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Abstract 23 
 24 
Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is key 25 
for understanding the initiation and growth of plant tissues and organs. Although many TFs have been 26 
shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional 27 
signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to 28 
predict interactions among the genes involved in stem cell regulation. For this, we transcriptionally 29 
profiled several stem cell populations and developed a gene regulatory network (GRN) inference 30 
algorithm that combines clustering with Dynamic Bayesian Network (DBN) inference. We leveraged the 31 
topology of our networks to infer potential key regulators. The results presented in this work show that our 32 
combination of molecular biology approaches, computational biology and mathematical modeling was key 33 
to identify candidate factors that function in the stem cells. Specifically, through experimental validation 34 
and mathematical modeling, we identified PERIANTHIA (PAN) as an important molecular regulator of 35 
quiescent center (QC) function. 36 
 37 
\body  38 
Introduction 39 
      40 
Identifying the transcriptional signature underlying stem cell regulation is key to understanding the 41 
initiation and growth of plant tissues and organs. The Arabidopsis thaliana root provides a tractable 42 
system to study stem cells since they are spatially confined at the tip of the root, in the so-called stem cell 43 
niche (SCN), and are anatomically well characterized. The SCN contains several stem cell populations 44 
that give rise to the different root tissues and are organized by signals that originate in the quiescent 45 
center (QC) (1). Key transcription factors (TFs) in the Arabidopsis root have been shown to be necessary 46 
for root formation and stem cell maintenance (2–8). Despite these important findings, a transcriptional 47 
signature of the root stem cells is lacking. Genome-wide transcriptional data paired with the development 48 
of Gene Regulatory Network (GRN) models can be used to identify additional factors involved in stem cell 49 
regulation and predict how genes interact in a molecular pathway. Among the methods to derive dynamic 50 
GRNs are Dynamic Bayesian Networks (DBNs), which leverage time series data to infer statistical 51 
dependencies among the modeled genes. However, time series datasets alone cannot capture the 52 
dynamics of a diverse group of cell populations that are spatially separated, such as the distinct stem cell 53 
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types. Thus, inferring dynamic GRNs by combining spatial with temporal data becomes necessary for 54 
capturing the transcriptional differences between cell types.  55 

