
An Experiment in Learning the Language of
Sequence Motifs:

Sequence Logos vs. Finite-State Machines?

Alexandre P Francisco1, Travis Gagie2, Dominik Kempa3, Leena Salmela3,
Sophie Sverdlov4, Jarkko Toivonen3, and Esko Ukkonen3

1 INESC-ID / IST, University of Lisbon, Portugal
2 EIT, Diego Portales University, Chile

3 Dept. Computer Science, University of Helsinki, Finland
4 Check Point Software Technologies, Ltd., Israel

Abstract. Position weight matrices (PWMs) are the standard way to
model binding site affinities in bioinformatics. However, they assume that
symbol occurrences are position independent and, hence, they do not
take into account symbols co-occurrence at different sequence positions.
To address this problem, we propose to construct finite-state machines
(FSMs) instead. A modified version of the Evidence-Driven State Merg-
ing (EDSM) heuristic is used to reduce the number of states as FSMs
grow too quickly as a function of the number of sequences to reveal any
useful structure. We tested our approach on sequence data for the tran-
scription factor HNF4 and found out that the constructed FSMs provide
small representations and an intuitive visualization. Furthermore, the
FSM was better than PWMs at discriminating the positive and negative
sequences in our data set.

1 Introduction

High-throughput experiments characterizing transcription factor (TF) binding
sites produce large sets of sequences. The standard way to model the binding
affinities based on such data sets is to build a position weight matrix (PWM)
[13] which assigns a weight for each nucleotide at each position. PWMs are
often visualized as sequence logos [12]. One weakness of PWMs is that they
cannot model dependencies between the positions. Other representations have
been proposed but none have gained widespread acceptance.

We propose to use finite state machines (FSMs) to model the binding affinities
and give a method for constructing them using a modified version of Evidence-
Driven State Merging (EDSM) [10]. We tested the method on data for one
transcription factor. The FSM built by our method was compact and thus useful

? This research was partly funded by the Academy of Finland [grant 284598
(CoECGR)]. Part of this research was completed while the first author was vis-
iting the University of Chile, funded by Marie Sk lodowska-Curie grant agreement
No 690941 (project BIRDS).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2017. ; https://doi.org/10.1101/143024doi: bioRxiv preprint 

https://doi.org/10.1101/143024
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 A.P. Francisco et al.

for visualizing the data. Furthermore, the FSM discriminated the positive and
negative sequences in the data set better than PWMs.

2 Data

The HT-SELEX (High-Throughput Systematic Evolution of Ligands by Expo-
nential Enrichment) [5] starts with a (uniformly) random library of 40-mers in
a solution. The DNA fragments were allowed to bind TFs and the unbound
DNA was washed out. The remaining DNA was amplified and then sequenced.
The process was repeated multiple times. In later cycles the binding sites of the
TF have been strongly enriched in the sequences. We used the data from cycle
number 3.

Throughout this paper we will use as test data HT-SELEX data for tran-
scription factor HNF4 (Accession number: ERR194356) [6]. It contained 655 432
sequences each of length 40 bp. From this data set the most common 13-mer
(GGGTCAAAGTCCA) was chosen as a seed. Then all the 13-mers that are
within Hamming distance 6 from the seed and contained the sequence AAA in
the middle were selected. This resulted in 54236 distinct fragments, of which
60 occurred at least 1000 times each and 34566 occurred only once each. The
fragments occurring at least 1000 times form the positive set and the fragments
occurring only once form the negative set in our experiments.

3 Position Weight Matrices

We first aligned the sequences in the positive set and built a PWM for them
weighing each sequence by its frequency. We also tried extending the positive
set to 200 sequences occurring most often and similarly building a PWM for this
set. The PWMs are visualized as sequence logos in Figure 1. Sequence alignments
were obtained with Clustal W [7]. PWMs and sequence logos were built with
the MEME SUITE [8].

The PWMs revealed some structure, such as the importance of there being
three As roughly in the middle of the bound fragments, but we suspected they
might mask dependencies: e.g., it might be that a poor match on one side of
those As could be compensated for by a good match on the other side, but poor
matches on both sides would prevent binding.

