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1 Abstract

Recent progress in neuro-prosthetic technology gives rise to the hope that in the future
blind people might regain some degree of visual perception. It was shown that electrically
stimulating the brain can be used to produce simple visual impressions of light blobs
(phosphenes). However, this perception is very far away from natural sight. For devel-
oping the next generation of visual prostheses, real-time closed-loop stimulators which
measure the actual neuronal activities and on this basis determine the required stimula-
tion pattern. This leads to the challenge to design a system that can produce arbitrary
stimulation-patterns with up to ±70V and with up to 25mA while measuring neuronal
signals with amplitudes in the order of mV. Furthermore, the interruption of the mea-
surement by stimulation must be as short as possible and the system needs to scale to
hundreds of electrodes. We discuss how such a system and especially its current pumps
and input protection need to be designed and which problems arise. We condense our
findings into an example design for which we provide all design files (boards, firmwares
and software) as open-source. This is a first step in taking the existing open-source
www.open-ephys.org recording system and converting it into a closed-loop experimental
setup for neuro-prosthetic research.
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2 Introduction

Loosing the ability to see is a traumatic experience that can happen to everyone [1]. Using
technology replacing lost senses, like touch (e.g. [2, 3, 4, 5]), hearing (e.g. [6, 7, 8, 9])
and vision (e.g. [10, 11, 12, 13, 14, 15, 16]), is a goal that is pursued by many researchers
since many decades.

In the field of vision restoration, which we are especially interested in, two main research
directions can be observed: The first one is covered by retinal implants [12, 17, 18, 19,
20, 21, 22, 23] which use still functional sub-layers of the patient’s retina. These kind of
implants show very promising results in first clinical trials and allow suitable patients to
interact with their environment, based on the information delivered to the remains of the
retina [24, 25]. However, the requirement on the patient’s eyes is not met by many of
the blind patients [26]. This makes the second approach, which is based on the idea of
a visual cortex prostheses [27, 28, 29, 30], very appealing. Here, the visual information
is sent directly into the brain by means of electrical stimulation of visual cortex’s nerve
cells. In this paper we will focus on these visual cortex prostheses, but the presented
technology can be applied to research on prostheses for the other senses, too.

The idea behind a typical sensory cortex prosthesis is simple [11]: Record the physical
signal via a measurement device (e.g. camera, microphone or touch sensor) and digitize
it. Based on the recorded time series, calculate a suitable stimulation pattern in real-time.
Convert these patterns into electrical stimulation currents [31] via current pumps [32, 33]
or, in the case of opto-genetic stimulation [34, 7], into a light signal which is applied
to genetically modified neuronal cells. For normal electrical stimulation, which will be
discussed here, the electrical currents are conducted to electrodes (e.g. [35, 36, 37, 38, 39,
40, 41, 42, 43]) which interface the brain tissue [44]. Finally, the current reaches the nerve
cells. This external intervention changes the activity of the ongoing neuronal activities
and should, if done correctly, result in the desired perception.

In reality, the realization of this idea is not that simple. Alone the question, how and
where to stimulate is still a field of research (e.g. [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56]), with the goal to produce brain activity patterns similar to those evoked by sensory
stimulation. Furthermore, the activity patterns produced by electric stimulation should
be processed by the brain similar to natural brain activity and should result in natural
perceptions. This is a largely unsolved problem and it is not clear if this goal can ever be
fully reached [45]. Nevertheless, in the field of electrical stimulation-based hearing aids
the actual state of stimulation is very promising. Current development of cortical vision
prostheses did not went beyond simple light blobs (phosphenes) [47, 49]. Our long term
research agenda is to develop a technological and scientific foundation for improving the
situation. One idea is to use stimulation in a closed-loop configuration [57], possibly even
with under-threshold stimulation [58, 59, 60], as well as to exploit the brain’s capability
to adapt [61, 62].

For a closed-loop approach, the proposed technology (see figure 1) is composed of three
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Figure 1: Sketch of a closed-loop system for neuro-prosthesis applications. Electrodes establish
an interface to the brain tissue. On the measuring side of the system, the electrodes are connected
to bio-amplifiers for boosting the signal strength of the observed neuronal mV-sized signals.
These amplifiers send their amplified signals to an analog digital converter (ADC). The digitized
stream of measurement data is conveyed to a real time closed loop controller. This controller
analyses the incoming data and calculates which intervention is required. The results of these
calculations are a spatial temporal stimulation pattern. This pattern is send to the digital analog
converter (DAC) which controls current pumps that are connected to the electrodes which closes
the loop.

parts: 1.) Measuring neuronal activity patterns, which requires bio-signal amplifiers
[63, 64, 65] and analog-digital converters suitable for neuronal signals [66, 67, 68, 69]. 2.)
A data processor [70] for evaluating the actual state of the neuronal network as well as
for predicting the required intervention to bring the neuronal network into the desired
dynamical state. 3.) The electrical stimulator itself [68, 71, 33]. All three parts of the
system must work and interact in real-time.

The final goal would clearly be to build a wireless implantable system [72, 73, 74]. How-
ever, such an implant needs to fulfill a large number of requirements and needs to possess
special properties (see discussion for details). This makes it much more efficient to start
with an external closed-loop system for performing research on more advanced stimulation
paradigms. Later, when it will be much clearer how a more natural stimulation needs to
be done, the system can be miniaturize towards an implant.

Concerning visual cortex prostheses, two types of neuro-interfaces have been used in
research [29]: Surface electrodes arrays [30, 75] and intra-cortical electrodes [76]. The
presented system is optimized for surface electrodes but can be adapted for using intra-
cortical electrodes. Specifically, with our system we aim for very high density and small
size surface electrodes [42] with several hundreds of electrodes. For traditional surface
electrode arrays used in a medical applications, the electrodes have a diameter up to
1cm. Stimulating the brain with such electrodes already requires voltages up to 20V
[30] for delivering currents of several mA. For increasing the density of the phosphenes,
the electrode diameter was reduced to 560µm [42]. Some researchers involved in the
development of these electrodes even expect that voltages up to 100V with currents of
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15mA (or maybe even more) [33, 77] might be necessary. However, the optimal voltage
and current range is not determined yet and may require lower voltages. We designed
our system for voltages in the range of ± 70V and currents up to 25mA. Traditionally,
simple mono- or bi-phasic stimulation pulse shapes are used [78]. Since the properties
of the phosphenes might depend on the pulse shape, we designed our system to instead
produce arbitrary pulse shapes with a time resolution of 40k samples/ s.

