions in the subnetworks involving in stress 256 

response and flower development process were relatively less conserved between 257 

different plants (Fig.S13-S14). 258 

Discussion 259 

In this study, we comparatively analyzed the high-quality RNA-seq-based gene 260 

co-expression networks and modules of 4 plant species: Arabidopsis, rice, maize and 261 

soybean, which were obtained by applying the pervious ensemble pipeline on the 262 

large amount of public available RNA-seq data (several hundred to more than one 263 

thousand samples for each plant species). The analysis of the topology properties of 264 

networks demonstrate that, for all these plants, the degree frequency distributions 265 

follow the truncated power-law; genes with high degree, betweenness and closeness 266 

tend to be essential and conserved between species; and network structure is highly 267 

modular. We also observed that the functionally related genes are often tightly 268 

connected together and the co-expression links are frequently conserved across the 269 

plant networks. The conserved and species-specific functional modules were 270 

identified using both the clustering analysis and orthology relationships enrichment of 271 

genes between different plant species. On one hand, the conserved modules across all 272 

plants provide an invaluable source for biological gene discovery and functional 273 

annotation transfer among different plants. On the other hand, a substantial ratio of 274 

modules has no significant conservation, indicating that novel genetics modules have 275 

been formed to accommodate the specific lifestyle and environment conditions. The 276 

similarity and difference of the modules between plants reveal the robustness and 277 

plasticity of gene regulatory networks. It is quite remarkable that some species- 278 

specific modules were enriched in the basic biological functions. For example, an 279 

Arabidopsis specific module of C8F1 plays important role in cell wall metabolism. It 280 

is interesting that the genes included in this module have no homologs in other plants. 281 

Similarly, five Arabidopsis chloroplast genome modules of C12F5, C12F7, C12F9, 282 

C12F11 and C12F12 involving in photosynthesis whose genes almost have no 283 

homologous genes in other plants. This result might be due to incorrect functional 284 

annotations of the genes and incomplete genome sequences.  285 
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Complementary with the co-expression neighborhood-based function prediction, the 286 

modules provide a valuable alternative for hypothesis-driven function inference of 287 

genes. The biological functions of uncharacterized genes in a given module could be 288 

inferred using the enriched functions of the modules. In addition, the conservative 289 

modules could be used to find functional analogous genome elements between species 290 

but their sequence have been diverged beyond recognition 35. Moreover, the conserved 291 

modules can also inherently remove the orthologs with similar sequence but not share 292 

similar biological functions, in contrast to sequence-based functional annotation 21. 293 

Although co-expression between genes can be used to predict the gene functions, it is 294 

restricted to infer interactions where the regulators are co-expressed with their targets 295 

since it can only reveal the regulation of transcription level. Besides, co-expression 296 

network cannot also distinguish the regulators that are actually regulated a gene from 297 

ones that are simply co-expressed with a gene. We analyzed the regulatory mechanism 298 

of the modules by integrating the known motifs, transcription factor and microRNA 299 

targets. The outcomes demonstrated the strong agreements between the enriched 300 

known motifs, transcription factor, microRNAs and the enriched functions of modules. 301 

This agreement can be applied to infer the new regulatory interactions between the 302 

regulators and their targets. 303 

Materials and methods 304 

Experimental datasets 305 

We downloaded the RNA-seq samples of rice, Arabidopsis, maize and soybean from 306 

the NCBI Sequence Read Archive (see Dataset 1 and 2 for details, accessed on May 307 

29, 2014) using the same method as our previous study (reference). After the 308 

Sequence Read Archive (SRA) files were obtained, we transformed them into the 309 

FASTQ format using SRA Analysis Toolkit. The FASTQ sequencing reads files were 310 

firstly trimmed using Trimmomatic software (version 0.32) 36 with a parameter of the 311 

minimum read length at least 70% of the original size. Then, the fastq_quality_filter 312 

program included in FASTX Toolkit was used to further filtrate low quality reads, 313 

with the minimum quality score 10 and minimum percent of 50% bases that have a 314 

quality score larger than this cutoff value. The reads aligning and gene expression 315 

estimation were carried out by our previous analysis pipeline (reference). For 316 

Arabidopsis, maize and soybean, we used the TAIR10, Maizeb73v2 and Gmax_189 317 

reference genomes for mapping and gene expression calculation. Gene Ontology (GO) 318 

annotations for all four plants were downloaded from the Plant GeneSet Enrichment 319 

Analysis Toolkit (PlantGSEA) 40. We extracted the biological pathways from three 320 

data sources including PlantGSEA, Gramene 29 and Plant Metabolic Network (PMN) 321 
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database (http://pmn.plantcyc.org/). We obtained KEGG pathways from PlantGSEA 322 

for rice, Arabidopsis and soybean. Subsequently, we extracted the signaling and 323 

metabolic pathways in OryzaCyc, AraCyc, and SoyCyc databases from the PMN 324 

project data portal. With regard to maize, we integrated the pathway information 325 

retrieved from CornCyc database (contained in PMN project data portal) and 326 

MaizeCyc database (included in Gramene database). Besides, we also extracted the 327 

rice InterPro annotations from MSU Rice Genome Annotation Project website 328 

(http://rice.plantbiology.msu.edu/). The known agronomic trait genes were collected 329 

from the Q-TARO database 41 and literatures. Essential genes of Arabidopsis were 330 

retrieved from SeedGenes database 42. The known cis-regulatory motifs were 331 

extracted from both AGRIS and PLACE databases 43,44. Transcription factor families 332 

for all these plants were downloaded from the Plant Transcription Factor Database 333 

(PlantTFDB) 45. MicroRNAs and their related targets were collected from the Plant 334 

MicroRNA Target Expression database (PMTED) and Plant MicroRNA database 335 

(PMRD) 46. The orthologs between species were obtained by integrating the results of 336 

BLASTP alignment (with E-value < 1E-160), the predictions of OrthoMCL 47 and the 337 

known gene families provided in MSU Rice Genome Annotation Project. 338 

Module identification and enrichment analysis 339 

A two-step decomposition procedure was adopted to identify the modular structure. 340 

We first divided the whole network into co-expression modules using an efficient 341 

graph clustering algorithm of Markov Clustering (MCL) with the default parameters 342 

(co-expression modules with the number of genes >= 5 were remained for subsequent 343 

analysis). Because the obtained co-expression modules might consist of hundreds of 344 

genes with numerous functional terms and multiple functional units, we carried out a 345 

second step to further subdivide the initial co-expression modules into non-redundant 346 

functional modules using functional annotation similarity clustering. Our clustering 347 

procedure adopted the Kappa statistics which is similar to the method used in 48, but 348 

with two important modifications. In details, a pair-wise Kappa K score was first 349 

calculated for each gene using the following equations: 350 

( ) ( )
=

1 ( )

P A P E
K

P E

−
−

                              (2) 351 

Where P(A) is the percentage agreement of functional terms between the gene pair, 352 

and P(E) represents the chance agreement. For rice, the GO, pathway, InterPro and 353 

Tos17 mutant phenotypes were combined as the functional terms. For Arabidopsis, 354 

maize and soybean, the GO and pathways were integrated as the functional terms. 355 

Based on the Kappa statistics, a seed cluster was formed for each gene by grouping it 356 
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with all other genes with which it shares a K score greater than a given threshold. To 357 

obtain an appropriate threshold, we simulated 10000 background distributions of K 358 

score by randomly sampling 1000 genes from the genome space and used the average 359 