To check objectively whether fragments’ similarities to the PWMs could be
used to distinguish those in the positive and negative sets, we computed the
alignment cost of each fragment against each PWM. Define false negatives and
false positives for a PWM with respect to a threshold to be, respectively, frag-
ments occurring at least 1000 times each but whose alignment cost is above that
threshold, and fragments occurring only once whose alignment cost is at most
equal to that threshold.

Note that, since PWMs have length 14, we could not compare them directly
with the fragments, which have length 13. Hence, we generated PWMs for each
fragment and we used TomTom [9], also included in the MEME SUITE, to

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2017. ; https://doi.org/10.1101/143024doi: bioRxiv preprint 

https://doi.org/10.1101/143024
http://creativecommons.org/licenses/by-nc-nd/4.0/


An Experiment in Learning the Language of Sequence Motifs 3

Ceqlogo 01.04.17 21:28

0

1

2

b
it

s

1

T

C

A

G

2

A
G

3

G
4

A

G
T

5

G

A

T
C

6

A

G

T

C

7

A
8

A

9

A

1
0

G

1
1

G
T

1
2

T
C

1
3

C

1
4

C

T

G
A

Ceqlogo 30.03.17 23:38

0

1

2

b
it

s

1 2

A
G

3

G

4

A

G
T

5

A

G

T
C

6

G

A

T

C

7

A

8

A

9

A

1
0

G

1
1

G
T

1
2

T
C

1
3

T

C

1
4

C

T

G
A

Fig. 1. The sequence logo of the 60 DNA fragments occurring at least 1000 times
each, aligned and weighted by their frequencies (left); the logo for the 200 fragments
occurring most frequently, aligned and weighted (right);

compare each PWM built for the aligned sequences against all PWMs built for
the fragments. TomTom searches a database of motifs with a given query motif,
considering different relative orientations and offsets, and using a method similar
to the one used to match a motif against a given sequence. We excluded different
orientations in our study since we know them a priori.

We computed the number of false positives required for each PWM to achieve
each number of false negatives between 0 and 60; the results are shown in Table 1.
We regard all the PWMs as unsatisfactory filters since, in order to accept all
the positive fragments, we must also accept hundreds or thousands of negative
fragments.

4 Finite-State Machines

The standard way for computer scientists to represent sequential dependencies is
with finite-state machines (FSMs) or high-order Markov models. We built FSMs
that accepted only the most frequent fragments, but these FSMs grew too quickly
as a function of the number of fragments to be able to reveal any useful structure.
We therefore turned to algorithms for inferring FSMs from sets of positive and
negative examples. This is a well-studied NP-hard problem [3, 1] (see, e.g., [4,
11] for recent discussions) for which there are several practical heuristics. We
implemented a version of Evidence-Driven State Merging (EDSM) [10], modified
such that it tries to merge only states at the same distance from the initial state,
so the resulting FSM should be easier to understand.

We used as positive examples the 60 fragments each occurring at least 1000
times, and as negative examples a sample of the fragments occurring only once,
each chosen with probability 0.1 thus producing about 3400 negative examples.
We used fragments occurring only once because we do not know what fragments
were not present in the experiment. First, we aligned the positive examples and
inserted gaps in negative examples in all possible ways, so all the examples
had length 14. EDSM works in rounds, starting with a trie of all the example
fragments, consisting of about 20000 states, with the leaf nodes labelled accept
or reject. With our version, in each round we try to merge all pairs of states
at the same distance from the initial state: merging two nodes causes a cascade

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2017. ; https://doi.org/10.1101/143024doi: bioRxiv preprint 

https://doi.org/10.1101/143024
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 A.P. Francisco et al.

Table 1. We can choose the minimum threshold such that only a given number of the
60 DNA fragments occurring at least 1000 times each, have alignment costs against
a particular PWM above that threshold (false negatives). A number of the 34566
fragments occurring only once will have alignment costs less than or equal to that
threshold (false positives). The number of false positives in a non-decreasing function
of the number of false negatives, so all the lines after 22 contain only 0s.

