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ABSTRACT  20	

The metazoan genome is compartmentalized in megabase-scale areas of highly interacting 21	

chromatin known as topologically associating domains (TADs), typically identified by 22	

computational analyses of Hi-C sequencing data. TADs are demarcated by boundaries that 23	

have been shown to be largely conserved across cell types and even across species. 24	

Increasing evidence suggests that the seemingly invariant TADs may exhibit some plasticity 25	

in certain cases and their boundary strength can vary. However, a genome-wide 26	
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characterization of TAD boundary strength in mammals is still lacking. In this study, we use 27	

fused two-dimensional lasso as a machine-learning method to first improve Hi-C contact 28	

matrix reproducibility and subsequently categorize TAD boundaries based on their strength. 29	

We demonstrate that increased boundary strength is associated with elevated levels of CTCF 30	

and that TAD boundary insulation scores may differ across cell types. Intriguingly, we also 31	

found that super-enhancer elements are preferentially insulated by strong boundaries. 32	

Presumably, genetic or epigenetic inactivation of strong boundaries may lead to loss of 33	

insulation around super-enhancers, disrupt the physiological transcriptional program and 34	

cause disease.  35	

 36	

INTRODUCTION 37	

The advent of proximity-based ligation assays has allowed us to probe three-dimensional 38	

chromatin organization at unprecedented resolution [1, 2]. Hi-C, a high-throughput 39	

chromosome conformation variant has allowed genome-wide identification of chromatin-40	

chromatin interactions [3]. Hi-C is prone to biases and multiple algorithms have been 41	

developed for Hi-C bias correction, including probabilistic modelling methods [4], Poisson or 42	

negative binomial normalization [5] and the widely popular Iterative Correction and Eigenvalue 43	

decomposition method (ICE) [6], which assumes “equal visibility” of genomic loci. A similar 44	

iterative method named Sequential Component Normalization was introduced by Cournac et 45	

al. [7]. Additional efficient correction methods have been developed to handle high-resolution 46	

Hi-C datasets [8]. Hi-C has revealed that the metazoan genome is organized in areas of active 47	

and inactive chromatin known as A and B compartment respectively [3]. These are further 48	

compartmentalized in super-TADs [9], topologically associating domains (TADs) [10–12] and 49	

sub-TADs [13], as well as gene neighbourhoods [14]. Some algorithms have been already 50	

developed to reveal this hierarchical chromatin organization, including Directionality Index (DI) 51	

[10], Armatus [15], TADtree [16], Insulation Index (Crane) [17], IC-Finder [18] and others. 52	

TADs are megabase-scale areas of highly interacting chromatin, demarcated by CTCF-53	

enriched boundaries, and are highly-conserved across species and cell types [10, 19]. 54	
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Genome compartmentalization in TADs confines enhancer-promoter interactions within the 55	

same domain [10, 12, 20] and during cell differentiation most changes have been shown to 56	

occur within TADs [21]. TAD boundaries have been found to be rich in tRNA genes, 57	

transposable elements, CCCTC-binding factor (CTCF), cohesin complex and other structural 58	

proteins [10–12]. More recently, proteins involved in chromatin remodelling such as BRG1 – 59	

an ATPase driving SWI/SNF activity – as well topoisomerase complexes have been implicated 60	

in boundary formation through regulation of chromatin compaction [22].  Whereas TADs are 61	

seemingly invariant, mounting evidence suggests that TAD boundaries can vary in strength, 62	

ranging from permissive TAD boundaries that allow more inter-TAD interactions to more rigid 63	