To date, suitable systems with the described specifications are not commercially available.
Only few systems are capable of producing high voltages and high currents or scale up to
several hundreds of electrodes. Furthermore, these systems are closed source or are just
not designed for a closed-loop application. Such a system needs to e.g. minimization of
the duration between the last stimulation pulse and continuing the recording of the neu-
ronal activities, analyzing the data in real-time, or continuously changing the stimulation
patterns in real-time. As a result, embedding these systems into a real-time, low latency
closed-loop system is a problem.

In the end, we decided to build our own system. However, we wanted to use the
open-source recording system open-ephys (www.open-ephys.org) with its Intan RHD
ICs (includes bio-amplifier and an ADC for neuronal signal recording applications; www.
intantech.com) for the recording part. In this paper we describe our first step towards
this goal and make all the corresponding design files available as open-source in the sup-
plement materials.

3 Results

In the results section we will explain the ideas which went into the design of the system
concept (Figure 2), problems that occurred and how we solved them. We also present an
example design for the circuit diagrams as well as circuit board designs. The full system
is partitioned into distinct modules that serve different functions: First we will describe
the modules containing the current pumps which provide the stimulation current. In a
second step, we combine these modules and add control structures for obtaining a 16-
channel building block. In the next step, cascades of protection switches are added that
will allow the combination of stimulation and measurement equipment into one system.
Finally, we explain the structure of the necessary firmware(s) for controlling the system.
The section ends with a summary of our experiences from tests of the system’s concept
in real hardware. All design files of the system, its firmwares and software, as well as of
the used test modules are part of the supplemental material.
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Figure 2: The system concept shows how the different building blocks (PC, Master FPGA,
Open-Ephys recording system, 16 channel current pump controller boards with their sub-
modules as well as the 32 channel switch boards) interact with each other.

3.1 Current pumps

Core of the stimulation system are the current sources which are realized as modules
each containing a single current pump for easy replacement. For covering the envisioned
applications, the current pump will deliver up to ±25mA using voltages up to ±70V.

Circuit design. As the basis for the stimulation system, we decided to use an ’improved’
Howland current pump [79]. Figure 3(a) shows the circuit diagram of such a constant
current pump. The circuit is controlled by an external DAC (Analog AD5360) providing
an input voltage VIn proportional to the desired output current. According to [79] the
selection of the resistors needs to obey the equation

RA

RB +RC

=
RD

RE

.

The application information in the datasheet for the selected op-amp LTC6090 suggests
to use large feedback resistors. Following the manuals’ line of argument, a resistor with
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Figure 3: (a) Circuit diagram for an ’improved’ Howland current pump [79]. Components
are selected for an op-amp LTC6090 with ±70V as supply voltages and VIn ∈ [−10V, ..., 10V ]
as well as a maximum output current of ±25.6mA. (b) 3D rendering of an example design
(double layer board with single side component load) of this circuit diagram (see supplement for
the design files). (c) Simulation of the circuit diagram with ±70V as supply voltages in Texas
Instruments TINA software. The graph shows the theoretical output current of the current
pump in dependence of VIn and for different resistive loads.

a value of 100kΩ was selected for RE. RD was also set to 100kΩ since the manual for
the Analog AD5630 DAC suggests a load with a minimum of 10kΩ for the intended
parameters of operation. Like in the example in [79], we set RA1 and RC to 100kΩ as
well. The selection of the values for RC , as well as RA2, depends on the required maximal
current and the maximal control voltage VIn according to the equation

IOutput = −VIn
RC

.

We expect the external DAC to deliver control voltages in the range of ±10V (with 16-bit
resolution) and aimed for a maximal current of ≈ ±25mA, which is half of the output
capabilities of a LTC6090 op-amp. Based on the available E12 values for resistors, we
selected RC = RA2 = 390Ω thus setting the maximum current to ±25.6mA. Applying the
maximum symmetric supply voltages of ±70V to the op-amp, we simulated the behavior
of this current pump with different loads in Texas Instruments’ TINA software. Figure
3(c) displays the results of this simulation. Given the maximum driving voltage of ±70V,
already at a resistive load of 3kΩ the maximum current output of the current pump
is limited to a value lower than ±25.6mA. Increasing the resistive load further reduces
the current, that can be maximally sourced by the current pump with the given supply
voltage.
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Figure 4: The graph shows the theoretical output current of the current pump in dependence of
VIn and for different resistive loads (see figure 3(c) for details). Here the circuit was simulated for
supply voltages of ±15V and designed to produce a maximum current of 1mA (a) and 100µA (b).
The latter is in the order of magnitude of currents typically used for intra-cortical stimulations.
Table 1 lists the configurations and properties of these circuits.

In figure 4 simulations are shown for two additional cases where the supply voltage was
limited to more typical ±15V and the resistors RC = RA2 were selected such that the
maximum currents were limited to 1mA and 100µA. In the case of IOutput,Max = 100µA,

the current pump can drive resistive loads with 30kΩ. For these three examples, table 1
lists the necessary resistor values and the implied size of the addressable current steps via
a 16-bit DAC. In applications where no high voltages (<35V) are required (e.g., for intra-
cortical stimulation), the noise performance may be improved if the LTC6090 is replaced
by a low noise, non high-voltage op-amp. However, the requirement for an input pin
that can enable/ disable the output and an indicator for overheating reduces the available
op-amp IC types strongly.

Table 1: Summarizing the results from the simulations shown in figure 3 and 4 as well as
listing the used parameters.

RC = RA2 VSupply IOutput,Max ∆IDAC step

390Ω ±70V ± 25.6mA ≈ 0.8µA
10kΩ ±15V ± 1mA ≈ 0.03µA
100kΩ ±15V ± 100µA ≈ 0.003µA

Circuit calibration. It is necessary to calibrate the IOutput(VIn) curve for every in-

dividual channel, since production tolerances in the resistors cause significant differences
to the theoretically expected behavior. This may lead to deviations in the shape of the
I-VIn-curves as well as to non-zero current flows at VIn = 0. Software based calibra-
tion (i.e., re-mapping of the DAC input values to measured output currents) can help to
compensate for aberrations of the curve’s shape down to ∆IDAC step level. However,

this might not be good enough for compensating the current flow at VIn = 0. Even a
small current can cause damage to the brain tissue and electrodes through electrophoresis
and electrolysis, if it is applied for an extended time. As an easy solution, only op-amps
with an enable/disable pin for the output should be used, hence allowing to turn off the
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current pump when it is not needed. Furthermore, it is highly advisable to place an addi-
tional analog switch in the output path of the current pump to prevent external currents
from flowing out of or into the current pump during the time when the current source is
disabled (see section ’Analog protection switches’ for details).

If the current pump will be used with supply voltages of ±70V, special care is needed to
keep electrical conductors sufficiently separated. According to IPC’s standard IPC-2221A
[80], section 6.3 ’Electrical Clearance’, their recommendation for an appropriate distance
can be taken from table 6-1 or calculated (for larger voltages) with the equation

d(∆V ) = 0.25mm+ ∆V · 0.0025mm.