False negatives False positives
Top 60 aligned Top 200 aligned

0 3173 3057
1 1636 1346
2 1167 1150
3 756 840
4 526 667
5 394 289
6 211 164
7 144 153
8 121 106
9 61 88

10 48 63
11 48 53
12 40 53
13 40 37
14 29 30
15 17 8
16 15 5
17 4 2
18 3 2
19 2 2
20 0 2
21 0 2
22 0 0
...

...
...

of implied merges, which fails if it ever requires merging an accept state with a
reject state; if the whole cascade succeeds, we assign the merge an evidence score
equal to the decrease in the size of the FSM; we then undo the cascade and the
merge. We choose the merge with the highest evidence score, perform it, and
proceed to the next round, stopping when no merge has a positive score. The size
of the resulting FSM depends on the set of negative examples chosen and thus
we ran the algorithm several rounds. It took several minutes to build each FSM.
Still, within an hour we found an FSM with 34 states, which had four edges
labelled with the gap character ‘-’, corresponding to ε-transitions. We adjusted
the FSM to remove these edges, resulting in the machine shown in the center
in Figure 2: the gap-edge between states 0 and 2 we could remove by making
state 2 initial; the gap-edge between states 11 and 13 we could remove by adding
an edge from 11 to 15; and we could remove the gap-edges from states 30 and
31 to state 32 by making the former final. This non-deterministic 34-state FSM
accepts all 60 positive examples and 57 other fragments in our initial data set,
shown on the right of Figure 2, including only one fragment in the negative set.
That is, the FSM is arguably better at discriminating the positive and negative
sequences than a PWM, in addition to seeming subjectively more informative.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2017. ; https://doi.org/10.1101/143024doi: bioRxiv preprint 