(strong) boundaries that clearly demarcate adjacent TADs [23]. Recent studies have shown 64	

that in Drosophila, exposure to heat-shock resulted in local changes in certain TAD boundaries 65	

resulting in TAD merging which is believed to have physiological consequences [24]. A recent 66	

study in mammals showed that during motor neuron (MN) differentiation in mammals, TAD 67	

and sub-TAD boundaries in Hox cluster are not rigid and their plasticity is linked to changes 68	

in the expression of genes of the Hox cluster during differentiation [25]. It has also been 69	

demonstrated that boundary strength is positively associated with the occupancy of certain 70	

structural proteins including CCCTC-binding factor (CTCF) [10]. Despite the fact that there is 71	

a handful of studies demonstrating that not all boundaries are equal and they can vary in 72	

strength in organisms like Drosophila, no study has yet addressed the issue of boundary 73	

strength in mammals and how it may be related to potential boundary disruptions and aberrant 74	

gene activation in diseases like cancer. Here we introduce a new method based on fused two-75	

dimensional lasso [26] in order to: (a) to improve the correlation of Hi-C contact matrices, (b) 76	

reveal the multiple levels of chromatin organization and (c) categorize TAD boundaries based 77	

on their corresponding strength.   78	

 79	

MATERIALS AND METHODS 80	

Hi-C datasets 81	
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In order to develop a method that successfully handles variation in Hi-C data and improves 82	

reproducibility, we carefully selected our Hi-C datasets to represent technical variation due to 83	

the execution of the experiments by different laboratories and/or the usage of different 84	

enzymes. We ensured that our datasets included samples at least ~40 million intra-85	

chromosomal read pairs and that the Hi-C experiment was performed in biological replicates, 86	

either by using one restriction enzyme (HindIII or MboI) (H1 cells and their derivatives [21], 87	

K562, KBM7 and NHEK cells [27] and in-house generated CUTLL-1), or two enzymes (HindIII 88	

or MboI) (GM12878 [27], IMR90 [10, 28]), in order to examine the consistency of predicted Hi-89	

C interactions across different enzymes.  90	

 91	

Calculation of same-enzyme and cross-enzyme correlations 92	

We calculated two types of correlation for Hi-C matrices, to evaluate the performance of our 93	

method. The two types of correlation were: a) same-enzyme correlation which corresponds to 94	

all the Hi-C replicates prepared with the same restriction enzyme, b) cross-enzyme correlation 95	

which corresponds to all the sample pairs where the same Hi-C sample was prepared with 96	

two different enzymes (e.g HindIII/MboI). Pearson correlation coefficients were calculated 97	

either on the filtered, ICE-corrected [6] or scaled (see below) Hi-C contact matrices (Pearson) 98	

or the distance normalized ones (Pearson (z-score)).   99	

Generation of scaled Hi-C contact matrices 100	

In order to improve the cross-enzyme (and same-enzyme) correlation of Hi-C matrices we 101	

accounted for the total number of read pairs and the “effective length” [4]. More specifically, 102	

the scaled number of reads corresponding to interactions between the Hi-C matrix bins i,j  (yij) 103	

is defined by the formula:  104	

𝑦"# =
𝑥"#

𝑒𝑓𝑓" ∙ 𝑒𝑓𝑓# ∙ 𝑁
 105	

where xij is the original number of interactions between the bins i and j, effi the effective length 106	

for the bin i, effj  the effective length for the bin j, and N is the total number of read pairs.  107	
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Distance normalization 108	

Genomic loci that are further apart in terms of linear distance on DNA tend to give fewer 109	

interactions in Hi-C maps than loci that are closer. For intra-chromosomal interactions, this 110	

effect of genomic distance should be taken into account. Consequently, the interactions were 111	

distance-normalized using a z-score that was calculated taking into account the mean Hi-C 112	

counts for all interactions at a given distance d and the corresponding standard deviation. 113	

Thus, the z-score for the interaction between the Hi-C contact matrix bins i and j (zij) is given 114	

the following equation: 115	

𝑧"# =
𝑦"# − 𝜇(𝑑)
𝜎(𝑑)

 116	

where yij corresponds to the number of interactions between the bins i and j, μ(d) to the mean 117	