To obtain networks of genes that play a role in stem cell regulation, we acquired the 56 
transcriptional profiles of several root stem cell types. These profiles allowed us to identify genes that are 57 
highly expressed in each of the stem cell populations. We then inferred relationships among those genes 58 
to determine their relative importance and their predicted regulatory interactions. To this end, we 59 
developed GEne regulatory Network Inference from Spatio Temporal data algorithm (GENIST), a DBN-60 
based algorithm capable of integrating transcriptional datasets of different characteristics to reconstruct 61 
GRNs. First, we applied GENIST to find groups of genes with similar expression patterns. For this, we 62 
used a spatial dataset (QC, CEI (9), XYL, SCN (10)) in combination with transcriptional profiles 63 
corresponding to the elongation (Stage II) and differentiation (Stage III) zones of the root (11). Next, we 64 
used  GENIST to infer regulations among those genes using the transcriptional profile of 12 65 
developmental zones of the Arabidopsis root, which embeds temporal information (12). Finally we 66 
represented the inferred GRNs of the stem cell enriched genes using cytoscape (13). The resulting GRNs 67 
contained genes that play a role in stem cell regulation and capture their regulations throughout the root 68 
ontogenic development. Moreover, our GRN pipeline predicted that a known floral regulator, 69 
PERIANTHIA (PAN), is important for QC function. Specifically, phenotypical analyses of a PAN 70 
overexpressor and inducible lines, as well as a pan mutant, showed that PAN is involved in QC and 71 
columella maintenance. Additionally, we obtained the QC specific transcriptional profile in a pan mutant to 72 
validate our mathematical modeling and to further understand how PAN and its predicted downstream 73 
targets are involved in stem cell regulation. Our networks and their analyses are an important step 74 
towards defining the genetic framework underlying stem maintenance and function.  75 
     76 
Results  77 
                                                              78 
Identifying root stem cell specific genes from transcriptomic data 79 
 80 
To infer GRNs in the stem cells, we first acquired the cell-type specific transcriptional data from the QC 81 
cells, cortex/endodermis initials (CEI) (9), xylem initials (XYL) and the whole stem cell niche (SCN) 82 
(10)(Methods) (Fig. 1A-D). We then compared these four samples to the transcriptional profiles 83 
corresponding to the meristematic (Stage I), elongation (Stage II), and differentiation (Stage III) zones of 84 
the root (11) and determined genes highly expressed in stem cells. We found that the expression of many 85 
of the known stem cell regulators (SHORTROOT (SHR) (14,15), SCARECROW (SCR) (16,17), MAGPIE 86 
(MGP) (18,19), JACKDAW (JKD) (18,19), PHABULOSA (PHB) (5,20,21), PLETHORA 2 (PLT2) (2,22), 87 
PLETHORA 3 (PLT3/AIL6) (2,22)) were differentially expressed (Methods) in the stem cells compared to 88 
Stage II and Stage III, but were not differentially expressed in the stem cells compared to Stage I. This 89 
suggested that important stem cell factors may be expressed in the meristematic zone as well as in the 90 
stem cells. We performed a Principal Component Analysis (PCA) to understand if the stem cells and the 91 
meristematic cells (Stage I) have similar transcriptional profiles (Fig. 1E). With a cumulative variance of 92 
82.8% in the first 3 principal components, the PCA showed that the variance between the stem cells and 93 
the profile captured by Stage I was small. This implied that the differentially expressed genes in the stem 94 
cells and Stage I have similar expression patterns. Therefore, to ensure that important regulators were 95 
not omitted in our study, we excluded Stage I from our subsequent analysis and identified 1625 genes, 96 
containing 201 TFs, as differentially expressed in the stem cell populations versus Stage II and Stage III 97 
(Methods) (Fig. 1F) (Dataset S01). Since we observed that regulation of transcription and TF activity were 98 
enriched Gene Ontology (GO) categories among these genes (Table S1) we focused our subsequent 99 
analyses on the 201 TFs enriched in the stem cells. Among the 201 TFs, 29 had been previously found to 100 
have roles in either early embryo development or post-embryonic processes (i.e. stem cell specification) , 101 
and 16 additional TFs had been reported to be enriched in the stem cells (Dataset S02).   102 

 103 
In silico and in vivo validations of GENIST  104 
 105 
To predict how the 201 TFs cooperate to regulate the stem cells, we developed a computational pipeline 106 
(GENIST) aimed at predicting gene interactions from a combination of spatial and time-series gene 107 
expression data. GENIST was developed to predict and prioritize interactions (edges) and key genes 108 
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(nodes) by integrating two consecutive computational strategies: a clustering step and a Bayesian 109 
network inference step (Supplemental information, Fig. S1), which use spatial and temporal datasets, 110 
respectively. Since GENIST’s inference step and its integration with clustering had not been previously 111 
tested, we performed a modular validation by testing first the DBN inference step, and next, the 112 
incorporation of clustering into the algorithm. We tested GENIST’s inference step with in silico time-series 113 
datasets (DREAM 4 challenge 2 (23–25)) and found that our algorithm outperformed previously published 114 
methods (ebdbnet (26), ScanBMA (27), ARACNE (28), CLR (29), MRNET (30), LASSO (31,32)) in terms 115 
of precision and Area under the Precision Recall Curve (AUPRC) (Supplemental information, Tables S2-116 
S3). We next tested whether GENIST could recover known root networks by inferring a phloem (Fig. S2A-117 
E), a CEI (Fig. S3A-D), and a XYL network (Fig. S3E-H) (See supplemental information for details). Our 118 
inferred networks (Fig. S2E, Fig. S3B, F) outperformed previously published methods (ARACNE (28), 119 
CLR (29)) (Supplemental information) and showed that GENIST could be used to infer root GRNs. 120 
Further, we validated the integration of the clustering and inference steps by testing the performance of 121 
both, GENIST’s inference step alone, and the integration of the clustering and the inference steps, to infer 122 
regulations among genes expressed across distinct cell types. For this, we applied GENIST to a dataset 123 
that compressed the previously tested phloem, CEI, and XYL networks together. We found that the 124 
inference step alone resulted in a low inference precision (Precision = 0.071) that was improved when 125 
GENIST was applied with both of its steps (Precision = 0.5556). This validation confirmed that GENIST 126 
can be used to infer networks of genes expressed across different cell types. In addition, this validation 127 
indicated that the use of clustering prior the inference step boosts the performance of the algorithm when 128 
the network genes are not spatially co-expressed (Supplemental information, Fig. S2F). Furthermore, we 129 
showed that clustering improves the algorithm computational complexity (Table S4).  130 

