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Summary 12 

Energy and matter fluxes essential for all life
1
 are modulated by spatial and temporal shifts in 13 

microbial community structure resulting from environmental and dispersal filtering
2,3

, 14 

emphasizing the continued need to characterize microbial biogeography
4,5

. Yet, application of 15 

metapopulation theory, traditionally used in general ecology for understanding shifts in 16 

biogeographical patterns among macroorganisms, has not been tested extensively for defining 17 

marine microbial populations filtered by environmental conditions and dispersal limitation at 18 

global ocean scales. Here we show, from applying metapopulation theory on two major global 19 

ocean datasets
6,7

, that microbial populations exhibit core- and satellite distributions with 20 

cosmopolitan compared to geographically restricted distributions of populations. We found 21 

significant bimodal occupancy-frequency patterns (the different number of species occupying 22 

different number of patches) at varying spatial scales, where shifts from bimodal to unimodal 23 

patterns indicated environmental and dispersal filtering. Such bimodal occupancy-frequency 24 

patterns were validated in Longhurst’s classical biogeographical framework
8
 and in silico 25 

where observed bimodal patterns often aligned with specific biomes and provinces described 26 

by Longhurst and where found to be non-random in randomized datasets and mock 27 

communities. Taken together, our results show that application of metapopulation theory 28 

provides a framework for determining distinct microbial biomes maintained by environmental 29 

and dispersal filtering.   30 
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 2 

Discovery of biogeographical patterns in marine microbial assemblages
6,7,9-12

 caused 31 

considerable excitements because it indicated distribution patterns analogous to 32 

macroecological patterns
13-17

. These observations have provided clues that marine microbes 33 

are, at least to some extent, limited by the environment and their dispersal capacity rather than 34 

being cosmopolitan.  35 

Metapopulation theory is a key framework in general ecology and incorporates 36 

population dispersal to empirically test occupancy-frequency distributions of different 37 

organisms ranging from insects to plants
18

. Predictions of occupancy-frequency patterns have 38 

been developed in e.g. the core- and satellite hypothesis (CSH) by Ilkka Hanski
19

 where the 39 

so-called rescue effect supports the survival of metapopulations, and forms a bimodal 40 

occupancy-frequency pattern (See Fig. 1A). Previous results applying the CSH to marine 41 

ecosystems suggest that this approach could potentially allow for precise definitions of 42 

microbial biomes
20

.  43 

Here we collected data on bacterial and archaeal populations (estimated from 44 

16S rRNA gene sequencing and metagenomic data) obtained from two recent major global 45 

ocean datasets, Tara oceans
6
 and Malaspina

7
 (Fig. S1) to examine the shape of occupancy-46 

frequency distributions in global ocean data and aimed to define distinct microbial biomes. 47 

 For the Tara oceans dataset
6
 we focused our analyses on surface seawater (≤5 48 

m) and analyzed 63 stations in total (Fig. S1). Occupancy-frequency analysis for the whole 49 

transect revealed a significant bimodal pattern, with the number of populations demonstrating 50 

a monotonic decrease with increasing number of sites occupied followed by an increase in the 51 

number of populations occupying all sites (Fig. 1B; Table 1; Mitchell-Old’s and Shaw’s test, 52 

p<0.05). In addition, populations affiliated with Alphaproteobacteria (represented mainly by 53 

the SAR11 clade bacteria) also exhibited bimodality for the whole transect (Table 1; Mitchell-54 

Old’s and Shaw’s test, p<0.05). In contrast, Euryarchaeota, Cyanobacteria, 55 
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 3 

Gammaproteobacteria and Bacteroidetes did not exhibit significant bimodal patterns (Table 1; 56 

Mitchell-Old’s and Shaw’s test, p>0.05). Such results indicate that, among individual taxa, 57 

except Alphaproteobacteria, surface ocean microbial communities can be limited by the 58 

prevailing environmental conditions and their dispersal capacity. 59 

For subsets in the whole Tara Oceans transect, here exemplified by the South 60 

Pacific and North Atlantic, we found significant bimodal occupancy-frequency patterns for 61 

the total community (Table 1; Mitchell-Old’s and Shaw’s test, p<0.05). We note that 62 