(expected) number of interactions for distance d=|j-i| and σ(d) is the corresponding standard 118	

deviation of the mean. The higher the difference between the observed (yij) and expected 119	

number of interactions (μ(d)), the higher the corresponding z-score. 120	

Fused two-dimensional lasso 121	

While our naïve scaling approach successfully increased the cross-enzyme and same-122	

enzyme correlation of Hi-C matrices, we sought to improve the correlation even further. We 123	

used two-dimensional lasso, an optimization machine learning technique widely used to 124	

analyse noisy datasets, especially images [26]. This technique is very-well suited for 125	

identifying topological domains based on contact maps generated by Hi-C sequencing 126	

experiments for two reasons: (a) Hi-C datasets are inherently noisy, and (b) topological 127	

domains are continuous DNA segments of highly interacting loci that would represent solid 128	

squares along the diagonal of Hi-C contact matrices. Topological domains map to squares of 129	

different length along the diagonal of the Hi-C contact matrix, but they are not solid as they 130	

contain several gaps, i.e. scattered regions on those squares that show little or no interaction. 131	

Two-dimensional fused lasso addresses the issue by penalizing differences between 132	

neighbouring elements in the contact matrix. This is achieved by the penalty parameter λ 133	

(lambda), as described in the equation:  134	
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𝛽 = argmin
8∈ℝ;

<
=

𝑦" − 𝛽" =>
"?< + 𝜆 𝛽" − 𝛽#",# ∈C  , 135	

where y is the original (i.e. observed) contact matrix, and 𝛽 is the estimated contact matrix 136	

such that the objective function described above in minimized. In the interest of computational 137	

efficiency, we applied one-dimensional lasso on the Hi-C contact matrices in order to estimate 138	

the matrices for high values of λ and obtain the full hierarchy of TAD boundaries. Using one-139	

dimensional lasso instead of the two-dimensional version had no negative impact on the 140	

correlations of Hi-C contact matrices between replicates (Supplemental Figure 1).  141	

 142	

Classification of boundaries based on fused two-dimensional lasso 143	

We applied two-dimensional fused lasso to categorize TAD boundaries based on their strength. 144	

The rationale behind this categorization is that topological domains separated by more 145	

“permissive” (i.e. weaker) boundaries [29] will tend to fuse into larger domains when lasso is 146	

applied, compared to TADs separated by well-defined, stronger boundaries. We indeed 147	

applied this strategy and categorized boundaries into multiple groups ranging from the most 148	

permissive to the strongest boundaries. The boundaries that were lost when λ value was 149	

increased from 0 to 0.25, fall in the first category (λ=0), the ones lost when λ was increased to 150	

0.5, in the second (λ=0.2) etc.  151	

 152	

Association of CTCF levels with boundary strength 153	

We obtained CTCF ChIP-sequencing data for the cell lines utilized in this study (with the 154	

exception of KBM7 for which no publicly available dataset was available) and we uniformly re-155	

processed all data using HiC-bench [30]. Total CTCF levels at each TAD boundary were 156	

calculated and their normalized distributions for each boundary category (weak to strong) were 157	

plotted in boxplots in order to demonstrate the association of increased boundary strength with 158	

increased levels of CTCF binding.  159	

 160	

Association of boundary strength with super-enhancers and repeat elements 161	
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Super-enhancers were called using H3K27ac ChIP-seq data from GEO, ENCODE and in-162	

house generated data. Reads were first aligned with Bowtie2 v2.3.1 [31] and then HOMER 163	

v4.6 [32] was used to call super-enhancers, all with standard parameters. For each super-164	

enhancer in each sample, we identified the corresponding TAD and its TAD boundaries. We 165	

then counted (per sample) the percentage of super-enhancers that are surrounded by 166	

boundaries belonging in each boundary category, demonstrating that most super-enhancers 167	

are insulated by strong boundaries.   168	

 169	

RESULTS 170	

Comprehensive re-analysis of published high-resolution Hi-C datasets 171	

We identified publicly available human Hi-C datasets (described in Materials and Methods 172	

section) that fulfilled the following criteria: (i) two biological replicates and (ii) sufficient 173	

sequencing depth to robustly identify topologically-associating domains (TADs) as described 174	

in our TAD calling benchmark study [30]. All datasets were then comprehensively re-analysed 175	

using HiC-bench. Quality assessment analysis revealed that the samples varied considerably 176	

in terms of total numbers of reads, ranging from ~150 million reads to more than 1.3 billion 177	