To increase our confidence in our GRN inference pipeline, we performed a validation with our 131 
stem cell dataset. Specifically, since several datasets involving XYL-enriched genes, such as ChIP-chip 132 
data on SHR (9), were available, we applied GENIST to identify regulatory interactions among the TFs 133 
found in the XYL (Fig. S4A), and in turn, downstream of SHR. Among the predicted SHR targets, we 134 
found that AT4G24060 and GATA5 were directly bound by SHR (Fig. S4B) (9). We also found that PHB 135 
was an indirect target of SHR (33), and as shown in a time course experiment (9), INDOLE-3-ACETIC 136 
ACID INDUCIBLE 1 (IAA1) was also downstream of SHR (8) (34). Unfortunately, we were not able to test 137 
NAC076 and ACETIC ACID INDUCIBLE 29 (IAA29) since the Agilent chip did not have probes covering 138 
the promoter region of such genes (9). Alternatively, we used the expression profiles obtained from shr 139 
mutant roots (33) and obtained information on SHR regulation sign (activation/repression) for NAC076, 140 
IAA29, as well as the AT4G24060 and GATA5 direct targets (Fig. S4B). Overall, our validation indicated 141 
that the capacity of GENIST to integrate spatiotemporal datasets is key for inferring GRNs in organisms 142 
where transcriptional datasets of diverse characteristics are available.  143 

 144 
  145 

GENIST identifies PAN as a root stem cell regulator 146 
 147 
We applied GENIST to our stem cell dataset to infer GRNs and to help us identify additional stem cell 148 
regulators. Specifically, we inferred the network among the genes enriched in the QC (Fig. 2A) leveraging 149 
our spatial dataset and the transcriptional profiles of the 12 developmental time zones of the root. We 150 
then investigated the inferred QC-network to assess its main nodes. Our QC marker, WOX5, was not 151 
present in the network, since it was not contained in the Affymetrix ATH1 GeneChip used to obtain the 152 
expression profile of the stem cells. However, other known stem cell regulators, such as NO 153 
TRANSMITTING TRACT (NTT) (35), MYB56 (BRAVO) (36), and AIL6 (2) (Dataset S02), were found 154 
among the main nodes. Since the main hub, NTT, together with WIP DOMAIN PROTEIN 4 and 5 (WIP4 155 
and WIP5), were recently shown to be essential for root development (35), we studied the NTT sub-156 
network to investigate its downstream hubs. We identified PAN as one of the main hubs in the NTT sub-157 
network. Since PAN was previously shown to be involved in a feed-forward loop with AGAMOUS (AG) 158 
and WUSCHEL (WUS) in the shoot apical meristem (37,38) we hypothesized that PAN could have a role 159 
in regulating the root stem cells.  160 