With ∆V = 140V we need at least 0.6mm, while the IPC table 6-1 even suggests 0.8mm
(for up to ∆V = 250V ). Hence for our designs presented in the supplement we used
0.75mm as electrical conductor spacing. For ∆V = 30V a spacing of only 0.25mm would
be required. Using conformal coating can reduce the conductor spacing in both cases by
half.

Module design. In figure 3(b) our example design is shown. A module contains one
current pump on a two-layer printed circuit board. The bottom side is not loaded with
components. Due to the required large conductor spacing as well as the larger resis-
tor/capacitor package sizes which come with the higher voltage rating, the board has a
size of 38mm x 23mm. For smaller ∆V , the necessary area for one current pump can be
reduced significantly, also by using connectors with a smaller pitch.

Several of these modules can share four connections for supply voltages (positive and neg-
ative), digital ground and analog ground. The two inputs for VIn and the enable/disable
signal for the pump can not be shared since they are controlled for each current pump
individually. Furthermore, two individual outputs are provided by every module, namely
the stimulation current itself and a signal of the op-amp indicating overheating. Thus the
number of connections NCon for NChannels channels scales as NCon = 4 + 4 ·NChannels.

In our trial production of test boards, we found one of three modules being non-functional.
The problem could be traced back to the op-amp which showed erratic behavior. Due
to the (large) contact pad on the flip side of the IC’s package and the huge copper areas
for cooling the IC, it is very problematic to replace an individual op-amp especially if it
is surrounded by other components. As as consequence, we suggest to put only a few
of these current pumps with only the necessary support components on one board, thus
allowing easy replacement by exchanging the whole board. For the design presented in
the supplement, we decided to put only one current pump on a board to keep the financial
damage low while trading it in for a larger required spatial volume.
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provides the necessary information (clock signal, reset line, etc) and keeps all the blocks in
synchronicity. One cheap ’delegate’ FPGA for every 16 channel building block handles the
incoming data and is responsible the timing of the stimulation. The delegate FPGAs program
the digital-analog converters (DACs) via the serial peripheral interface (SPI) when the output
of the DACs needs to be updated. Each DAC delivers the control voltages to its 16 current
pumps which produce the stimulation currents. The delegate FPGAs also control if a current
pump is enabled or disabled. For saving precious I/O pins of a delegate FPGA these signals
are mediated by two high speed 8-bit shift registers with latched outputs. The temperature
warning signals are reduced to one combined signals via AND gates (see figure 6) and then feed
to its delegate FPGA. Putative problems are reported by the delegate FPGAs to the master
FPGA. Furthermore, each delegate FPGA controls a variety of analog switches which protect
the electrodes, the brain tissue, and additional measurement electronics.
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3.2 Combining and controlling a multitude of current pumps

For an application like a visual prostheses, a system is required which can serve several
hundreds of electrodes. The aim is to design elementary building blocks that can flexibly
be combined to create systems ranging from a few up to a very large number (e.g. 256) of
stimulation channels. In the following, we will present the design of a 16-channel build-
ing block, which consists of an FPGA (for a better discrimination between the different
FPGAs, we will call it ’delegate FPGA’) controlling a 16-channel digital-analog converter
(DAC), which in turn delivers the output for controlling up to 16 current pumps of the
type described in the last section. In parallel, this delegate FPGA is also handling the
temperature warning signals of its current pumps, and enables/disables these current
pumps as needed.

The design is based around the Analog Devices AD5360 which is a 16-channel digital-
analog converter (DAC) with a nominal output voltage range of ±10V and 16 bits res-
olution. While changing the reference voltage of the DAC allows to modify the output
voltage range for all channels together, the DAC also has digital registers for setting an
offset and gain value for each of its channels individually. This allows a high flexibility
for selecting the range for the 16 VIn (control voltages driving the current pumps) after
production, and thus allows to tune the output current range of the current pumps to the
actual experimental situation without sacrificing the 16 bit resolution. With the selection
of this DAC, we obtain a natural partition of the scalable system into 16-channel blocks.
We were able to obtain an update rate of 40k samples per second(25µs time-resolution)
for every individual channel.

For controlling the DAC, we use a Microsemi low-power nano FPGA (IGLOO AGLN250
VQ100) as delegate FPGAs. This very cheap FPGA showed itself capable of handling
simple tasks with up to 25MHz. It does not need complex support components because it
already contains flash memory for self-programming after power-on. It also comes with an
IC package that can be used on two layer boards and easily be hand-soldered if necessary.
In the supplemental materials section we included the design files for a board using the
described FPGA and DAC, which was also used for our tests.

In figure 5, the structure of one 16-channel building block is shown. It is assumed that
an external ’master’ FPGA with connection to a PC provides data (with 25MHz over a 8
bit wide data bus) to such a building block about how and when to stimulate. In return,
this master FPGA will receive feedback about error states (temperature warning, buffer
over/underflows, etc) and thus be able to inform the user about putative problems.

The delegate FPGAs will check the data received from the master FPGA for inconsisten-
cies because it is important to make sure that the intended stimulation signals are created
correctly at the right time (in the firmware section, this topic will be discussed in more
detail). Further responsibilities of the delegate FPGAs are to program the DACs via SPI
interface, to enable/disable the current pumps when required, to control all other protec-
tion switches (if present, details in the following subsection), and to constantly check the
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temperature flags of the op-amps and if necessary, take preventive actions as a precaution
for overheating.
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Figure 6: (a) Schema of how to reduce the required number of pins for the temperature
warning flag using dual 4-Input AND Gate ICs (SN74HC21PW). (b) The temperature flag pin
of the LTC6090 op-amp is an open drain output. For connecting it to an input of the AND
gates, a pull-up resistor is required like it is described in the op-amp’s manual and is shown in
this circuit diagram.

In a 16 channel block, there are 16 signals for the current pump’s temperature warning
flags and 16 signals for enabling/disabling the individual current pumps that need to
be handled. Since each delegate FPGA has only 68 I/O pins and many of these pins
are needed for other tasks, it is necessary to reduce the number of lines for checking the
temperature and controlling the activity status of the current pumps. Figure 6 shows how
a cascade of AND gates (e.g. SN74HC21PW) can be used to easily reduce the number of
temperature warning lines from 16 to 1. With respect to enabling/disabling the current
pumps (see figure 5), shift registers with latched outputs (e.g. two 8-bit shift registers
SN74AHC595PW) can be used to reduce the number of connections from 16 to 4 (two
data lines to the shift register ICs, and one line each for the shift register clock and storage
register clock). It would even be possible to daisy-chain the two shift register ICs, thus
saving one additional connection. Although it would double the time for programming
the shift registers, this is not a problem if the AHC series of the shift register is used,
because programming with 25MHz is easily possible. However, this additional reduction
of control lines is not necessary for our design.