https://doi.org/10.1101/143024
http://creativecommons.org/licenses/by-nc-nd/4.0/


An Experiment in Learning the Language of Sequence Motifs 5

GGGTC-AAAGTCCA 44304

-GGTCCAAAGTCCA 38951

-AGTCCAAAGTCCA 38058

-AGGTCAAAGTCCA 31405

GGGTCCAAAGTCC- 22214

GAGTCCAAAGTCC- 16926

-GGGTCAAAGGTCA 16784

-GGTACAAAGTCCA 15306

-GGTTCAAAGTCCA 13490

AGGTCCAAAGTCC- 12495

-GGTCCAAAGGTCA 10963

-GGGGCAAAGTCCA 10278

-GGGTCAAAGTCCG 10146

-AGGGCAAAGTCCA 8917

GGGTTCAAAGTCC- 8766

GGGTACAAAGTCC- 8267

-AGGTCAAAGGTCA 8071

GGGTCCAAAGGTC- 8062

-AGTCCAAAGGTCA 7941

-GGTCCAAAGTCCG 7474

CGGTCCAAAGTCC- 7444

-AGTTCAAAGTCCA 6864

-GGGTCAAAGTTCA 6782

-GGTGCAAAGTCCA 6114

-AGTACAAAGTCCA 5950

-AGTCCAAAGTCCG 5374

-GGGTCAAAGGTCG 5155

-AGGTCAAAGTCCG 4694

-GGATCAAAGTCCA 4664

-GGTCCAAAGTTCA 4641

-GGTTCAAAGGTCA 4009

GGGTGCAAAGTCC- 3765

-AGTCCAAAGTTCA 3619

-GGTACAAAGGTCA 3380

GGGTCCAAAGTTC- 3116

-GGTCCAAAGGTCG 2899

-AGGTCAAAGTTCA 2846

TGGTCCAAAGTCC- 2810

-AGATCAAAGTCCA 2551

-GGGGCAAAGGTCA 2273

-AGTGCAAAGTCCA 2246

-GGTTCAAAGTCCG 2060

-GGTACAAAGTCCG 1828

CGGTC-AAAGTCCA 1773

-GGGCCAAAGTCCA 1744

-AGGTCAAAGGTCG 1667

-AGGCCAAAGTCCA 1639

-AGTCCAAAGGTCG 1630

-GGGTTAAAGTCCA 1471

-GGGGCAAAGTCCG 1431

-GGGACAAAGTCCA 1409

-GGTTCAAAGTTCA 1406

-GGAGCAAAGTCCA 1395

-AGGGCAAAGGTCA 1295

-AGTTCAAAGGTCA 1255

-GGTCTAAAGTCCA 1163

GGGGCCAAAGTCC- 1125

-AGGACAAAGTCCA 1068

-GGTACAAAGTTCA 1008

-GGGTCAAAGTCCT 1001

TGGTCAAAGTCCA 930

GGTTCAAAGGTCG 918

AGGGCAAAGTCCG 818

AGTCTAAAGTCCA 799

AGTACAAAGGTCA 771

AGTTCAAAGTCCG 679

GGTCCAAAGTCCT 678

GGGGCAAAGTTCA 675

AGAGCAAAGTCCA 638

GGTACAAAGGTCG 624

AGTCCAAAGTCCT 525

AGTACAAAGTCCG 477

AGGTTAAAGTCCA 477

AGTTCAAAGTTCA 447

GGGGCAAAGGTCG 437

AGACCAAAGTCCA 422

AGGGCAAAGTTCA 409

GGACCAAAGTCCA 399

AGGTCAAAGTCCT 374

CGGGCAAAGTCCA 330

TGGGCAAAGTCCA 322

GGAACAAAGTCCA 275

AGTACAAAGTTCA 253

GGGGTAAAGTCCA 236

AGGGCAAAGGTCG 223

AGTTCAAAGGTCG 202

GGTTCAAAGTCCT 165

AGAACAAAGTCCA 147

GGTACAAAGTCCT 122

AGTACAAAGGTCG 118

AGGGTAAAGTCCA 108

GAGTCAAAGTCCA 102

GGGGCAAAGTCCT 92

GGGTCAAAGGTCT 85

AAGTCAAAGTCCA 73

GGTTTAAAGTCCA 64

AGTTCAAAGTCCT 59

AGGGCAAAGTCCT 58

GAGGCAAAGTCCA 52

AAGGCAAAGTCCA 49

AGTCCAAAGGTCT 48

GGTCCAAAGGTCT 38

AGTACAAAGTCCT 35

GGTATAAAGTCCA 33

AGTTTAAAGTCCA 33

CAGTCAAAGTCCA 27

CAGGCAAAGTCCA 26

AGTATAAAGTCCA 21

GGTTCAAAGGTCT 19

AGTTCAAAGGTCT 19

AGGTCAAAGGTCT 18

TAGGCAAAGTCCA 17

GGTACAAAGGTCT 12

TAGTCAAAGTCCA 10

GGGGCAAAGGTCT 9

AGGGCAAAGGTCT 8

AGTACAAAGGTCT 1

Fig. 2. The 60 DNA fragments occurring at least 1000 times each, aligned (left); a
34-state non-deterministic FSM with states 0 and 2 initial, accepting all the positive
examples and 57 other fragments, including one occurring only once (center); those
57 other fragments (right). In the FSMs, edges’ widths indicate how often they are
crossed in accepting computations (although this does not affect the FSM’s behaviours)
and their colours indicate their labels: red for A, blue for C, yellow for G and green for
T.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2017. ; https://doi.org/10.1101/143024doi: bioRxiv preprint 

https://doi.org/10.1101/143024
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 A.P. Francisco et al.

5 Conclusion

We believe our investigation shows that grammatical inference, in particular
building FSMs with EDSM, can produce useful models of sequence motifs and
can be competitive with PWMs. Grammatical inference has been used in bioin-
formatics (see, e.g., [2]) but we know of no previous work quite like this. We plan
to continue our studies, tuning our modification of EDSM and testing it on our
current dataset and others.

References

1. Angluin, D.: On the complexity of minimum inference of regular sets. