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ABSTRACT 

Sugarcane is a crop of paramount importance for sustainable energy. Modern sugarcane 

cultivars are derived from interspecific crosses between the two wild species Saccharum 

officinarum and Saccharum spontaneum and this event occurred very early 

in the sugarcane domestication history. This hybridization allowed the generation of 

cultivars with complex aneuploidy genomes containing 100–130 chromosomes that are 

unequally inherited - ~80% from S. officinarum,  ~10% from S. 

spontaneum and ~10% from inter-specific crosses. Several studies have highlighted the 

importance of chloroplast genomes (cpDNA) to investigate hybridization events in plant 

lineages. Few sugarcane cpDNAs have been assembled and published, including those 

from sugarcane hybrids. However, cpDNAs of wild Saccharum species remains 

unexplored. In the present study, we used whole-genome sequencing data to survey the 

chloroplast genome of the wild sugarcane species S. officinarum. Illumina sequencing 

technology was used for assembly 142,234 bp of S.officinarum cpDNA with 2,065,893 

reads and 1043x of coverage. The analysis of the S. officinarum cpDNA revealed a 

notable difference in the LSC region of wild and cultivated sugarcanes. Chloroplasts of 

sugarcane cultivars showed a loss of a duplicated fragment with 1,031 bp in the 

beginning of the LSC region, which decreased the chloroplast gene content in hybrids. 

Based on these results, we propose the comparative analysis of organelle genomes as a 

very important tool for deciphering and understanding hybrid Saccharum lineages. 

 

INTRODUCTION 

 Sequencing of organelle genomes is an important tool in molecular and 

evolutionary studies (Wolf et al. 2011). In addition to the nuclear genome, plants have 

mitochondrial (mtDNA) and chloroplast genomes (cpDNA), which can allow a broad 
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analysis on specific species (Xu et al. 2015). The size of cpDNAs of land plants ranges 

from 100 to 160 kb, with around 100 to 120 highly conserved genes (Wicke et al. 2011; 

Olejniczak et al. 2016). The features of the cpDNAs are also helpful in phylogenetic 

studies and to develop genetic markers (Bock and Khan 2004; Jansen et al. 2007; Ravi 

et al. 2008; Wu and Ge 2012). Further, several studies highlighted the importance of 

cpDNAs to investigate hybridization events than nuclear genomes;  cpDNAs allow the 

analysis of organelle sharing patterns between species due to their slow rate of 

evolution, non-recombinant nature, easy haplotype detection and predominantly 

uniparental inheritance (Wu et al. 2010; Smith 2015; Zhu et al. 2016; Szczecińska et al. 

2017; Xiao-Ming et al. 2017). Many studies have been conducted with chloroplast 

genomes to identify the history of plant lineages (Marí-ordóñez et al. 2013; Rousseau-

Gueutin et al. 2015; Cho et al. 2016; Shetty et al. 2016; Yang et al. 2016; Asaf et al. 

2017). As an example, the sequencing of chloroplast genomes of Solanum commersonii 

and Solanum tuberosum revealed indel markers that can distinguish chlorotypes and 

maternal inheritance of these organelles in hybrids (Cho et al. 2016).  

Many species from the Saccharum genus (Poaceae) have been widely used in 

sugar production due to their remarkable sucrose storage capacity. Due to its tropical 

and subtropical distribution, sugarcane has probably been first established at New 

Guinea and Indonesia (Grivet et al. 2006). S. officinarum has a chromosome number of 

2n = 80 and is known as "noble" sugarcane, mainly due to its high sucrose content, large 

and thick low-fiber stalks (Cheavegatti-Gianotto et al., 2011). Despite these key 

agronomic traits, this species is water-intensive, susceptible to diseases and requires 

high soil fertility. In the end of 19 century, a cross between Saccharum spontaneum and 

Saccharum officinarum resulted in a hybrid that was then backcrossed with Saccharum 

officinarum. The introgression of a small part of the S. spontaneum genome into a 
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predominantly S. officinarum genome resulted in modern hybrids (Saccharum spp.) 

with better yields, high sucrose content and ability to cope some biotic and abiotic 

stresses. These hybrids were critical for the development of the sugar trade (Grivet and 

Arruda 2002; Moore 2005; Cheavegatti-Gianotto et al. 2011). Modern sugarcane 

cultivars have complex and aneuploidy nuclear genomes. Few sugarcane cpDNAs have 

been assembled and published, including those from the sugarcane hybrids Saccharum 

spp. Q155 (Hoang et al. 2015), Saccharum spp. NCo 310 (Asano et al. 2004), 

Saccharum spp. SP80-3280 (Calsa Júnior et al. 2004) and Saccharum spp. RB867515 

(Vidigal et al. 2016). However, cpDNAs of wild Saccharum species remains 

unexplored. In the present study, we used whole-genome sequencing data to survey the 

chloroplast genome of the wild sugarcane species S. officinarum. 

 

METHODS AND MATERIALS 

 

Plant material  

 Young leaves from S. officinarum accession 82-72 maintained in the germplasm 

collection of Instituto Agronômico de Campinas (Ribeirão Preto, Brazil) were used for 

DNA analysis. According to Kuijper’s leaf numbering system for sugarcane 

(Cheavegatti-Gianotto et al. 2011), leaf -2 tissue was used to subsequent DNA 

extraction and sequencing.  

 

DNA extraction and sequencing 

Total genomic DNA was extracted from leaves using the CTAB method (Doyle 

and Doyle 1987) with minor modifications. The quality of DNA was estimated using 
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Thermo Scientific NanoDrop™ 2000c Spectrophotometer. Total DNA (~20ug) was 

sequenced on the Illumina GAII machine using the paired-end 100 cycle protocol.  

 

De novo assembly of chloroplast using genomic DNA reads 

 The sequencing reads were initially filtered to retain those with 90% of bases 

having quality scores greater than or equal to 20 (Q20) using FASTX Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). After quality filtering, we performed a 

BLASTN (Altschul et al. 1997) search (e-value ≤  10-4) with chloroplast sequences from 

Saccharum hybrid cultivar NCo 310 (NC_006084.1), Saccharum hybrid cultivar SP-80-

3280 (AE009947.2), Sorghum bicolor (NC_008602.1), Zea mays (NC_001666.2), 

Miscanthus sinensis (NC_028721.1), Oryza sativa (KT289404.1) and Setaria italica 

(KJ001642.1). The reads aligned to cpDNAs were tested on VelvetOptimiser 

(https://github.com/tseemann/VelvetOptimiser) with k-mer range from 29 to 87.  

Genome assembly was performed with SPADES (Bankevich et al. 2012) using the 

following parameters: 53, 69 and 77 of k-mers; 70 of coverage cutoff and careful 

parameter. The SSPACE (Boetzer et al. 2011) was run with default parameters on 

SPADES assembled contigs. The assembled chloroplast was compared with cpDNA 

from Saccharum hybrid cultivar Q155 using BLASTN, annotated with GeSeq (Tillich et 

al. 2017) and the resulting Genbank file was visualized on OrganellarGenomeDRAW 

(Lohse et al. 2013). 

 

Data availability 

 The sequence data from whole genome shotgun of sugarcane wild species S. 

officinarum have been submitted to the NCBI Sequence Read Archive under accession 

SRX313496. The assembled chloroplast genome sequence is available at NCBI 
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Genbank with accession number MF140336 

(http://www.ncbi.nlm.nih.gov/nuccore/MF140336). 

 

RESULTS AND DISCUSSION 

A total 297,637,906 whole-genome shotgun reads of S. officinarum were 

sequenced using an Illumina GAII platform. Quality filtered reads were screened for 

similarity with known chloroplast sequences (see methods for details), which resulted in 

2,065,893 reads that were used to assemble the 142,234 bp S. officinarum cpDNA at 

1043x coverage (Table 1). Five scaffolds were assembled, the largest one with 106,869 

bp (Table 1). This genome has 1,052 bp more than the hybrid cultivar Saccharum spp. 

SP80-3280, reported to have 141,182 bp (Calsa Júnior et al. 2004). The S. officinarum 

cpDNA has four main regions: LSC and SSC, with 84,080 bp and 12,576 bp, 

respectively and; the inverted repeats, IRa and IRb, with 22,789 bp each (Figure 1). 

Seventy-two genes were annotated, out of which 25 are protein-coding genes, 40 tRNA 

genes, four rRNA and three other genes (cssa, cemA and infA). In the inverted region, 

there are 20 duplicate genes: ten tRNA, four rRNA and six protein-coding genes. The 

IR junction with LSC is between the rpl22 and trnH-rps19 gene cluster. Accordingly, 

the trnH-rps19 gene cluster is present close to in the IR/LSC junction region in other 

monocotyledons species chloroplasts (Wang et al. 2008).  

The analysis of of the S. officinarum cpDNA revealed a notable difference in the 

LSC region of wild and cultivated sugarcanes. Chloroplasts of sugarcane cultivars such 

as Saccharum spp. Q155 (Hoang et al. 2015), Saccharum spp. NCo 310 (Asano et al. 

2004), Saccharum spp. SP80-3280 (Calsa Júnior et al. 2004) and Saccharum spp. 

RB867515 (Vidigal et al. 2016) showed a loss of a duplicated fragment with 1,031 bp in 

the beginning of the LSC region. In comparison with those cultivars’ chloroplasts, S. 
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officinarum has an insertion of 10 bp inside the rpl23-F gene and two copies of orf137, 

trnT, orf74 and rps19 genes. Like the NCo310 chloroplast, S. officinarum chloroplast 

has an intron in the middle of the rpl2 gene. Based on these results, we propose the 

comparative analysis of organelle genomes as a very important tool for deciphering and 

understanding hybrid Saccharum lineages. 
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Table 1 - Summary of S. officinarum chloroplast genome assembly statistics.  

Assembly parameters Value 
Quality filtered reads 151,392,928 

Number of reads* 2,065,893 
Total length 142,234 

Number of scaffolds 5 
Largest scaffold (bp) 106,869 

% GC 37.41 
N50 106,869 

Estimated coverage** 1043x 
*Assembly input 

**Coverage based on Q155 chloroplast size 
 

 

FIGURE LEGEND 

Figure 1- Graphic representation of S. officinarum chloroplast genome. Genes and tRNAs 
elements are identified as coloured boxes. The genes transcription direction is indicated by gray 
arrows. The locations of large and small single-copy regions and, the pair of inverted repeats 
(IRa and IRb) are shown in the inner circle. The darker gray color in the inner circle 
corresponds to the GC content, and the lighter gray color corresponds to the AT content.  
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