We compared the root SCN of three previously characterized pan mutant alleles (37–39), a ß-161 
estradiol-inducible XVE:PAN transgenic line (40), and a constitutive p35S:PAN line (37) (Fig. 2C,E,G-I), 162 
with those of control roots (Fig. 2B,D,F). We found that the three pan mutant alleles showed a 163 
disorganized QC with no discernable columella stem cells with a penetrance similar to what was observed 164 
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in floral development (12% of pan057190 (n = 145), 4% of pan031380 (n = 48), and 10% of pan247 (n = 165 
47)) (Fig. 2C,E,G and Fig. S5A-C). In line with these observations, the 35S:PAN line and 34.5% of the 166 
XVE:PAN transgenic plants (n = 55) showed additional columella stem cell layers compared to WT Col-0 167 
(n = 41) (Fig. 2J). XVE:PAN transgenic plants also showed a significantly increased number of QC 168 
divisions, with 23.6% of them presenting QC divisions compared to 8.5% in the untreated XVE:PAN (p < 169 
0.05) (Fig. 2K). In agreement with the observed phenotypes, the transcriptional fusion of the pPAN:GFP 170 
line was detected in the QC and adjacent cells (41) (Fig. S5E). Since WOX5 has been shown to be 171 
involved in columella and QC function (42), we investigated whether PAN and WOX5 could function in the 172 
same pathway. For this, we analyzed the expression of PAN and WOX5 in wox5 and pan mutant 173 
backgrounds, respectively (Fig. S6). We found that the expression of WOX5 was significantly reduced (p 174 
= 0.03) in the pan mutant background (Fig. S6A), while no change in PAN expression was observed in 175 
the wox5 mutant (4). Together, our observations suggest that PAN, upstream of WOX5, is involved in QC 176 
function, particularly promoting QC divisions and in turn affecting columella stem cell maintenance. 177 

To gain insight into the dynamics of PAN regulation, we constructed a mathematical model of 178 
PAN and its predicted downstream targets (Fig. 3A) (see Supplement). Consequently, to model the 179 
expression of the 8 TFs over time, we used eight ordinary differential equations (ODEs) based on Hill 180 
equations. We then simulated the fitted system of ODEs with a controlled increase of PAN until all the 181 
TFs reached their steady states (WT simulation, Fig. 3B) and analyzed how these steady states changed 182 
in the absence of PAN (pan simulation, Fig. 3C). We found that the steady states of all targets were 183 
decreased (converging to zero) in the pan mutant with respect to the wild-type simulation, indicating that 184 
PAN activates all its downstream direct and indirect targets. In the WT simulation, all targets reached 185 
steady states by day one with subtle changes of expression during the transients (time length until 186 
expression values reach their steady states). On the contrary, the pan mutant simulation showed that 187 
EIN3 and WIP4 presented high expression values during the transients and reached steady states at later 188 
stages (days 3 and 4, respectively). These delayed responses and initial activations of EIN3 and WIP4 189 
suggest that, as predicted, these genes could be indirectly affected by PAN. Further, the dynamics of our 190 
simulations support that BRAVO, NTT, and WIP4 may be connected through feedback loops. During the 191 
transient of the mutant simulation, NTT and BRAVO show an exponential decay, which is consistent with 192 
the prediction that they activate each other in the absence of PAN. However, their steady states are not 193 
immediately reached, since they are activated by WIP4 and EIN3. Conversely, WIP4, which is repressed 194 
by a decaying NTT, shows high levels of expression. Overall, our model predictions suggest that PAN 195 
regulates QC function through the activation of BRAVO, NTT, and WIP4. In turn, since these factors are 196 
connected through feedback loops, our model suggests the two pathways where these factors function 197 
could be interconnected.  198 

