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Abstract 

Motivation: In recent years Mendelian randomization analysis using summary data from 
genome-wide association studies has become a popular approach for investigating causal 
relationships in epidemiology. The mrrobust Stata package implements several of the recently 
developed methods. 

Implementation: mrrobust is freely available as a Stata package. 

General Features: The package includes inverse variance weighted estimation, as well as a 
range of median and MR-Egger estimation methods. Using mrrobust, plots can be 
constructed visualising each estimate either individually or simultaneously. The package also 
provides statistics such as ���� , which are useful in assessing attenuation bias in causal 
estimates. 

Availability: The software is freely available from GitHub 
[https://raw.github.com/remlapmot/mrrobust/master/]. 
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Introduction 

Mendelian randomization1 has developed into a popular approach to examining causal 

relationships in epidemiology2, 3. By employing genetic variants as instrumental variables 

(IVs) it is possible to limit bias from confounding, provided variants satisfy the assumptions 

of IV analysis1, 4. For a genetic variant to serve as a suitable instrument, three assumptions 

must hold, 1) it must be associated with the exposure of interest, 2) there must be no 

confounders of the instrument and outcome, and 3) the instrument must not affect the 

outcome except via the exposure of interest.5.  

Candidate variants are usually identified through large genome-wide association studies 

(GWASs) 6. However, IV analyses using a single variant rarely have sufficient power to test 

hypotheses of interest6, 7. One approach to increase the statistical power of Mendelian 

randomization studies is to use multiple genetic variants as instruments within a two-sample 

summary framework8, 9. Two-sample Mendelian randomisation estimates the effect of the 

exposure using instrument-exposure and instrument-outcome associations from different 

samples, often through methods originally developed for meta-analysis8, 9. This is particularly 

useful, as MR estimators such as MR Egger and median based regression are robust to certain 

forms of violation of the third instrumental variable assumption8, 10, 11. Violations of this 

assumption can occur through directional pleiotropy- where a genetic variant affects the study 

outcome through pathways that are not mediated via the exposure. Such developments have 

contributed to the increasing popularity of two-sample summary MR5. 

This paper introduces the mrrobust Stata package as a tool for performing two-sample 

summary MR analyses. The mrrobust package is a tool to help researchers implement two-

sample MR analyses, and can be viewed as the Stata counterpart to toolkits such as the 

MendelianRandomization R package12. Before continuing, we briefly outline the three 

primary estimation methods included in the mrrobust package, using the notation of Bowden 

et al10, 13. 

Inverse variance weighting (IVW) 

To perform IVW a weighted average ����� is calculated using the set of ratio estimates ���  for 

each individual variant � � 1,2, … , � 9. Let �
� and �	��  denote the instrument-outcome 

association and variance respectively for the �
� variant. The IVW estimate is then defined as: 
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This corresponds to the estimate one would obtain from a weighted linear regression of the 

set of instrument-outcome associations upon the set of instrument-exposure associations, 

constraining the intercept at the origin9. One drawback of the IVW approach is that causal 

effect estimates can be biased in cases where one or more variants exhibit directional 

pleiotropy9. 

MR-Egger regression 

MR-Egger regression is valid under weaker assumptions than IVW, as it can provide 

unbiased causal effect estimates even if the variants have pleiotropic effects. 

In this case, the set of instrument-outcome associations is regressed upon the set of 

instrument-exposure associations, weighting the regression using precision of the instrument-

outcome associations as in the IVW case8. However, MR-Egger does not constrain the 

intercept at the origin, and the intercept represents an estimate of the average directional 

pleiotropic effect across the set of variants. The slope of the model provides an unbiased 

estimate of the causal effect8, 10. If there is little evidence of systematic differences between 

the IVW and MR-Egger, then the IVW should be preferred. The IVW is more efficient, but 

potentially less robust, and in such cases the IVW estimate is often most appropriate estimate 

to adopt due to the greater precision of IVW estimates in comparison with other 

approaches10. If there are differences between the IVW and MR-Egger estimates, this may be 

due to pleiotropy or heterogeneous treatment effects. 

The utility of MR Egger regression hinges upon three core assumptions. First, the INstrument 

Strength Independent of Direct Effect (InSIDE) assumption requires the effects of SNPs on 

the exposure and their pleiotropic effects on the outcome to be independent. If the InSIDE 

assumption holds, estimates for variants with stronger instrument-exposure associations ���� � 

will be closer to the true causal effect parameter than variants with weaker associations8. 

Second, the NO Measurement Error (NOME) assumption requires no measurement error to 

be present in the instrument-exposure associations, and therefore that the variance of the 

instrument-exposure association ���� � 0.  In cases where NOME is strictly satisfied, 
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estimates �
� will be equal to �� and the variance of the ratio estimate for each variant � is 

�������� � ���
�

���
� . 

In cases where the NOME assumption is violated, individual variants will suffer from weak 

instrument bias, leading to attenuation of MR Egger estimates towards the null. This can 

occur if the SNPs were not genome-wide significant, or were selected from small GWAS. 

One novel approach to assessing the strength of the NOME assumption is to evaluate the ����  

statistic, interpreted as the relative degree of attenuation bias in the MR Egger regression in 

the interval (0,1)10. Thus for example, an ����  value of 0.7 represents an estimated relative 

bias of 30% towards the null. 

Weighted median 

The weighted median approach is an adaptation of the simple median estimator for two-

sample summary MR13. For a total number of variants � � 2� � 1, the simple median 

approach selects the middle ratio estimate ����
, from ordered ratio estimates ��
 , ���, … ���13. In 

cases where the total number of variants is even, the median is interpolated as 

�

���� � ����
�. 

As the simple median approach is inefficient, particularly in cases with variable precision in 

the set of ratio estimates, it is preferable to incorporate weights in a similar fashion to the 

IVW and MR Egger approaches. Let �� � ∑ ��
�
��
  be the sum of weights for the set of 

variants 1,2, … �, standardised so the sum of weights ��=1. The weighted median estimator is 

the median of the distribution of ���  as its �� � 100 ��� � ��

�
 

�

 percentile13. For the range of 

percentile values, we perform a linear extrapolation between neighbouring ratio estimates. 

An important assumption of the median summary MR approaches is that more than 50% of 

the genetic variants do not exhibit directional pleiotropy. In the simple median case, this 

threshold refers to the number of variants, whilst in the weighted median case the 50% 

threshold is with respect to the weights of the non-pleiotropic variants13. 

Implementation 

The mrrobust package uses functions from moremata14, addplot15, and the heterogi16 

command. For versions of Stata 13 and higher, it can be installed using the .net install 

command from [https://raw.github.com/remlapmot/mrrobust/master/]. For older versions of 
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Stata, a zip archive of the files is freely available for download at: 

[https://github.com/remlapmot/mrrobust]. 

The package facilitates two-sample summary MR analyses with key features including: 

• IVW and MR-Egger regression approaches, including fixed effects MR-Egger 

regression, standard error correction, and weighting options. 

• Unweighted, weighted and penalized weighted median IV estimators, providing 

pleiotropy robust estimates in cases where fewer than 50% of the genetic instruments 

are valid. 

• Presentation of heterogeneity statistics, and statistics such as ����  for use in assessing 

attenuation bias10. 

• Plotting tools to visualise IVW, MR-Egger and weighted median estimators. 

• Illustrative examples and documentation using data from Do et al17. 

Applied Examples: Adiposity and Height as predictors of serum glucose levels 

To illustrate key features of the mrrobust package, we perform two analyses investigating 

potential relationships between adiposity, height, and serum glucose. Adiposity was selected 

owing to the vast body of evidence supporting a positive association with serum glucose 

levels18-21, whilst height was based upon limited evidence of association22-24. Glucose was 

selected as an outcome with respect to its hypothesised role in the development of Type-II 

diabetes18, 24. 

 

Applied Example I: Adiposity and Serum Glucose  

Though the relationship between adiposity and glucose has received much attention in the 

literature, such studies are predominantly observational and therefore may be subject to bias 

from confounding. This provides motivation for considering Mendelian randomization 

techniques which are able to control for such unobserved confounding. In the initial analysis, 

we select adiposity as an exposure measured using standardised body mass index (BMI), 

obtaining estimates of its associations with genotypes and their respective standard errors 

from Locke et al25.  

 

For the outcome, we consider log transformed measures of serum glucose !"#�$%� utilising 

effect estimates and standard errors from Shin et al26. Adopting a GWAS significance p-value 
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threshold of 5 ' 10�� a total of 79 independent SNPs were identified in both samples. We 

confirmed the linkage equilibrium (LD) between the SNPs using a clumping algorithm, and a 

clumping distance of 10000kb, and an LD (� of 0.001. This resulted in a total of 79 SNPs for 

use as instrumental variables, details of which are presented in the Web Appendix. 