The schematics shown in figure 5 was transferred into an example design (design files
are part of the supplement). The upper panel of Figure 7 shows the example design
for a 16-channel current pump controller board. The four-layered board has a size of
89mm x 228mm and is loaded with components on its top side. The large area of the
board is a direct consequence of the 0.75mm conductor spacing required for the high
voltages (∆V=140V). The current pump modules are plugged into the 16 arrays of female
pin header connectors. This allows to easily replace broken modules as well as creates
a radiator-type construction that allows a convective airflow for efficiently cooling the
modules. As a side-effect, the use of dedicated modules makes it possible to use a four-
layered board instead of a large six-layered board, thus saving costs.
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(a)

(b)

Figure 7: 3D rendering of the example design for a 16 channel current pump controller board
(89mm x 228mm, four layer board with single side component load) for ∆V=140V (The software
couldn’t show the cooper planes for ground and the power rails which creates there the illusion
of large unused areas). (a) The left connector carries the power supply, the reference voltage
for the DAC, and the digital lines from the master FPGA (with the connections to the PC).
In the lower left part of the board, the delegate FPGA is situated. The DAC is positioned in
the upper left region. Right of the DAC, the shift register and AND gate ICs are placed. The
lower right connector delivers the stimulation currents, digital control signals and power supply
for analog switches (located on an additional switch board). A simple ribbon cable can be used
for connection boards. As a result of the required electrical clearances due to the high voltages,
the major area of the board is consumed by the 16 female pin header connectors. These are
spaced far enough such that the metal part of components from one module can not touch the
neighboring module as well as allow an airflow for cooling the current pumps. (b) Controller
board with installed current pump modules.

We thought about adding digital isolators (e.g. Texas Instruments ISO764xFM) for sep-
arating the shift registers, AND gates and DACs from the parts of the circuit with high
frequency digital signals. The purpose of adding digital isolators is to prevent distribution
of potential high-frequency ’noise’ over the system. Since we do not have the necessary
equipment for quantifying the influence of our system on the neuronal signals we intend to
measure, however, we postponed adding these isolators. Without the ability to measure,
it is unclear if there really exists a problem, and if it can be fixed by adding isolators.

Another important issue is to choose a power supply with a clean ±70V DC power rail.
This requires special solutions, which preferentially are suited for medical applications
(even if they will first be used for animal experiments). We found one possible power
source in the Vega750 system from TDK Lambda, where two +35V modules and two
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-35V modules are combined to create a ±70V supply. For improving the quality of the
DC voltage, a Π-filter can be applied.

3.3 Analog protection switches

Simultaneously stimulating and measuring is a challenge. A measurement system for
(extra-cellular) neuronal activities like the Intan Technology RHD2132 is designed to
measure voltages in the sub-mV region. In the case of the Intan RHD2132, voltages outside
of the range of±400mV will be directed to ground via electrostatic discharge (ESD) diodes
for protecting the analog inputs. For short time intervals with active stimulation current
flow, the ESD diodes may protect the sensitive inputs for measurement from damage even
if high voltages as e.g. 70V are used. For a longer stimulation duration this solution will
not work, because the integrated ESD diodes will heat up rapidly and be destroyed quickly
(in a worst case scenario, the diodes have to dissipate 25.6mA@70V=1.8 Watts). Another
problem using ESD protection diodes is that they will consume part of the stimulation
current if their threshold is reached, hence causing a lower current injected into the brain
tissue than intended. Furthermore, overloading the op-amps in the measurement system
with high voltages causes a large increase in their recovery time. During recovery, the
op-amp will produce measurement artifacts lasting from a few milliseconds up to 100ms
(or even more) while the timescale of interest for the neuronal signals lies roughly in the
order of 1/10ms (action potentials) to 1ms (local field potentials). These two effects make
it important to protect the analog inputs of the measurement system from stimulation
signals with too large voltages. Another requirement for protection is that the current
pumps must be disconnected from the electrodes when they are not used for stimulation
(see subsection ’Current Pumps’). If then the current pump is not disconnected from the
electrodes, even if the DAC is programmed to a control voltage of 0V, small DC currents
can be produced. This can be a result of mismatching resistor values or imperfection
of the DAC calibrations. Furthermore, it blocks stimulation currents from one current
pumps from flowing into others. Otherwise these currents are lost for stimulation.

The described problems make it necessary to include additional protection into the de-
sign. Figure 8 shows the solution we applied: During stimulation, the direct connection
between the electrode and the measurement device can be separated by opening switch
B. Current will then flow from the stimulator’s output through a closed switch C to the
electrode (Fig.8(b)). After stimulation, switch B will be closed and switch C will be
re-opened. Switch A, which was already closed during stimulation, now allows the elec-
trode/brain tissue interface, which can act like a capacitor during stimulation and store
charge, to discharge (Fig.8(c)). Finally switch A is opened and the system is again ready
for measurement (Fig.8(d)).

In addition it is possible to add optional external protection diodes. These rather large
discrete diodes, which can typically handle up to several Watts, can be used to unburden
the ESD diodes of the measurement system. These diodes need to be fast like e.g. Schottky
diodes and, obviously, need to be suitable for the properties of the neuronal signal passing
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Figure 8: (a) Circuit diagram for protecting the analog inputs of a measurement system.
(b) During stimulation switch B is open and switch C is closed, allowing the current to flow
from the current pump to electrodes while no stimulation current can flow into the direction of
the recording device. (c) After stimulation switch A and B are closed and switch C is opened.
This removes the current pump from the electrodes and allows remaining charge (e.g. from the
interface between electrode and tissue) to be bleed off over the bleeder resistor R. (d) Before
resuming the measurement, switch A is opened.

by. If these diodes are installed, it is important to simulate (or test) the interaction
between these extra diodes and the internal ESD diodes of the measurement system in
advance.

For selecting the switches, it is important to consider the following constraints: Is the
switch able to work reliably in the required voltage range of ±70V with the expected
stimulation currents of up to 26mA? Which resistance does it add to the circuitry (should
be small compared to the impedance of the used electrodes)? Does it have a signal
transmission bandwidth of at least ≈50kHz? Is the time required for changing the state
of the switch sufficiently small, e.g. 0.5ms or less? How often can the state of the switch
be changed before it reaches the end of its lifetime? And very importantly, how much
noise is added to the very small physiological signals passing the switch during recording?

Fulfilling all of these requirements, especially for voltages with an amplitude of ±70V, is
a challenging problem for which we have not found an optimal solution yet. Electrome-
chanical relays are too slow, requiring about 10ms per state change, and their lifetime
expectancy is only ≈ 107 state changes. Reed relays are faster (≈ 0.5ms) and their life
expectancy is higher with up to 109 switch cycles. However, assuming one state change
every 10ms, 109 state changes are reached after 2777.8 hours. If the system will be used
eight hours every day, the relays will be worn out in less than a year. Solid state re-
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lays, a combination of a LED and a photosensitive MOSFET component, change their
state with approximately 1ms and thus might be too slow . Pure MOSFET switches are
also a possibility. Due to the positive and negative voltage load it is necessary to use
at least two MOSFETs (and two diodes, if the internal diodes of the MOSFET are not
suitable for handling the occurring stimulation currents ). For operating these MOSFETs,
a gate driver is needed that works in this high-voltage regime, thus adding to the list of
components required for every individual channel.

While MOSFET-based switches seem to be a viable approach, we instead propose high
voltage analog switches since they are easier to use. For our tests we decided to use the
Microchip HV2201, which is an eight channel switch IC capable to switch analog signals
with up to ±100V. These switches add ≈ 30Ω and have a turn off/turn on time in the
order of 5µs. In our test environment the switches worked successfully, but we found that
two of the eight channels broke by handling them during our tests. As a consequence,
we modularized the switch ICs in our example design (see figure 9(a)), allowing easy
replacement in case they fail. Thus the switch modules only host the switch ICs, while
the switch board realizes the circuit diagram shown in figure 8. Although a 16-channel
version of this IC is also available (Microchip HV2601), we recommend to use the eight
channel version because it is easier to obey the required 0.75mm conductor spacing for
∆V=140V due to additional free space by internally non-connected pins and the cost per
channel is the same.

A remaining question is which noise influence the switch IC has on the recorded signal.
Sadly, we were not able to answer this question because our lab does not have the necessary
specialized equipment to generate and measure such small signals reliably . In cases
where high stimulation voltages are not needed, and hence the gap between the maximum
voltages of the stimulation and recorded signal is smaller, there might be an analog switch
IC solution which might have a lower noise influence. Also reducing the supply voltage
to its minimum may improve signal-to-noise ratio. In the worst case, where the noise
behavior is not acceptable, only the switch modules need to be replaced by a low-voltage
solution while the larger four-layer switch board (see figure 9(c) and (d)) can still be used.
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(a)

(c)

(b)

(d)

Figure 9: 3D rendering of the boards used for switching the analog signals and currents.
The boards are designed for a for ∆V=140V (The rendering software couldn’t show the cooper
planes for ground and the power rails. In this pictures this creates the illusion of large unused
areas.). (a) Module hosting the switch IC. This 38mm x 49mm two layer board with single
side component load, contains a Microchip HV2201 8 channel high voltage analog switch. The
pin header with 1 row of pins connects to the digital signals and the supply voltages while the
other pin header is concerned with the analog signals. (c) Four layer board (209mm x 197mm)
realizing the electrical circuit shown in figure 8 for 32 individual channels. (d) While most of
the components are on the top side, an optional 32 channel Intan RHD2132 can be installed
on the flip side of the board. This would provide the necessary parts for measurements, in
an OpenEphys-compatible fashion, directly on this board. The two pin header on the left are
used to connect two of the 16 channel current source board (see figure 7) via ribbon cables.
These connectors deliver the required power supply, digital control signals for the switches,
and the stimulation currents. It is important that these ribbon cables have a low capacitance.
Otherwise (e.g. in the case of coaxial cables) the biphasic stimulation pulse might be absorbed
by the cable’s capacitance. On the upper position on the board, the connector for electrodes
is situated, while on the right side a connector for a recording system is available (if the Intan
RHD2132 is not used). (b) Switch board with installed switch modules.
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Figure 10: Simplified schematic of the firmware for the delegate FPGA. Data from the master
FPGA is received over a 8-bit wide and 25MHz fast data bus. After power-up one 12 byte long
entrainment block, is sent which makes sure that the data transfer between the FPGAs is working
correctly. Then the nano FPGA receives 56 byte long data packages containing the stimulation
descriptions. If the data package was signed with the address id for the delegate FPGA (which is
individually programmed into each delegate FPGA firmware), the data is copied into a FIFO for
further processing. If the address id is unknown then the data package is ignored. The accepted
data is taken from the FIFO and is disassembled into a set of new DAC values, switch/ current
pump states and a pause duration. When the rest of the system is ready for processing a new set
of instructions, the disassembled instruction set is copied for further processing. After that, the
package disassembler can continue and prepare a new set of instruction in the background. The
copied set of instructions is analyses by three finite state machines (FSM) and transferred to the
DAC (via SPI), the two 8-bit shift registers and up to eight analog switch ICs. After that, this
part of the system waits, for the time defined by the pause duration, and then continues with
the next set of instructions from the packet disassembler. Beside producing the control voltages
for the current pumps, the DAC has an additional digital I/O pin (GPIO) which is connected
to an input of the delegate FPGA. The logic state of this GPIO is flipped through SPI at the
beginning of programming a new set of instructions into the DAC. This allows to observe the
timing of the DAC. Also a test data generator is included in the firmware, which can generate
a continuous saw tooth voltage signal at the DAC’s output channels. This signal generator can
be enabled during compiling the firmware.
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3.4 FPGA firmware

Besides the hardware, the system needs to organize the distribution of information and
manage the operation of its components. We decided to use FPGAs for ensuring a pre-
cise timing of the stimulation sequences. One external, master FPGA establishes the
connection to and from a host computer (e.g. over a fast Ethernet interface) and commu-
nicates with multiple ’stimulation modules’ over a shared bus. Each stimulation module
comprises a 16-channel stimulation building block which includes a delegate FPGA (Mi-
crosemi IGLOO nano). The delegate FPGA’s job is to program the DAC, the 8-bit shift
registers and the other input protection switches as well as monitor the overheating signal
from the current pumps. In the following, we will describe the firmware of the FPGAs
and the performance of the system in detail.

General design aspects: For realizing a particular stimulation time series, two ap-
proaches are possible:

a) Stimulation patterns are defined before the experiment is started, and stored in a
memory bank of the master FPGA. During the experiment, the host PC can then
instruct the master FPGA to replay the sequence from its memory with precise
timing.

b) The firmware is designed in the spirit of a ’continuous data stream’ process. The
stimulation data is fed continuously into the system and the delegate FPGAs process
this stream of instructions and act on it as soon as possible.

In our test system, we realized option (b) since it is more flexible. First, it allows arbi-
trary stimulation patterns to be generated by the host PC, sent to the master FPGA,
and distributed to the delegate FPGA’s for execution. Second, it allows to extend the
stimulator to a closed-loop system capable to adapt the shape of the stimulation pattern
to the measured neuronal activity state in real-time.

Data transfer between master FPGA and delegate FPGA’s: For keeping the
amount of physical connections between the stimulation modules and the master FPGA
(with the connection to the PC) low, we decided to implement a broadcast approach
for the communication. Multiple stimulation modules listen at the same physical data
bus originating from the master FPGA. The master FPGA sends out all the stimulation
information with a clock of 25MHz using a bus width of 8 bit, thus equaling 25 MByte/s
per bus.

From this common broadcast stream, the individual controller boards filter out the mes-
sages concerning them. Every individual nano FPGA firmware is compiled with a 7-bit
identifier, which allows up to 128 controller boards to be addressed. Including a header
for determining the beginning of the data package and two bytes reserved for future ex-
tensions (e.g. check-sum for protection against data corruption), 56 bytes are required to
describe the new state of a 16-channel block (table 2), namely:
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Table 2: Structure of the data package

2 bytes header
1 byte address of controller board

(7 bits=128 boards, 1 bit for broadcasts to all boards)
36 bytes new state of DAC
10 bytes new state for protection switches
5 bytes duration of new state
2 bytes reserved for extensions

56 bytes in total

For every state change, the current pump controller board requires 18 bits for every
channel of the DAC, consisting of a 16-bit data field plus 2 bits for mode selection.
Typically, the data field holds the control voltage, but can in conjunction with the mode
selection bits be used for trimming offsets and gains of the individual DAC’s channels.
In total, 18 bits times 16 channels sum up to 36 bytes for defining the new state of
the whole DAC. Each state change also requires 10 bytes (5 bits times 16 channels) for
defining the state of every channel’s four individual protection switches (4 bits) and the
corresponding on/off control (1 bit) for their current pumps. To reduce the amount of
data transferred for realizing a stimulation time series containing constant segments or
for pausing stimulation, every message packet contains one 40 bit value specifying the
duration of a new state which can last up to 4500s. The delegate FPGA will hold the
new state (i.e. switch and current pump settings, stimulation currents) for the required
duration before the next set of instructions will be processed. Every message received
during that time will be buffered in a FIFO.

Aiming at a maximal update rate of 40kHz, one 16-channel block requires a data rate
of 2.24 MByte per second. This allows one bus to easily control a system with up to
176 stimulation electrodes (11 x 16-channel blocks). If higher update rates and/or larger
number of stimulation electrodes are required, the external FPGA could easily manage
and synchronize several broadcast buses.

The connection to the outside world – the Master FPGA:

The firmware of the master FPGA (a Xilinx Spartan 3A on an Orange Tree Tech ZestET1
board with 1GBit Ethernet connection, www.orangetreetech.com) can be kept very sim-
ple. In our test implementation it takes data from the PC, buffers it into a FIFO, and
then broadcasts it to the delegate FPGA’S on the controller boards. In the direction
to the PC, only information about temperature warning status, error states and buffer
status is transmitted back to the user. The corresponding test software for the PC is
also very simple: It just builds data packages and switch states based on the desired
stimulation time series and then transmits it via network stack of the operating system
to the master FPGA. Both FPGA firmware sources and the PC test software are part of
the supplement.

19

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/141184doi: bioRxiv preprint 

www.orangetreetech.com
https://doi.org/10.1101/141184
http://creativecommons.org/licenses/by/4.0/


Latencies and Synchronization

If the stimulation system is controlled by a PC, which is not a real-time device and
thus occupied with other tasks in parallel, some considerations have to be made how
to synchronize stimulation with external events. These could be the onset of a visual
stimulus shown on a screen, or the start of an external recording system. As long as the
FIFOs of the delegate FPGAs contain a sequence of stimulation instructions, execution is
deterministic and in synchronization with the clock signal provided by the master FPGA.
Hence for longer stimulation sequences, the task of the controlling PC is to segment the
sequence into appropriate instructions, transmit them to the master FPGA, and keep the
FIFOs well filled for bridging time intervals where the PC is occupied with other duties
(e.g. interrupt handling). Obviously, there is a balance between the necessity of keeping
FIFO buffers filled and the possibility to flexibly adapt stimulation to external events.

For synchronizing the FPGA clock with an external device, the master FPGA can be
disconnected from the internal clock source and connected to an external clock input.
In addition, we provide a ’pause’ input which holds execution of valid messages in the
FIFOs of all delegate FPGAs when the corresponding pin is set to low (digital ground),
allowing to execute a stimulation sequence in synchrony with an external event: First, the
controlling PC first has to make sure that no stimulation commands are pending. This
can be done by querying the master FPGA. Then, the external ’pause’ input must be set
to low holding execution of stimulation messages, after which the intended stimulation
sequence can be programmed by the PC. When this task is finished and the external
event happens, the pause input is set to high (+3.3V) thus resuming delegate FPGA
operation and immediate execution of the programmed stimulation sequence. Note that
this functionality only provides a basic mechanisms for synchronization – for realizing more
sophisticated schemes, the firmware of the master FPGA has to be extended accordingly
and to the needs of the intended application.

For an application requiring a less precise timing, it might be sufficient to ensure that the
FIFOs are empty, and then to transfer the stimulation sequence from the PC directly.
For modern PCs with Gigabit Ethernet connections, we expect latencies below 1ms (the
actual roundtrip time can be easily accessed within the test implementation).

3.5 Tests

Besides the design of the system concept and the layout of all boards for an example
production system, we designed and built test boards (PCB design files can be found
in the supplement). Figure 11(a) shows this setup. Its goal was to test if the single
components worked as intended, test their interplay, and debug the FPGA firmwares and
PC software as well. As a result we obtained a fully functional system (tested with a
supply voltage of ±15V), laid out for 16 channels, but populated with current pumps
and switches for only two channels. Stimulation sequences could be sent successfully by
the PC over the network to the Orange Tree Tech ZestET1 (Figure 11(b) and (c)). The
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Figure 11: (a) Used test setup for testing the system concept and debugging the firmware. The
setup showed that the concept behind the firmware, software and hardware works as intended.
(b) Voltage output of the DAC created by a timeseries of 65535 points for one oscillation. (c)
Corresponding current output to (b) measured after the current pump as well as the analog
switch. The resistive load was 52 Ω.