95th percentile of these distributions as the K score threshold. Seed clusters with less 360 

than 3 genes were not considered. Also, seed clusters were only considered if 50% or 361 

more of the K scores between all group members were greater than the given 362 

threshold. Subsequently, the seed clusters were merged through an iterative process 363 

that exhaustively compared each cluster with every other group and merge any two 364 

that have more than 50% similarity. It continued until merging was no longer possible 365 

and the remaining clusters were treated as the functional modules. As many genes in 366 

the networks do not have the functional annotation, we adopted a procedure to assign 367 

these genes to the obtained functional modules. For each unannotated gene within a 368 

given co-expression module, we counted its connections with the genes of the 369 

functional modules derived from the co-expression module. Then, we selected the 370 

functional modules with the maximal links and moved the unannotated gene to these 371 

functional modules. This process continued until all unannotated genes were pushed 372 

to the functional modules. Note that we did not divide the co-expression modules with 373 

the number of annotated genes less than 3, and they were directly regarded as the 374 

functional modules. Functional modules were named after as follows: CxFy, where x 375 

is the number of co-expression module and y is the number of cluster. Note, for the 376 

very large co-expression modules cannot be subdivided into functional within 30 days 377 

using the in-house script, we further decomposed the sub-network composed of genes 378 

contained in each of these modules into smaller co-expression modules using different 379 

inflate parameters so that the co-expression modules can be effectively divided into 380 

functional modules. 381 

The function, phenotype, known cis-regulatory motif and miRNA target enrichment 382 

of a module was calculated as the ratio of the relative occurrence in gene set of the 383 

module to the relative occurrence in the genome. To find known cis-regulatory motifs 384 

within each module, the promoter region (1kbp upstream from the transcription start 385 

site) of each gene in each module and entire genome was scanned for each known 386 

motifs. For each transcription factor, the enrichment of module was based on the ratio 387 

of the relative occurrences of genes co-expressed with the transcription factor between 388 

module and co-expression network. The statistical significance level was calculated 389 

using Fisher’s exact test. The p-value smaller than 0.05 was regarded as enriched.  390 

Modules conservation analysis 391 

To identify the conserved and specie-specific functional modules, the number of 392 
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homologs pairs for the given two species was counted for each combination of the 393 

functional modules. The number of homologues pairs was then compared to the 394 

expected number based on the hypergeometric test,  395 

           ( )
n

x q

k n k

x m x
P X x q

n

m
=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= >= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                          (3), 396 

where q  represented the number of orthologous pairs in combination of functional 397 

modules between the given two species, k  was the total number of orthologous pairs 398 

between the given two species, m  denoted the number of all possible gene pairs in 399 

the combination of functional modules between the given two species, and n  400 

presented the number of all possible gene pairs between the given two species. To as 401 

soon as possible obtain the true conserved modules and remove the false positives (e.g. 402 

produced by large plant gene families having many-to-many orthologs), the obtained 403 

p-values were further adjusted by the Benjamini-Hochberg correction for multiple 404 

hypotheses testing. Only the combinations with the q-value smaller than 0.05 were 405 

considered as homologous. Based on this, the conserved modules were defined as one 406 

having homologous modules in at least one of the other species. Modules with no 407 

homologue modules in all other plants are treated as species-specific. The enriched 408 

GO terms of modules were visualized using the tool REVIGO 49. 409 

Availability 410 

The reconstructed RNA-seq-based co-expression networks and functional modules of 411 

4 plant species can be freely downloaded at ftp://111111@ftp.mbkbase.org (username: 412 

111111; password: 111111). 413 
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 522 

Figure Legends 523 

Fig.1 Co-expression modules related to the pollen development. A, Module #8, pollen-specific; B, Module #12, 524 

pollen-specific. The heatmap was produced by the VST dataset. In the heatmap, each row represents a sample, and 525 

each column represents a gene. The gene expression value was indicated by the color. The different colors of color 526 

bar on the right side represent the different types of tissues 527 

Fig.2 The synergistic regulation of Module #5 by multi-factors. Brown nodes indicate transcription factors; Green 528 

nodes denote miRNA; Pink nodes represent the genes involving in cell cycle, flower development or other 529 

development processes; Grey nodes indicate that the genes are function unknown or annotated with irrelevant 530 

functions; Triangle nodes denote the genes containing the known consensus motif of WTTSSCSS related to cell 531 

cycle. The size of node is proportional to the number of connected genes. For demonstration purpose, for except 532 

the co-expression links related to transcription factors (brown nodes)/miRNA (green nodes), we only showed the 533 

connections with confidence score larger than 0.2. 534 
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Fig.3 Number distributions of the conserved co-expression links between different plants at different proportion of 535 

co-expression links ranked by the confidence score 536 

Fig.4 Histogram for the number of functional modules with a given fraction of genes possessing a homolog. 537 

Random module represents the random control distribution (preserving the same module size). A) Arabidopsis vs 538 

rice; B) Arabidopsis vs maize; C) Arabidopsis vs soybean; D) rice vs Arabidopsis; E) rice vs maize; F) rice vs 539 

soybean; G) maize vs Arabidopsis; H) maize vs rice; I) maize vs soybean; J) soybean vs Arabidopsis; K) soybean 540 

vs rice; L) soybean vs maize 541 

Fig.5 The common enriched GO terms of the functional modules within the conserved modules projected on the 542 

semantic space. The size of circle represents the gene number of GO term, and the color code indicates statistical 543 

significance 544 

Table Legends 545 

Table 1 The representative results of enriched transcription factors for the 12 rice 546 
co-expression modules 547 

Module ID/Function category Gene ID TF family P-value 

1/stress response LOC_Os08g09800 WRKY 6.16078E-94 

1/stress response LOC_Os08g09810 WRKY 1.22075E-89 

1/stress response LOC_Os02g15340 NAC 1.00472E-24 

1/stress response LOC_Os04g44670 ERF 1.51304E-23 

1/stress response LOC_Os04g43560 NAC 2.43893E-22 

1/stress response LOC_Os11g47460 MYB 2.64376E-66 

1/stress response LOC_Os09g26170 MYB 3.28823E-63 

4/photosynthesis LOC_Os04g42020 CO-like 7.87098E-35 

4/photosynthesis LOC_Os09g06464 CO-like 1.52885E-08 

5/cell cycle LOC_Os11g07460 TCP 4.0215E-72 

5/cell cycle LOC_Os03g43730 CPP 9.34839E-50 

5/cell cycle LOC_Os02g42380 TCP 1.40099E-44 

5/cell cycle LOC_Os02g42950 YABBY 1.32803E-93 

5/cell cycle LOC_Os01g52680 MIKC 2.45616E-84 

5/cell cycle LOC_Os07g32170 SBP 8.16666E-84 

5/cell cycle LOC_Os06g44860 SBP 2.70844E-57 

5/cell cycle LOC_Os02g08070 SBP 3.34117E-39 

5/cell cycle LOC_Os08g39890 SBP 3.94972E-38 

5/cell cycle LOC_Os09g31438 SBP 1.62399E-28 

5/cell cycle LOC_Os06g06750 MIKC 6.26973E-23 

7/photosynthesis LOC_Os04g41560 DBB 1.47199E-55 

7/photosynthesis LOC_Os06g24070 G2-like 0.002653096 

7/photosynthesis LOC_Os06g44450 CO-like 1.34414E-14 

9/photosynthesis LOC_Os07g48596 G2-like 0.001566656 

10/cell cycle LOC_Os06g13670 E2F/DP 2.16361E-13 
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10/cell cycle LOC_Os02g50630 E2F/DP 2.25324E-11 

10/cell cycle LOC_Os12g41230 CPP 0.00126451 

13/photosynthesis LOC_Os02g39360 DBB 0.002057518 

13/photosynthesis LOC_Os12g01490 G2-like 4.90549E-15 

13/photosynthesis LOC_Os06g15330 CO-like 4.51511E-21 

13/photosynthesis LOC_Os02g39710 CO-like 2.35714E-08 

15/stress response LOC_Os07g22730 ERF 1.37837E-42 

15/stress response LOC_Os10g33810 MYB 2.46562E-13 

Table 2 The representative results of enriched known cis-regulatory motifs for the 12 548 

rice co-expression modules 549 

Module ID/Function category Motif sequence Motif name P-value 

1/stress response TTGAC WBOXATNPR1 1.03E-07 

1/stress response WAACCA MYB1AT 2.16E-06 

4/photosynthesis GCCAC SORLIP1AT 2.46E-06 

4/photosynthesis CACGTG CACGTGMOTIF 3.21E-03 

4/photosynthesis AACCAA REALPHALGLHCB21 6.12E-06 

4/photosynthesis ACGTGGCA LRENPCABE 3.39E-03 

5/cell cycle WTTSSCSS E2FCONSENSUS 1.28E-02 

7/photosynthesis GCCAC SORLIP1AT 2.91E-11 

7/photosynthesis AGCCAC SORLIP1 3.68E-11 

7/photosynthesis MCACGTGGC GBOXLERBCS 1.02E-04 

7/photosynthesis ACGTGGC BOXIIPCCHS 1.12E-04 

8/pollen specific TTTCCCGC E2FANTRNR 6.75E-03 

8/pollen specific WTTSSCSS E2FCONSENSUS 9.78E-03 

8/pollen specific TYTCCCGCC E2FAT 2.25E-02 

9/photosynthesis GATAAG IBOX 3.87E-07 

9/photosynthesis GATAA IBOXCORE 3.61E-06 

9/photosynthesis AAAATATCT EVENINGAT 3.61E-06 

9/photosynthesis GATAAGR IBOXCORENT 6.60E-06 

10/cell cycle TYTCCCGCC E2FAT 3.83E-07 

10/cell cycle GCGGGAAA E2F1OSPCNA 4.18E-06 

10/cell cycle TTTCCCGC E2FANTRNR 7.75E-06 

12/pollen specific TTTCCCGC E2FANTRNR 1.64E-04 

12/pollen specific TYTCCCGCC E2FAT 2.04E-04 

13/photosynthesis GRWAAW GT1CONSENSUS 1.80E-03 

13/photosynthesis AAAATATCT EVENINGAT 3.68E-03 

13/photosynthesis CAAAACGC CDA1ATCAB2 7.51E-03 

13/photosynthesis GATAAGR IBOXCORENT 1.79E-02 

13/photosynthesis GATAAG IBOX 1.32E-02
 

15/stress response TTGACC ELRECOREPCRP1 2.10E-04 

17/photosynthesis ATAGAA BOXIINTPATPB 5.26E-09 

17/photosynthesis TATTCT -10PEHVPSBD 4.71E-06 
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17/photosynthesis GNATATNC P1BS 2.13E-02 

17/photosynthesis YTCANTYY INRNTPSADB 2.94E-04 

17/photosynthesis ATACGTGT ZDNAFORMINGATCAB1 5.46E-04 

Table 3 The statistic table of agronomic traits whose genes were enriched in modules 550 

Module ID Agronomic trait 
# of agronomic trait genes 
contained in module 

# of all agronomic trait genes 
contained in module 

Enrichment fold p-value 

1 Other soil stress tolerance a 19 30 5.36 1.44E-06 

5 Dwarf a 15 30 1.97 1.22E-02 

6 Drought tolerance a 6 29 4.97 7.24E-08 

6 Salinity tolerance a 13 29 4.71 1.52E-06 

6 Cold tolerance a 12 29 6.39 4.10E-05 

7 Source activity a 9 30 7.01 1.38E-12 

10 Sterility a 8 16 3.41 5.92E-03 

30 Panicle flower a 6 13 5.04 9.33E-06 

33 Eating quality a 12 7 14.08 4.55E-07 

a represents the agronomic traits extracted from Q-TARO database and literatures 551 
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