Euryarchaeota populations only exhibited a bimodal pattern in the North Atlantic basin (Table 63 

1; Mitchell-Old’s and Shaw’s test, p<0.05). Our results therefore indicate that the total 64 

community and most individual taxa are bimodal within a coherent oceanic region. 65 

Reciprocally, particular microbial groups are subjected to environmental and dispersal 66 

filtering
21

 at different spatial scales resulting in geographically constricted populations.  67 

 The Malaspina dataset
7
 contained 30 stations collected from the deep-sea, 68 

typically ≥4000 m deep (Fig. S1). This dataset also included size-fractionated samples 69 

corresponding to free-living (>0.2 and <0.8 µm) and particle-attached (>0.8 and <20 µm) 70 

microbial assemblages. Analysis of occupancy-frequency patterns among deep-sea microbial 71 

assemblages revealed a significant bimodal pattern of the total community in the whole 72 

transect for both free-living and particle-attached populations (Fig. 1C; Table 1). Thus, 73 

although most deep-sea microbes have been suggested to be confined to a specific region
7
, 74 

our results indicate that a core deep-sea community are still distributed across the whole 75 

Malaspina transect, suggesting a similar microbial biome without environmental or dispersal 76 

filtering. 77 

Variations in the shape of occupancy-frequency distributions in the Malaspina 78 

transect were found for different size fractions, taxa, oceanic basins and taxa within different 79 

basins (Table 1). For example, Thaumarchaeota populations displayed bimodality in the 80 
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South Atlantic in the particle-attached community (Table 1; Mitchell-Old’s and Shaw’s test, 81 

p<0.05) but not in the free-living community (Table 1; Mitchell-Old’s and Shaw’s test, 82 

p>0.05). In the South Atlantic, Gammaproteobacteria populations exhibited a bimodal pattern 83 

in both the particle-attached and free-living community (Table 1; Mitchell-Old’s and Shaw’s 84 

test, p<0.05). We note that samples collected within the same water mass, here exemplified 85 

by “WMbSC 2: NADW−CDW−AABW” and ”WMbSC 4: Purest AABW Ross”, often 86 

showed a bimodal occupancy-frequency pattern (Table 1; Mitchell-Old’s and Shaw’s test, 87 

p<0.05). Overall these findings substantiate that particular taxa such as Thaumarchaeota can 88 

be limited by environmental conditions and dispersal capacity and thus geographically 89 

restricted.  90 

We further aimed to validate our observed microbial biomes estimated from 91 

bimodal occupancy-frequency patterns in the framework of Longhurst’s ecological biomes 92 

and provinces that define biogeographic distributions derived in large part from satellite-93 

based estimations of sea-surface chlorophyll a (Chl a) concentrations
8
. Longhurst defines four 94 

primary oceanic biomes; the Westerlies, Trades, Polar and Coastal (Fig. S1). These biomes 95 

differ in nutrient supply, light and seasonal variation in water column mixing. The biomes are 96 

in turn subdivided into several provinces based on Chl a distributions (Fig. S1). Our analysis 97 

revealed that samples collected as part of the Tara Oceans transect within the Coastal, 98 

Westerlies and Trades biomes displayed a distinct bimodal occupancy-frequency pattern 99 

(Table 1; Mitchell-Old’s and Shaw’s test, p<0.05). In addition, provinces such as the Indian 100 

Monsoon Gyres Province (MONS) and South Atlantic Gyre Province (SATL), exhibited 101 

significant bimodal patterns (Table 1; Mitchell-Old’s and Shaw’s test, p<0.05).  102 

During the Malaspina transect examining the deep-sea microbes, only the 103 

particle-attached microbial community exhibited bimodal occupancy-frequency in the SATL 104 

(Table 1; Mitchell-Old’s and Shaw’s test, p<0.05). Gammaproteobacteria displayed 105 
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bimodality in the SATL both within the free-living and particle-attached community (Table 1; 106 

Mitchell-Old’s and Shaw’s test, p<0.05). However, only particle-attached Alpha- and 107 