ZestET1’s FPGA acted as master FPGA and distributed the information to the delegate
FPGA which in turn controlled the current pumps and protection switches. At the output
of the switches we placed a variable load, realized by a potentiometer, in series with a
shunt resistor. We measured the voltage drop over the shunt resistor with an oscilloscope
and found that the system and its current pumps showed the expected behavior under
different loads (Figure 12). In-depth performance and noise measurements have not been
done because the long conductor leads used in the setup picked up a fair amount of noise
from different external sources.
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Figure 12: (a) Circuit diagram of the test setup. The delegate FPGA’s test pattern generator
was used for producing a test signal. It rans continuously through all the possible 16-bit integer
values of the DAC. The output current of the current pump was measured via the voltage drop
over the shunt resistor. The resistive load RL,X was varied. The supply voltages were ±15V.
(b) Voltage output of the DAC. Due to historical reasons, the reference voltage for the DAC was
only 2.5V which is half of the recommended reference voltage. As a result the output range of
the DAC is reduced to a range between -5V and 5V (instead of ±10V). Furthermore, the halved
output range of the DAC and a supply voltage of only ±15V results in the current pump to
produces only half of its maximum current output. (c) Simulation of outputs for RLs that can’t
be driven by the given supply voltage. (d) The corresponding measurements to (c), recorded
with a digital oscilloscope (Agilent InfiniiVision DSO 6102A). (e) Simulations similar to (c) but
with smaller RLs. (f) shows the measurements for the curves shown in (e).
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4 Discussion

We presented a system concept for a multi-channel stimulator with protection to be used
in parallel with a measurement system. The main design goal was to enable the measure-
ment system to restart recording as quickly as possible after a stimulation pulse while
protecting its delicate analog inputs from the high voltages produced during stimulation.
This feature is especially important for real-time closed-loop applications such as cortical
prostheses, in which stimulation has to be adapted to on-going brain activity and delivered
with millisecond precision. The system is based on blocks of Howland constant current
pumps with 16 independent channels controlled by one ’delegate’ FPGA. These blocks
can be easily combined to stimulate with several hundreds of electrodes simultaneously.
The findings from developing the system concept was condensed into circuit board designs
for driving ultra small surface electrodes which may require stimulation currents of up to
25mA per electrode generated by voltages of up to ±70V. Test boards with the compo-
nents planned for being used in this system have been designed and built. Furthermore,
firmwares for the FPGAs and software APIs for a controlling PC have been written. The
feasibility of the concept was shown in simple test measurements.

Using 176 electrodes from 11 stimulation blocks attached to a single message bus in
parallel, arbitrary time series of stimulation currents with 40k samples/s can be generated,
covering the typically used shapes [78]. All design files are part of the supplement.

Interfacing the stimulator: towards a closed-loop system. For controlling the
stimulation blocks with the delegate FPGAs, two approaches are feasible. (a) a small
FPGA just distributes the data it receives from the controlling PC. (b) one can use a
more flexible solution with a large FPGA which can be used to take over tasks from the
PC. The later solution provides the opportunity of realizing a closed-loop system.

Before using the Orange Tree Tech ZestET1 board, we tried to use the USB module FTDI
UM232H with a FTDI FT232H IC first. The UM232H is one order of magnitude cheaper
(≈ 30 Euros, the test board is part of the supplement). The idea was to connect the
UM232H directly to the delegate FPGA. Hence each 16-channel block would have been
controlled by its ownUSB link to the PC. Industrial USB switches based on PCIe cards
with 48 USB ports or more are available and would ensure that this solution would scale
to the number of several hundreds of channels. However, first tests indicate that this
cheap solution has its own caveats: in the fast ’FT245 synchronous FIFO interface’ mode
the Microsemi Igloo nano FPGA (as the delegate FPGA) was not able to handle the
necessary speed and timing for handling the enforced data-flow from the UM232H.. We
also tried the ’FT245 style asynchronous FIFO interface’ mode, where the delegate FPGA
controls the speed of the connection. Here, the timing worked out, but we measured one
transmission error approximately every MByte of data transferred.

Instead of spending the time for debugging, we therefore switched to the more powerful
ZestET1 for which we had in-depth experience from another project. This solution worked
perfectly. Apart from the limited number of I/O pins the ZestET1 provides for buses to
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the delegate FPGAs, an important bottleneck for the broadcast approach lies in the data
bandwidth of the connection between the ZestET1 to the external PC, which is responsible
for the calculation of the stimulation time series. A solution is to perform the analysis
of the recorded data and calculation of the pulse sequences directly on the ZestET1 (or
a board with an even larger FPGA). This allows more freedom in organizing the flow of
data to the 16 channel current pump controller boards and reduces the latency between
measuring the actual state of a brain network and the intervention through stimulation.
The external PC would then only be used to configure the stimulation system, and for non
time-critical tasks. Besides reducing control effort and external data traffic, this extension
also allows to realize a real-time closed-loop system suitable for medical applications.

Optimizing switching logics. When operating a multi-channel closed loop system, we
only want to disable recording for electrodes which are used for stimulation or disturbed by
the stimulation pulses from neighboring sites, and keep the other ones recording. However,
in a non-homogeneous medium like the brain/electrode interface, it is very problematic to
estimate the extent and strength of the current distribution from one electrode spreading
to the other electrodes during stimulation. One way to approach this issue is to add an
additional ADC suitable for larger voltages, and to use it in a test phase for measuring the
average current spread from stimulation at single sites, and from stimulation with typical
sequences intended for regular use. These measurements would allow to determine which
electrodes can be kept recording while stimulation is performed. However, the proposed
extension would require an additional analog signal multiplexer (capable of handling such
high voltages) for selectively connecting single electrodes to this ADC. Again this would
rise questions about how much additional noise is introduced into the system by the added
components, and how much stimulation current the multiplexer would consume itself.

Optimizing and miniaturizing the system.

Is it really necessary that a stimulation system has to provide voltages up to ±70V for
delivering the currents needed to successfully communicate with cortical networks? Un-
fortunately, this question can not be answered yet. Resistance/impedance measurements
of the electrode grids that we intended to use in our project [42, 77] show strong hints
in this direction. However, these tests were performed with the electrodes in a saline
solution, and they were conceived for understanding the electrode decay over time as
well as for determining the best type of surface coating to be used. Measuring the real
impedance of the electrode/ brain interface, and quantifying how it changes over time
is a problem because such a measurement requires current flow between electrodes in a
living animal. Furthermore, it is unclear how large the stimulation currents need to be
for creating phosphenes (sensations of light blobs) by surface stimulation, and whether it
is possible to produce stable phosphenes at all [29],[28]. Choosing too large stimulation
currents will result in seizures [28], [47] or in the destruction of tissue and electrodes.
These are important questions that need to be answered first, before this technology can
be transferred into medical applications. For this reason we designed a versatile stim-
ulation equipment which can be flexibly used with a variety of electrode configurations
in different experimental paradigms, thus allowing carefully planned animal experiments
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for determining the optimal approach for an intracortical, bi-directional brain-computer
interface. For a production system, this knowledge can then be used to narrow down the
specifications for the stimulator to the relevant parameter range.
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Figure 13: (a) Idea for a more dense construction for the stimulator if lower stimulation
voltages can be used (or conformal coating can be applied). On a mainboard (pink surface),
which is responsible for distributing the power supply and information containing the stimulation
and switch states, stacks of several pagoda (only one is shown) are hosted. One of these pagoda
are made of four different types of modules. On the lowest level, a module containing a 32
channel Intan RHD2132 (which could be connected to an OpenEphys recording system) with
external analog input protection (two switches for each channel) is placed. On the second layer
a nano FPGA and two 16 channel DACs are situated. On level three, analog switches can be
found for disconnecting the current pumps from the lower rest of the circuit. From layer four
up to layer eleven, identical modules with four current pumps each are installed. The pagoda
has an approximately high of 12cm and uses the same combined circuit diagram as our example
designs. (b) These modules, used from layer four up to layer eleven, consist out of four current
pumps as well as a 8-bit shift register for turning the current pump on/ off and a 4 bit AND
gate for joining the temperature warning flags of the current pumps. ’Stacking’ of the signals
(which is inspired by a bit-shift operation; see inset) allows to daisy chain the same identical
modules over 8 layers for a total of 32 current pump channels.

In the case that high voltages are not needed, the circuit diagrams do not need to change.
Only the gain resistor values in the Howland current pumps have to be adapted. However,
a much denser packaging of the components will then be possible. Figure 13 shows an
example concept of a more compact construction while keeping its maintainability (broken
components can still be fixed by simply replacing modules) as well as allowing for sufficient
airflow through the construction for cooling.

Another opportunity for simplification would be to build a new design around the recently
released Intan RHS2116, if the intended neuroscientific application fits into the specifi-
cations of that chip. This one-chip-solution is a 16-channel bio-signal amplifier with 16
bit ADC and programmable current sources/sinks based on a DAC with only 256 steps.
The DAC can deliver up to 2.55mA with up to ±14V including some input protection.
These specifications might fit if stimulation percepts such as e.g. visual phosphenes are
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to be created by intra-cortical stimulation instead of using surface stimulation [47]; an
approach we believe to be better suited for long-term stable clinical applications. How-
ever, the input to the internal amplifier of the RHS2116 can not be disconnected from the
current pumps or the electrodes, and it has a capacitor directly connected to the inputs
of the op-amps which is charged during stimulation. This is not an optimal solution if
the time between stimulation and continuation of the recording should to be as small as
possible.
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Figure 14: Idea for an adapter for fostering miniaturization. (a) This micro-machined Si
adapter carries on its top a 32 channel Intan RHD2132 bare die for recording neuronal signals
which is flip-chip or wire-bonded to the adapter. Inside of the adapter, every analog input
to the RHD2132 is protected by two analog switches and a bleeder resistor ((c) circuit dia-
gram of the input protection). Also a shift register with state memory (functionality like the
SN74AHC595PW) is buried in the adapter for controlling these 64 analog switches with only a
few pads. (b) The flip side of the adapter, which is used to connect to a circuit board, is shaped
like a ball grid array allowing an easy assembly.

Further miniaturization may require to leave the realm of off-the-shelf components. Figure
14 shows an idea for an active adapter for Intan RHD2132 bare dies. This micro-machined
Si adapter contains buried analog switches (e.g. [81]) to protect the analog inputs and
allows bleeding off remaining charges over a bleeding resistor. These switches are con-
trolled by shift registers with state memory which will also be embedded within the Si
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adapter. The Intan RHD2132 is wire-bonded (or flip-chip bonded) on top of the adapter.
The flip side of the adapter is constituted as a ball grid array, allowing a much simpler
assembly process compared to the normal bare die Intan RHD2132. A miniaturization of
the current pumps will also lead to significant smaller stimulators [33].

The ultimate goal in the future is to develop a medial implant allowing intracortical
stimulation. The challenges of building such a fully implantable wireless system [82, 83,
84, 85, 86, 87], [88, 89] arise from the necessity to obey multiple constraints: the height
is restricted, especially if the implant should be placed between the skull and the brain
[90] for improving long term stability. Here, possible pressure to the brain tissue is an
additional problem [91, 92, 93]. The maximum area available for the implant is limited
by the curvature of the skull/brain and the rigidity of the implant. If the active parts
of the implant are close to the brain, then heat produced from the consumed power is
directly transferred to the tissue, bone and fluids [94, 95]. Therefore, it is necessary to
keep the energy consumption low or otherwise it could result in damage to the body
[96]. Further important problems are bio-compatibility [97] and long-term stability [98]
since the implant needs to survive inside the body for many decades, and must not
harm the brain tissue during that time [99, 100, 101]. Furthermore, for a long-term
medical application it is an additional bonus if the system does not rely on cables that
connect the implant with external components outside the body. Such connections would
allow bacteria to enter the skull along the cables and impose a serious infection risk for
the patient. Thus power supply and communication between all external and internal
components need to be wireless. The best way to supply the internal components with
power is not determined yet (e.g. [82, 102, 103, 104, 105]). For the wireless transfer
of data two different approaches can be taken: 1.) Data transfer via radio-frequency
transmissions (e.g. [82, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117]).
2.) Data transfer via Infrared(IR)-transmissions: Since the skull and skin allows infra-red
light to pass [118], it is possible to use IR technology to transmit data [119, 120, 121, 122].
First tests, performed with the BIAS (Bremen Institute for Applied Beam Technology),
showed surprisingly high rates (not shown).

On the road of designing such an implant for the long-term goal of realizing a visual cortex
prosthesis for blind patients, we envisage that the proposed, external close-loop system
will provide a valuable test-bed for flexibly investigating different putative approaches,
and for finding suitable specifications for production systems.

Materials and Methods

For designing the printed circuit board layouts we used Cadsoft Eagle 5.11. For writing
the firmware for Orange Tree Technology ZestET1’s FPGA we used Xilinx ISE 14.3
(webpack) and for the Microsemi nano FPGA we applied the Microsemi Libero software
(version 11.4). For the simulation of circuit designs we used Texas Instruments TINA
v9.3. For creating the 3D rendering of the boards, which were based on the Eagle files,
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a set of different software tools were used for visualization. For the smaller boards we
used Target 3001 V18 and then exported it directly into the pov-file format. For the
larger boards we used a combination of Target 3001 V18, the PCB-Pool online 3D Eagle
to Step Converter (pcb-pool.com) and the FreeCAD eagle-file import module. These 3D
board models were then combined in FreeCAD V0.16 and then exported into the pov-file
format. Based on the pov-files, the POV-Ray v3.7 software rendered the pictures. The
models for the Samtec connector were taken from the Samtec website.

Supplementary

In the supplemental data we present the design files for the firmwares, software and PCB
designs as Open Source.
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