 199 
PAN controls stem cell regulation through an interconnected cellular network 200 
         201 
To validate the inferred downstream genes and identify additional factors regulated by PAN, we 202 
transcriptionally profiled cells marked by the pWOX5::erGFP in a WT and pan057190 mutant (Methods) 203 
(Fig. 2E). We specifically used pan057190, as this line showed the largest decrease in relative fold 204 
change expression in PAN mRNA (Fig. S5D). We found that all the inferred downstream genes of PAN, 205 
namely NTT, WIP4, BRAVO, WRKY23, HSFA1E, and HSFC1, with the exception of the indirect gene 206 
EIN3, showed a decrease in expression in the mutant (q < 0.05 & FC > 2) (Fig. 3D).  Thus, the 207 
transcriptional profiles in the pan mutant, together with the GRN inference and the mathematical model, 208 
suggest that PAN regulates genes important for QC function. Furthermore, we identified 3397 genes 209 
differentially expressed in pan057190;pWOX5::erGFP when compared to pWOX5::erGFP (Dataset S03), 210 
suggesting that PAN function affects multiple factors and pathways and might be an important regulator in 211 
the stem cells. Accordingly, we found that 75 of the stem cell enriched factors, including key stem cell 212 
regulators such as WOX5, PLT1-2, AIL6, BBM, SHR, SCR, MGP, PHB, FEZ, SOMBRERO (SMB) (Fig. 213 
S6C) (Dataset S03), were differentially down-regulated in the pan mutant (q < 0.05 & FC > 2). Thus, to 214 
investigate the regulatory effect of PAN in the root stem cell niche, we applied our computational pipeline 215 
and identified interactions among the 201 stem cell enriched TFs (Fig. 4). We then studied the stem cell 216 
network topology to understand which sub-networks could be regulated by PAN and whether there is 217 
redundancy within these sub-networks. We found that the distribution of clustering coefficients of each 218 
node, which measures its connectedness, followed a decreasing power law (Fig. S7A), suggesting that 219 
our stem cell network contains highly connected sub-networks (cliques) that confer high levels of 220 
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redundancy (43–45). By studying these cliques, we found that our network captured stem-cell-specific 221 
sub-networks of genes (groups of genes enriched in the same stem cell population) and functional sub-222 
networks of genes (groups of genes that function in the same or related pathways) (Dataset S04). We 223 
observed that most of the factors differentially expressed in the pan mutant were found in two 224 
subnetworks containing QC factors, one subnetwork with embryo and seedling development factors (see 225 
Dataset S04), and one subnetwork containing lateral root cap factors.  This suggests that PAN function 226 
may not extend outside of the QC and columella stem cells. Taken together with the pan and XVE:PAN 227 
phenotypes, these results indicate that PAN could be involved in QC function and suggests that PAN 228 
activates a cascade of interconnected factors (downregulated in the pan mutant) that control these 229 
functions. 230 

 231 
Discussion 232 
 233 
In this work, we took an unbiased approach to identify the transcriptional signature responsible for 234 
regulating Arabidopsis root stem cells. We showed that known stem cell regulators do not appear to be 235 
differentially expressed in the stem cells with respect to the meristematic zone. This suggests that 236 
“stemness” might be a property that gradually decreases as cells move further from the QC. This findings 237 
allowed us to use the stem cell gene expression along the root axis to infer DBNs. In turn, this allowed us 238 
to developed GENIST and showed how its capacity to integrate spatial (stem cell datasets) and temporal 239 
(longitudinal root datasets) transcriptional datasets can boost the performance of inference algorithms 240 
and led to the generation of inferred stem cell networks.  241 

Next, we used the topology of our networks to identify key regulators of the root stem cell niche. 242 
Specifically, we found PAN, which is involved in the shoot apical meristem with AG and WOX5 homolog, 243 
WUS, to be a potential regulatory node of the QC upstream of WOX5. Our observations suggest that, 244 
similar to WOX5 (42), PAN controls columella stem cell maintenance and QC division. However, contrary 245 
to WOX5, which restricts cell division in the QC (42), our results indicate that PAN induces QC division. 246 
This suggests that a balance between these two factors is needed to maintain the quiescence of the QC, 247 
or alternatively, that PAN and WOX5 redundantly control QC division and columella maintenance through 248 
different networks and in turn PAN regulates genes independently from WOX5. Accordingly, our 249 
mathematical model allowed us to understand that PAN activates BRAVO, WIP4 and NTT, suggesting it 250 
controls the QC and columella stem cells through these factors. Moreover, the feedback loops connecting 251 
these factors in our model suggest that the pathways where these factors function could be 252 
interconnected. In addition to the predicted downstream targets of PAN, 75 TFs (including WOX5), whose 253 
expression is enriched in the stem cells, were found to be differentially expressed in the pan mutant, 254 
suggesting that PAN activates a cascade of factors involved in stem cell regulation. 255 