Actinobacteria displayed bimodality in SATL (Table 1; Mitchell-Old’s and Shaw’s test, 108 

p<0.05). Collectively, these findings emphasize that occupancy-frequency patterns among 109 

microbial assemblages can likely be used to validate and significantly extend analyses of 110 

oceanic divisions as determined by e.g. Chl a satellite data
8
. 111 

The difficulty in assessing and discerning sampling effects from true biological 112 

effects for understanding metapopulation dynamics is well recognized in terrestrial studies of 113 

macroorganisms
18

. Here we aimed to (i) examine the effect of sequencing depth on the 114 

cumulative number of core and satellite populations, and (ii) elucidate if bimodal patterns 115 

could arise from pure chance and hence be an artefactual effect in marine microbial 116 

assemblages. The number of core and satellite populations in subsampled rarefied datasets 117 

reached saturation around 25,000 sequence reads (Fig. S2). In silico tests with randomized 118 

datasets and mock communities confirmed that bimodal patterns were non-random, as no 119 

significant bimodal pattern was found in any randomized dataset or mock communities (Fig 120 

2A-B; Mitchell-Old’s and Shaw’s test, p>0.05). Our extensive in silico analyses provided a 121 

first clue that bimodality could be a biological pattern rather than an artefactual effect. 122 

To test the possibility of allowing the metapopulation framework to pinpoint 123 

microbial biomes without testing against a pre-defined oceanic region we analyzed 5 patches 124 

at a time in sequence along the Tara oceans transect (Fig. 2C-D). This exercise highlighted 125 

oceanic regions where the core populations (bimodal occupancy-frequency patterns; Mitchell-126 

Old’s and Shaw’s test, p<0.05) prevailed and the community was not limited by the 127 

environment or dispersal capacity. Reciprocally, we could also define specific microbial 128 

biomes along the transect (non-bimodal occupancy-frequency patterns; Mitchell-Old’s and 129 
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Shaw’s test, p>0.05). It was noteworthy that for all taxa combined, stations obtained in the 130 

Southern Ocean limited the distribution of microbial assemblages (Fig. 2C).  131 

For individual taxa in this unsupervised model, the occupancy-frequency pattern 132 

varied substantially and different major microbial groups were subjected to different 133 

environmental and dispersal filters. Euryarchaeota only had significant bimodal patterns in 134 

patches sampled from the North Atlantic, Red Sea, Arabian Sea and the Indian Ocean. 135 

Cyanobacteria exhibited bimodality in the Pacific Ocean but the pattern broke down upon 136 

entry into the Atlantic Ocean (Fig. 2D). Notably, within Cyanobacteria, Synechococcus had a 137 

geographical restriction between the North and South Pacific Ocean (see insert Fig. 2D). 138 

Synechococcus were also limited in their distributions in the Indian Ocean by a single site. 139 

Alphaproteobacteria had a similar metapopulation distribution limitation as the total 140 

community and Cyanobacteria in the Southern Ocean. Yet, within Alphaproteobacteria, 141 

SAR11 clade bacteria (see insert Fig. 2D) had a wider distribution, exemplified by a bimodal 142 

pattern between sites obtained in the South Atlantic and Southern Ocean. Still, SAR11 were 143 

limited upon entry into the Pacific Ocean. Gammaproteobacteria and Bacteroidetes displayed 144 

a clear distinction between samples obtained in the Indian Ocean and South Atlantic where 145 

the core community was constrained by the station outside Cape Town.  146 

Taken together, we demonstrate that empirical tests of metapopulation dynamics 147 

allows for biogeographical analyses of marine microbes to define microbial biomes. We note 148 

that a sequence depth of 25,000 sequence reads is sufficient to capture most of the core- and 149 

satellite populations and could be considered as lower limit for microbial biogeography 150 

analyses at large spatial scales
23

. Thus, variations in microbial biogeography, in particular, 151 

deviations from microbial biomes as defined by the CSH, can potentially be used in 152 

monitoring environmental changes, and might therefore be valuable tools in marine 153 

management.  154 
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 155 

Methods 156 

Occupancy-frequency distributions were analyzed as described in
20

. In brief, an 157 

equivalent to Tokeshi’s test of bimodality was performed using Mitchell-Olds’ and Shaw’s 158 

test
22

 for the location of quadratic extremes. The global ocean transect data were downloaded 159 

from the European Nucleotide Archive (ENA; accession number PRJEB7988) and the NCBI 160 

Sequence Read Archive (SRA; accession number SRP031469), Tara Oceans and Malaspina 161 

transects, respectively. For in silico tests we first tested the effect of sequencing depth and 162 

subsampled the Tara oceans dataset to 100,000 sequence reads and rarefied this subsampled 163 

dataset to 1000, 2000, 5000, 10,000, 20,000, 40,000, 60,000 and 80,000 sequence reads and 164 

plotted the cumulative number of satellite compared to core populations. We further created 165 

one randomized dataset by shuffling the presence/absence of OTUs using the “permatfull” 166 

function in R by keeping the sample sums (100,000 sequence reads) static and performing 167 

999 unrestricted permutations of the OTUs from the subsampled Tara oceans dataset and 168 

picked one random permuted community as mock community and rarefied as above. Thirdly, 169 

for the occupancy-frequency analyses we subsampled the Tara oceans and Malaspina dataset 170 

to 40,590 and 25,000 sequence reads, respectively, well above the suggested lower limit for 171 

diversity analyses of marine microbial assemblages
23

 and the 25,000 sequence reads noted in 172 

the test above (Fig. S2). Finally, we randomized each of the subsampled Tara oceans and 173 

Malaspina dataset and specific oceanic regions (North Atlantic, South Pacific and South 174 

Atlantic, Brazil basin, Tara oceans and Malaspina datasets respectively) and we used one 175 

randomized dataset as a mock community and this artificial community were randomized as 176 

described above. All statistical tests were performed in R 3.3.3
24

, and using the package 177 

“Vegan”25
.  178 
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Figure and Table legends 236 

Figure 1. Conceptual drawing of the core satellite hypothesis (CSH; A), and Occupancy-237 

frequency distributions (the different number of populations occupying different number of 238 

sites) of populations estimated from 16S rRNA gene amplicon and metagenomic data 239 

obtained from the Tara oceans
6
 (B), and Malaspina

7
 (C) datasets. (A) was modified from

20
; P 240 

is the fraction of occupied sites, C is colonization rate and E is extinction rate. The quadratic 241 

colonization and extinction rates are calculated according to dP/dt = CP(1 – P) – EP(1 – P)
19

. 242 

The CSH predicts a bimodal pattern, and incorporates positive feedback mechanisms between 243 

local abundance and regional occupancy
19

. High rates of colonization in the CSH protect a 244 

population from extinction and are known as the rescue effect. 245 

 246 

Figure 2. In silico tests of randomized sequence data and microbial biomes defined by shifts 247 

from bimodal occupancy-frequency patterns to unimodal patterns. Randomizations of 248 

observational data were performed for complete datasets and specific oceanic regions (A), 249 

and in mock communities (B). The typical occupancy-frequency pattern of the randomized 250 

datasets was characterized by most populations being detected at 2-4 sites with a monotonical 251 

decrease in the number of populations occupying increasing number of sites. No randomized 252 

community dataset exhibited a significant bimodal pattern. The randomized mock community 253 

typically displayed prevalence of most populations occupying 2-4 sites but with no significant 254 

bimodal pattern found. Microbial biomes (C-D) were defined by shifts from bimodal 255 

occupancy-frequency patterns to unimodal patterns by testing the occupancy-frequency 256 

distributions with combinations of sites within the Tara oceans transect. Red dashed lines 257 

denote environmental and dispersal filtering of microbial assemblages resulting 258 

geographically constricted populations. Color denotes significance level of Mitchell-Old’s 259 

and Shaw’s test for bimodality.  260 
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Supporting information 261 

 262 

Supplementary figures and tables 263 

 264 

Figure S1. Schematic map of sampled stations in the Tara oceans
6
 and Malaspina

7
 datasets 265 

included in the analyses and superimposed with Longhurst’s biogeographical division of the 266 

ocean into biomes and provinces
8
. Blue, Brown, Green and Yellow color denote Polar, 267 

Coastal, Westerlies and Trades biomes, respectively. 268 

 269 

Figure S2. In silico tests of the effects of sequencing depth on the cumulative number of core 270 

compared to satellite populations for the rarefied total community obtained from Tara Oceans 271 

(A), and one mock community (B) obtained from randomizing the Tara Oceans dataset and 272 

rarefying as in (A).  273 

 274 
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Table 1. Prevalence of bimodal compared to unimodal occupancy-frequency patterns within the Tara Oceans and Malaspina transects for 

different oceanic basins and within Longhurst’s biomes and provinces8
. Asterisks denote level of significance (*** <0.001, ** <0.01, *<0.05). 

  

Taxa 

Dataset Region 

ALL OTUs 

(n=35651) 

Euryarchaeota 

(n=550) 

Cyanobacteria 

(n=963) 

Alphaproteobacte

ria (n=7151) 

Gammaproteobacteri

a (n=7766) Bacteroidetes (n=3380) 

 
Full transect BIMODAL** OTHER OTHER BIMODAL*** OTHER OTHER 

 
South Pacific BIMODAL*** OTHER BIMODAL* BIMODAL*** BIMODAL*** BIMODAL*** 

 
North Atlantic BIMODAL*** BIMODAL*** BIMODAL*** BIMODAL*** BIMODAL** BIMODAL** 

 
Coastal Biome (L) BIMODAL* OTHER OTHER BIMODAL*** BIMODAL* OTHER 

 
Trades Biome (L) BIMODAL*** OTHER BIMODAL* BIMODAL*** BIMODAL*** BIMODAL*** 

Tara Oceans Westerlies (L) BIMODAL*** OTHER BIMODAL* BIMODAL*** BIMODAL*** BIMODAL*** 
 MEDI (L) BIMODAL*** UNIMODAL BIMODAL* BIMODAL*** BIMODAL*** BIMODAL*** 

 
EAFR (L) BIMODAL*** BIMODAL*** BIMODAL*** BIMODAL*** BIMODAL** BIMODAL*** 

 
SATL (L) BIMODAL** UNIMODAL BIMODAL*** BIMODAL*** UNIMODAL BIMODAL* 

 
SPSG (L) BIMODAL*** OTHER BIMODAL* BIMODAL*** BIMODAL*** BIMODAL*** 

  NASW (L) BIMODAL*** BIMODAL*** BIMODAL*** BIMODAL*** BIMODAL* BIMODAL* 

 

Table 1 continued.  

  

Taxa 

Dataset Region ALL OTUs (n=3902) 

Thaumarchaeota 

(n=48) 

Gammaproteobacteria 

(n=384) 

Alphaproteobacteria 

(n=405) Actinobacteria (n=143) 

Deltaproteobacteria 

(n=433) 

 
Full transect BIMODAL*/ BIMODAL 

*** 

OTHER/OTHER OTHER/OTHER OTHER/BIMODAL*** OTHER/OTHER OTHER/OTHER 
Malaspina South Atlantic BIMODAL**/BIMODAL* OTHER/BIMODAL** BIMODAL**/BIMODAL** OTHER/BIMODAL** UNIMODAL/UNIMODAL BIMODAL*/UNIMODAL 
0.2/0.8 µm Indian Ocean ND/BIMODAL* ND/OTHER ND/BIMODAL** ND/BIMODAL** ND/BIMODAL*** ND/UNIMODAL 
 WMbSC 2: NADW−CDW−AABW 

Weddell 

BIMODAL*/UNIMODAL BIMODAL***/ND BIMODAL**/ND BIMODAL**/ND OTHER/UNIMODAL BIMODAL*/UNIMODAL 
 WMbSC 4: Purest AABW Ross ND/BIMODAL* ND/BIMODAL*** ND/BIMODAL*** ND/BIMODAL*** ND/BIMODAL* UNIMODAL/BIMODAL* 
 SATL (L) UNIMODAL/BIMODAL* OTHER/OTHER BIMODAL***/BIMODAL* OTHER/BIMODAL*** OTHER/BIMODAL* UNIMODAL/UNIMODAL 
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