 

Using mrrobust, we conducted IVW, MR-Egger, and weighted median regression approaches 

using the above summary data. The code for our analysis is in the Supplementary Material.  

For IVW and MR Egger approaches the regression was weighted using the variance of the 

instrument-outcome association. The set of summary MR estimates are presented in Table 

1A. 

 

As seen in Table 1A, we find strong evidence of a positive association between BMI and 

serum glucose using both IVW and weighted median methods. Considering the MR Egger 

case, a substantial average directional pleiotropic effect was not detected, and the lack of 

significance with respect to the effect estimate can be attributed to a lack of statistical power. 

An ����  value of 0.88 was reported, which can be interpreted as a relative bias in the MR-

Egger estimate of 12% towards the null. The set of estimates from Table 1 are illustrated in 

Figure 1A using the mreggerplot command. 

 

Applied Example II: Height and Serum Glucose 

As a further example, we consider the effect of standardised height (meters) upon serum 

glucose using summary data from Wood et al27, and outcome summary data on log 

transformed serum glucose from Shin et al26. We assess the SNPS for LD using criteria from 

the previous example, and identify 367 SNPs as suitable instruments for the analysis. The set 

of summary MR estimates are presented in Table 1B.  

From Table 1B we find no evidence against the null hypothesis of no association between 

height and serum glucose levels using IVW, weighted median, and MR Egger regression. 

Considering the MR Egger case, there appeared to be no evidence of directional pleiotropy, 

with an ����  value of 0.90 indicating a relative bias of 10% towards the null. The set of two-

sample MR estimates are presented in Figure 1B. 
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Discussion 

The mrrobust package is a freely available Stata package, containing a number of summary 

MR estimation methods which can be used to estimate causal effects. In the applied example, 

the mrrobust package was able to provide a series of estimates, finding evidence of a positive 

association between BMI and serum glucose, and no evidence of association between height 

and serum glucose. One possible conclusion that can be drawn from these results is that 

previously reported associations between height and glucose are driven by confounding 

factors28, 29. It is important, however, to consider the extent to which Mendelian 

randomization is appropriate for a given analysis, and by extension situations in which 

mrrobust is suitable. 

In the first instance, Mendelian randomization studies only produce unbiased estimates when 

genetic instruments satisfy the assumptions of each estimator (e.g. IVW, MR-Egger, or 

weighted median). In two-sample analyses genetic instruments should be associated with the 

exposure of interest at genome-wide levels of significance (satisfying the first instrumental 

variable assumption), and pruned for LD to limit the overlap between SNPs. The IVW 

estimator also requires that genetic variants should not have directional pleiotropic effects. 

The MR Egger and median estimators are robust to directional pleiotropy if the effects of the 

exposure are constant. MR Egger regression requires the InSIDE and NOME assumptions. 

Median methods assume that the number of valid instruments being greater than 50%. In 

cases where the value of ����  is low, it is possible to use SIMEX or Bayesian error in variables 

regression methods as methods of correcting for attenuation bias, and these features will be 

implemented in subsequent releases of the mrrobust package. 

In this paper, we have presented the mrrobust Stata package as an accessible toolkit for 

performing summary MR and instrumental variable analysis using many instruments. It 

contains a range of summary MR approaches, and should make examining causal 

relationships using Mendelian randomization more accessible for genetic epidemiologists. 

Supplementary Data 

A web appendix containing supplementary materials can be found at: 
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Tables 

 
Table 1: Summary MR estimates for the effect of standardised BMI (A) and height (B) upon 
log transformed serum glucose. 
 

 Estimate SE p-value 95% CI 
BMI (A)     

     
IVW     
Effect 0.023 0.008 0.004 0.01, 0.04 

MR Egger     
Intercept 0.000 0.001 0.948 -0.001,0.001 

Effect 0.022 0.022 0.325 -0.02, 0.07 
Weighted Median     

Effect 0.034 0.012 0.005 0.01, 0.06 
     

Height (B)     
     

IVW     
Effect 0.023 0.008 0.004 0.01, 0.04 

MR Egger     
Intercept 0.000 0.001 0.948 -0.001,0.001 

Effect 0.022 0.022 0.325 -0.02, 0.07 
Weighted Median     

Effect 0.034 0.012 0.005 0.01, 0.06 
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Figure 1: mreggerplot output for applied examples using BMI (A) and Height (B) as 

exposures. 
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