(Figure 1A). Mappable reads were over 96% in all samples. The percentages of total accepted 178	

reads corresponding to cis (ds-accepted-intra, dark green) and trans (ds-accepted-inter, light 179	

green) (Figure 1B) also varied widely, ranging from ~17% to ~56%. Duplicate read pairs (ds-180	

duplicate-intra and ds-duplicate-inter; red and pink respectively), non-uniquely mappable 181	

(multihit; light blue), single-end mappable (single-sided; dark blue) and unmapped reads 182	

(unmapped; dark purple) were discarded. Self-ligation products (ds-same-fragment; orange) 183	

and reads mapping too far (ds-too-far; light purple) from restriction sites or too close to one 184	

another (ds-too-close; orange) were also discarded. Only double-sided uniquely mappable cis 185	

(ds-accepted-intra; dark green) and trans (ds-accepted-inter; light green) read pairs were used 186	

for downstream analysis. Despite the differences in sequencing depth and in the percentages 187	

of useful reads across samples, all samples had enough useful reads for TAD calling and thus 188	

none of them was excluded from downstream analysis. However, due to the wide differences 189	
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in sequencing depth, and to ensure fair comparisons of Hi-C matrices in this study, all datasets 190	

were down-sampled such that the number of usable intra-chromosomal reads pairs was ~40 191	

million for each replicate.  192	

 193	

Assessment of same-enzyme and cross-enzyme reproducibility of Hi-C contact 194	

matrices 195	

Although it has been demonstrated in the literature that Hi-C libraries are prone to enzyme 196	

biases (see Introduction), no systematic large-scale study has investigated in detail the 197	

reproducibility of Hi-C contact matrices. Here, we attempt to address this question using the 198	

most comprehensive Hi-C dataset that is currently available, as described in the previous 199	

section. More specifically, we will focus on multiple factors that may play an important role on 200	

reproducibility: first, we will separately consider biological replicates of Hi-C libraries generated 201	

with the same or different restriction enzymes; second, we will study the impact of Hi-C matrix 202	

resolution (i.e. bin size); third, we will assess reproducibility as a function of the distance of 203	

interacting loci pairs. Pearson correlation coefficients were calculated for each pair of 204	

replicates (same- or cross-enzyme) on Hi-C contact matrices estimated by three methods: (i) 205	

naïve filtering (i.e. matrix generation by simply using double-sided accepted intra-206	

chromosomal read pairs from Figure 1A), (ii) iterative correction (ICE) which has already been 207	

demonstrated to improve cross-enzyme correlation, and (iii) our own simple scaling method 208	

that only corrects for effective length bias (see Methods for details). Importantly, correlations 209	

were computed both on the actual matrices, but also on the distance-normalized matrices (see 210	

Methods for details), as Hi-C interactions are typically concentrated around the diagonal of the 211	

Hi-C contact matrix, and values are dropping exponentially as the distance between the 212	

interacting pairs is increasing. Distance-normalized matrices account for the expected Hi-C 213	

read count as a function of distance and may therefore reveal real distal interactions. The 214	

results of our benchmark analysis are summarized in Figure 1C: the left panel summarizes 215	

the correlations between replicates generated by the same restriction enzyme, whereas the 216	

right panel the correlations between replicates generated by a different restriction enzymes. 217	
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In both scenarios, as expected, correlations drop quickly as finer resolutions (from 100kb to 218	

20kb) are considered, especially in the distance-normalized matrices. The same conclusion 219	

applies for increasing distance (from 2Mb to 10Mb) between interacting loci, demonstrating 220	

that long-range interactions require ultra-deep sequencing in order to be detected reliably. To 221	

elaborate on this point, we repeated the analysis after retaining only those samples with two 222	

replicates of at least 70 million or 110 million usable intra-chromosomal reads and resampling 223	

them down to 80 million or 120 million per replicate (Supplemental Figure 2 and 224	

Supplemental Figure 3 respectively). Both conclusions hold true with the new sequencing 225	

depth and are independent of the Hi-C contact matrix estimation method. Finally, bias-226	

correction methods (ICE and our scaling approach) indeed improved cross-enzyme 227	

correlation over the naïve filtering method. Interestingly, this improvement came at the 228	

expense of lower correlations in the same-enzyme case. More specifically, we observed that 229	

the largest the gain in cross-enzyme correlations, the greater the loss in same-enzyme 230	

correlations (ICE method) (Figure 1C).  231	

 232	

Fused lasso improves same-enzyme and cross-enzyme correlations of Hi-C contact 233	

matrices 234	

Motivated by the poor performance of all methods at fine resolutions and by the observation 235	

of a surprising trade-off between improving cross-enzyme at the expense of lower same-236	

enzyme correlation when correcting for enzyme-related biases, we applied fused two-237	

dimensional lasso (see Methods for details), a well-studied image denoising method, to 238	

generate Hi-C contact matrices with increased consistency between replicates. Briefly, two-239	

dimensional fused lasso utilized a parameter λ which penalizes differences between 240	

neighboring values in the Hi-C contact matrix. The effect of parameter λ is demonstrated in 241	

Figure 2A where we show an example of the application of fused two-dimensional lasso on a 242	

Hi-C contact matrix focused on an 8Mb locus on chromosome 8 for different values of 243	

parameter λ. To evaluate the performance of fused lasso, as done in the previous section, we 244	

calculated same-enzyme and cross-enzyme Pearson correlations between Hi-C contact 245	
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matrices generated from different replicates. Pearson correlation coefficients were calculated 246	

either for iteratively-corrected (ICE) or scaled Hi-C contact matrices and compared to the naïve 247	

filtering approach. The results are summarized in Figure 2B. Clearly, increasing λ improves 248	

correlation independent of resolution, restriction enzyme and bias-correction method, 249	

demonstrating the robustness of our approach. Similarly, fused two-dimensional lasso 250	

improves the reproducibility of distance-normalized matrices as demonstrated in Figure 3.  251	

 252	

Fused lasso reveals a TAD hierarchy linked to TAD boundary strength 253	

After demonstrating that parameter λ helps improve reproducibility of Hi-C contact matrices 254	

independent of the bias-correction method, we further hypothesized that increased values of 255	

λ may define distinct classes of TADs with different properties. For this reason, we now allowed 256	

λ to range from 0 to the maximum possible value (after a finite value of λ, the entire Hi-C matrix 257	

attains a constant value independent of the value of λ). For efficient computation, we used a 258	

one-dimensional approximation of the two-dimensional lasso solution (see Methods for details 259	

and Supplemental Figure 1). We then identified TADs at multiple λ values using HiC-bench, 260	

and we observed that the number of TADs is monotonically decreasing with the value of λ 261	

(Figure 4A), suggesting that by increasing λ, we are effectively identifying larger TADs 262	

encompassing smaller TADs detected at smaller λ values. Equivalently, certain TAD 263	

boundaries “disappear” as λ is increased. Therefore, we hypothesized that TAD boundaries 264	

that disappear at lower values of λ are weaker (i.e. lower insulation score) whereas boundaries 265	

that disappear at higher values of λ are stronger (i.e. higher insulation score). To test this 266	

hypothesis, we identified the TAD boundaries that are “lost” at each value of λ, and generated 267	

the distributions of the insulation scores as defined by the ratio score described in HiC-bench. 268	

Indeed, as hypothesized, TAD boundaries lost at higher values of parameter λ are associated 269	

with higher TAD insulation scores (Figure 4B). We then stratified TAD boundaries into six 270	

classes according to their strength, independently in each Hi-C dataset used in this study and 271	

generated a heatmap representation including all TAD boundaries and their associated class 272	

across all samples (Figure 4C,D). Hierarchical clustering correctly grouped replicates and 273	
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related cell types independent of enzyme biases or batch effects related to the lab that 274	

generated the Hi-C libraries, suggesting that TAD boundary strength can be used to 275	

distinguish cell types. Equivalently, this finding suggests, although TAD boundaries have been 276	

shown to be largely invariant across cell types, a certain subset of TAD boundaries may exhibit 277	

varying degrees of strength in different cell types. As expected, TAD boundary strength was 278	

found to be positively associated with CTCF levels, suggesting that stronger CTCF binding 279	

confers stronger insulation (Figure 4E). SINE elements have also been shown to be enriched 280	

at TAD boundaries [10], and apart from confirming this finding, we extended it and 281	

demonstrated that Alu elements (the most abundant type of SINE elements) are enriched at 282	

stronger TAD boundaries, whereas, interestingly, L1 elements (a subset of LINE elements) 283	

are enriched at weaker TAD boundaries (Figure 4F). A comprehensive analysis of all major 284	

repetitive element subtypes can be found in Supplemental Figure 4. Finally, we investigated 285	

the proximity of super-enhancers to TAD boundaries of different strength. Intriguingly, we 286	

found that super-enhancers are preferentially insulated by strong TAD boundaries (Figure 287	

4G). Super-enhancers are thought to be cell specific and drive expression of key genes. Thus, 288	

a potential explanation of our finding is that super-enhancers should only target genes 289	

confined in the same TAD, while strongly insulated from genes in adjacent TADs. Genetic or 290	

epigenetic inactivation of strong boundaries may lead to loss of insulation around super-291	

enhancers, disrupt the physiological transcriptional program and cause disease. 292	

 293	

DISCUSSION 294	

Multiple recent studies have revealed that the metazoan genome is compartmentalized in 295	

boundary-demarcated functional units known as topologically associating domains (TADs). 296	

TADs are highly conserved across species and cell types. A few studies, however, provide 297	

compelling evidence that specific TADs, despite the fact that they are largely invariant, exhibit 298	

some plasticity. Given that TAD boundary disruption has been recently linked to aberrant gene 299	

activation and multiple disorders including developmental defects and cancer, categorization 300	

of boundaries based on their strength and identification of their unique features becomes of 301	
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particular importance. In this study, we developed a method based on fused two-dimensional 302	

lasso in order to categorize TAD boundaries based on their strength. We demonstrated that 303	

our method: (a) improves the correlation of Hi-C contact matrices irrespective of the Hi-C bias 304	

correction method used, (b) reveals multiple levels of chromatin organization and (c) 305	

successfully identifies boundaries of variable strength and that strong predicted boundaries 306	

exhibit certain expected features, such as elevated CTCF levels and increased insulating 307	

capacity. We also demonstrated that the boundaries of similar strength are largely conserved 308	

across the samples included in this study, however, a subset of TAD boundaries displays 309	

varying levels of insulation strength across samples. By performing an integrative analysis of 310	

estimated boundary strength with super-enhancers in matched samples, we observed that  311	

super-enhancers are preferentially insulated by strong boundaries. Based on this observation, 312	

we believe that strong boundaries prevent the aberrant activation of genes residing in adjacent 313	

TADs, by consisting a physical barrier between the gene promoters and the super-enhancer 314	

elements. We predict that despite the fact that weak boundaries would be more prone to 315	

disruption, in many cancers, strong boundaries are actually disrupted by either genetic lesions 316	

or epigenetically, leading to aberrant activation of oncogenes by enhancers as recently 317	

demonstrated [33–36]. In future work, we will further characterize boundaries of variable 318	

strength, reveal their features and help with the identification of targets for pharmacological 319	

intervention, in order to restore disrupted boundaries.  320	
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 344	

TABLE AND FIGURES LEGENDS 345	

Figure 1: Assessment of the reproducibility of Hi-C contact matrices across biological 346	

replicates. (A) Counts of Hi-C read pairs in various read categories: dark and light green 347	

indicate read pairs that were not designated as artifacts and can be used in downstream 348	

analyses, (B) Percentages of Hi-C reads in each category, (C) Comparison of Hi-C contact 349	

matrices between biological replicates generated from Hi-C library using the same or different 350	

restriction enzyme; Hi-C matrices were estimated using three methods (naïve filtering, iterative 351	

correction and simple scaling); assessment was performed using Pearson correlation on the 352	

actual or distance-normalized Hi-C matrices at resolutions ranging from 100kb to 20kb and 353	

maximum distances of 2Mb, 6Mb and 10Mb between interacting pairs	354	
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Figure 2: Fused two-dimensional lasso improves reproducibility of Hi-C contact matrices. (A) 355	

Example of application of fused two-dimensional lasso on a Hi-C contact matrix focused on a 356	

8Mb locus on chromosome 8 for different values of parameter λ, (Β) Hi-C contact matrix 357	

correlations are improved by increasing the value of fused lasso parameter λ both for matrices 358	

estimated by ICE as well as by our simple scaling method; correlations of Hi-C contact 359	

matrices generated by the naïve filtering method are marked by the red line in each panel. 360	

Figure 3: Fused two-dimensional lasso improves reproducibility of distance-normalized Hi-C 361	

contact matrices. (A) Example of application of fused two-dimensional lasso on a distance-362	

normalized Hi-C contact matrix focused on an 8Mb locus on chromosome 8 for different values 363	

of parameter λ, (Β) distance-normalized Hi-C contact matrix correlations are improved by 364	

increasing the value of fused lasso parameter λ both for matrices estimated by ICE as well as 365	

by our simple scaling method; correlations of distance-normalized Hi-C contact matrices 366	

generated by the naïve filtering method are marked by the red line in each panel. The gradient 367	

of blue corresponds to λ values with darker blue denoting higher λ value.  368	

Figure 4: Classification and characterization of TAD boundaries according to insulation score. 369	

(A) Number of TADs for λ values ranging from 0 to 5, (B) TAD boundaries lost at higher values 370	

of parameter λ are associated with higher TAD insulation scores, (C) heatmap representation 371	

of TAD boundary insulation strength across samples; hierarchical clustering correctly groups 372	

replicates and related cell types independent of enzyme biases or batch effects related to the 373	

lab that generated the Hi-C libraries, (D) Classification of boundaries according to boundary 374	

strength across samples, (E) TAD boundary strength is associated with CTCF levels, (F) Alu 375	

elements are enriched at stronger TAD boundaries whereas L1 elements are enriched at 376	

weaker TAD boundaries, (G) Super-enhancers are preferentially insulated by stronger TAD 377	

boundaries. The gradient of blue corresponds to λ values with darker blue denoting higher λ 378	

value.  379	
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Supplementary Figure 1: Comparison of Hi-C contact matrices between biological replicates 380	

generated from Hi-C library using the same restriction enzyme. Three methods (naïve filtering, 381	

iterative correction and simple scaling) were used for estimation. Assessment was performed 382	

using Pearson correlation on the actual or distance-normalized Hi-C matrices at resolutions 383	

ranging from 100kb to 20kb and maximum distances of 2Mb, 6Mb and 10Mb between 384	

interacting pairs. Only samples with approximately 80 million usable intra-chromosomal reads 385	

were considered. 386	

Supplementary Figure 2: Comparison of Hi-C contact matrices between biological replicates 387	

generated from Hi-C library using the same restriction enzyme. Three methods (naïve filtering, 388	

iterative correction and simple scaling) were used for estimation. Assessment was performed 389	

using Pearson correlation on the actual or distance-normalized Hi-C matrices at resolutions 390	

ranging from 100kb to 20kb and maximum distances of 2Mb, 6Mb and 10Mb between 391	

interacting pairs. Only samples with approximately 120 million usable intra-chromosomal 392	

reads were considered. 393	

Supplementary Figure 3: Fused one-dimensional lasso improves reproducibility of distance-394	

normalized Hi-C contact matrices. (A) Hi-C contact matrix and (B) distance-normalized Hi-C 395	

contact matrix correlations are improved by increasing the value of fused lasso parameter λ 396	

both for matrices estimated by ICE as well as by our simple scaling method; correlations of 397	

distance-normalized Hi-C contact matrices generated by the naïve filtering method are marked 398	

by the red line in each panel. The gradient of blue corresponds to λ values with darker blue 399	

denoting higher λ value. 400	

Supplementary Figure 4: Numbers of repeat elements in proximity to boundaries of certain 401	

boundary strength. Darker blue in the blue colour gradient denotes higher boundary strength. 402	

 403	

 404	
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Figure 4
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Supplementary Figure 1
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Supplementary Figure 4
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