Our combined approach of cell-type whole genome expression analysis, development of the 256 
GENIST computational pipeline, and mathematical modeling led to successful findings of factors that 257 
could play important roles in stem cell regulation and, in particular, QC function. The finding of PAN as a 258 
potential key regulator of the QC function can guide future work to further understand regulatory 259 
mechanisms underlying stem cell regulation. We foresee that although much work remains to be 260 
completed to determine the role of PAN regulating the QC function, our initial findings will be key for 261 
understanding the networks underlying stem cell regulation. Overall, our results highlight the power of the 262 
inference tools for exploring gene candidates of interest. In addition to the findings that were shown in this 263 
work, our networks have the potential to guide future stem cell research in the Arabidopsis root by 264 
identifying genes for further experimental validation. We anticipate that our experimental and 265 
computational approach can be applied to solve similar problems in a diverse number of systems, which 266 
can result in unsupervised predictions of gene functions and gene candidates. 267 
   268 
Methods 269 
 270 
Plant Material and Growth Conditions 271 
      272 
A. thaliana seeds were plated and grown in a vertical position at 22°C in long-day conditions (16 hour 273 
light/8 hour dark cycle) on 1X MS (Murashige and Skoog) medium supplemented with sucrose (1% 274 
sucrose total). T-DNA insertion lines for PAN (At1g68640) were used and homozygous lines were 275 
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confirmed using the primers listed in Table S5. The three pan mutant alleles used were pan057190 276 
(SALK_057190(46)), pan031380 (SALK_031380(47)), and pan247 (SAIL_247(48)), with T-DNA 277 
insertions in the 3rd intron, 5′UTR, and the 7th intron, respectively). The XVE:PAN transgenic 278 
homozygous line under the control of a ß-estradiol inducible promoter was obtained from the 279 
TRANSPLANTA collection (40). 280 
 281 
 282 
 283 
Stem cells transcriptional profile  284 
      285 
The following GFP marker lines were used to sort the following cell types: QC (pWOX5:erGFP(4)), CEI 286 
(pCYCD6::GUS-GFP(9)), XYL (pTMO5:3xGFP(49)), and SCN (pAGL42:GFP (10)). Additionally, 287 
pan057190 mutant plants were crossed with pWOX5:erGFP (4). Approximately 250-500mg of seeds per 288 
marker line were sterilized using 50% bleach and 100% ethanol. Seeds were imbibed and stratified for 2 289 
days at 4 ºC. Afterwords, the seeds were plated on 1X MS agar (+1% sucrose) on top of Nitex mesh. 290 
Plants were grown as described above for 5 days. After 5 days, roots were cut and protoplasts were 291 
extracted(50). GFP-marked protoplasts were isolated using the Diva cell sorter or the Beckman Coulter 292 
MoFlo XDP Cell sorter. Between 1000-2500 protoplasts were collected for each marker line.  293 

RNA was extracted from pWOX5:erGFP(4), pCYCD6::GUS-GFP(9), pTMO5:3xGFP(49), and 294 
pAGL42:GFP (10) protoplasts using the Qiagen RNeasy Micro Kit. RNA probes were labeled using the 295 
AffyGeneChip3’IVTExpressKit 296 
(http://www.affymetrix.com/estore/catalog/131549/AFFY/HT+3%27+IVT+Express+Kit#1_1) and 297 
hybridized on the Affymetrix ATH1 GeneChip. This was repeated in triplicates for each of the marker 298 
lines. 299 

RNA was extracted from ~500 WT and pan057190 protoplasts expressing pWOX5:erGFP(4) 300 
using the RNeasy Micro Kit (Qiagen). cDNA synthesis and amplification was performed using the 301 
SMARTer Low Input RNA Kit for sequencing. Libraries were prepared using the Low Input Library Prep 302 
Kit and sequenced using an Illumina HiSeq 2500 sequencing machine, with 100bp single end reads. 303 
Adapters and low quality reads were filtered out using fastq-mcf, in ea-utils software (51). A window size 304 
of 5bp for quality trimming was used. Reads longer than 30bp with a quality score greater than 30 were 305 
kept. Clean reads were mapped against the TAIR 10 reference genome using the TopHat v2.0.13 (52). 306 
Transcripts were assembled using Cufflinks (version 2.1.1) (53). This was repeated for four replicates for 307 
each line. 308 
      309 
Gene selection 310 
      311 
A mixed-model ANOVA was used to determine the mean expression for each gene in each cell or 312 
developmental zone across 3 biological replicates(33). We defined enrichment of expression of a gene in 313 
one cell or developmental zone as being highly expressed in that cell/zone relative to all other non-314 
overlapping samples (>1.2 fold expression & q<0.0001 or > 2 fold expression)(9,12). Accordingly, the 315 
conditions for SCN enrichment selection were enrichment in the SCN (AGL42) relative to the two 316 
developmental zones (Stage II and Stage III). The conditions for one or more stem-cell-type enrichment 317 
selection were enrichment in those stem cell types relative to all other samples, excluding the SCN. The 318 
low number of CEI-enriched genes obtained with these conditions resulted from the expansion of our QC 319 
marker, WOX5::erGFP, into the CEI (Fig. 1A).  320 
 To find genes regulated by PAN, we used the WT vs. the pan057190 mutant dataset. Cuffmerge 321 
(53) was used on the output of Cufflinks to merge all the assembled transcripts and create a single 322 
merged transcriptome annotation. Testing for differential expression between the WT and pan mutant 323 
lines was performed with Cuffdiff (53). Genes were considered to be differentially expressed between 324 
both conditions if they met a q value and an expression fold change condition (q<0.05 & > 2 fold change). 325 
 326 
Quantitative RT-PCR 327 
      328 
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Seeds were plated and grown for 5 days as described above. Root tips (2-3 mm) were collected and 329 
sonicated to disrupt the cell roots. RNA was extracted using the Qiagen RNeasy Micro Kit. Each RNA 330 
sample was reverse transcribed using the SuperScript 3 First-Strand Synthesis System for RT-PCR 331 
(Invitrogen) according to the manufacturer’s instructions. qRT-PCR was performed in duplicates for each 332 
RNA sample and 3 biological replicates were tested using SYBR green PCR Master mix (Applied 333 
Biosystems). Expression levels were calculated relative to UBQ10 (At4g05320) using the 2−∆∆ct method. 334 
Primers used were either previously published(38,54), or designed using Primer 3 Plus, and are listed in 335 
Table S5. 336 
 337 
 338 
Microscopy and phenotypic analyses 339 
 340 
Phenotypic analysis of WT, pan mutant alleles, XVE:PAN, and 35S:PAN roots 5- to 7- days after 341 
germination stained with propidium iodide were performed using confocal laser scanning microscopy 342 
(LSM710). Images were taken with ZEN software (ZEISS).  343 
 Starch granules and cell walls were stained with the mPSPI method and imaged with a confocal 344 
microscope as described by Truernit et al. (55). Whole seedlings were fixed overnight at 4°C. The 345 
seedlings were then transferred to 80% ethanol and incubated for 3 min at 80°C. Seedlings were 346 
transferred back into fixative and incubated for 1 hour, after which time the plants were rinsed with water 347 
and incubated in 1% periodic acid for 40 min. The seedlings were then rinsed with water again and 348 
incubated in Schiff reagent with propidium iodide for 5 minutes. The Schiff reagent was removed and 349 
seedlings were incubated in 500 uL of chloral hydrate overnight. The seedlings were removed from the 350 
chloral hydrate solution and mounted on slide using 75 uL of Hoyer’s solution. The number of observable 351 
columella stem cell (CSC) layers and the number of QC divisions after mPS-PI staining were counted for 352 
the phenotypic analyses.  353 

Multiple plants were imaged to quantify the specific fluorescent markers. 13% of our 354 
pWOX5:erGFP marker showed expression specific to the QC cells (n = 23) while 61% showed high 355 
expression outside the QC cells and particularly in CEI cells, and 26% showed low expression outside in 356 
CEI cells. The expression of pWOX5:erGFP in pan057190 extended into the CEI cells as well. 357 
TMO5:3xGFP expression showed a graded profile with high expression closer to the QC that gradually 358 
decreases. This graded expression enabled the selection of only the first 4 to 8 cells closer to the QC.  359 
 360 
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 534 
 535 
     536 
Figure Legends: 537 
 538 
Figure 1. Markers and genes differentially expressed in the root stem cell niche. A-D Marker lines for the 539 
SCN (A), QC (B), xylem (C), and CEI (D) cells. The SCN encompasses several stem cell populations, 540 
which include, among others, xylem, CEI, and QC cells. E PCA of the genes enriched in each cell or 541 
developmental zone. Genes for the PCA are represented by their expression patterns across cell-type 542 
and root zone. Circles represent genes, and colors indicate the cell or zone of enrichment of a particular 543 
gene. F Venn diagram of the number of genes and TFs identified in each stem cell type. Of the 1625 544 
genes enriched in the stem cells, 402 were found to be enriched in the SCN and in one or more of the cell 545 
types (not shown in the diagram for clarity, see Dataset S01). 546 

Figure 2 QC TF network. A Network among the QC enriched TFs. Node sizes indicate importance of the 547 
nodes in terms of the number of TFs that they regulate. Color-coded nodes represent genes downstream 548 
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of PAN that were used for the mathematical model and experimental confirmations.  B-I Confocal images 549 
of 5-day old Arabidopsis roots B Col-0 wild type root C pan057190 root showing a disorganized SCN D 550 
pWOX5:erGFP root E pWOX5:erGFP;pan057190 root showing changes in QC marker expression F-I 551 
Confocal images with mPS-PI staining for starch granules F pWOX5:erGFP root G 552 
pWOX5:erGFP;pan057190 root showing differentiated columella stem cells H 35S:PAN root showing 553 
extra columella stem cell layers I XVE:PAN root showing QC divisions and extra columella stem cell 554 
layers J Quantification of the number of columella stem cell layers in the different lines K Quantification of 555 
the number of roots showing QC divisions. Star (*) represents a significant statistical difference (p<0.05, 556 
Wilcoxon rank sum test) between XVE:PAN upon ß-estradiol treatment (BE) and Col-0 WT control. 557 
Double star (**) represents a significant statistical difference (p<0.05, Wilcoxon rank sum test) between 558 
XVE:PAN upon ß-estradiol treatment (BE) and XVE:PAN control treatment (MS). J-K Number of roots 559 
examined: WT Col-0, n = 41; XVE:PAN MS, n = 47; XVE:PAN BE, n = 55. White arrows indicate QC cells 560 
and black arrows indicate columella stem cells. 561 

 562 

Figure 3. PAN subnetwork in the QC. A Optimal configuration of the subnetwork of PAN and its 563 
downstream targets. B-C Resulting expression values of PAN and its downstream targets, over time (4 564 
days), after simulating the optimal configuration of the model. B Model simulated with the fitted equation 565 
parameters C Model simulated with the PAN associated parameters set to zero to simulate a pan mutant 566 
situation D Normalized expression values of PAN and its predicted downstream targets in Col-0 wild-type 567 
and in a pan mutant. Star (*) represents statistically significant changes of expression between the mutant 568 
and the wild type (q < 0.05). 569 

Figure 4. TFRN of the 201 TFs enriched in the SCN. Clusters of nodes indicate groups of TFs 570 
functionally related or functioning in the same cell type. Node sizes indicate importance of the nodes in 571 
terms of the number of TFs that they regulate. The highly connected groups of genes or sub-networks 572 
correspond to the DBN inferred for each cluster. Green (orange) nodes represent factors that are 573 
differentially down-regulated (up-regulated) in the pan mutant with respect to Col-0 wild-type. 574 
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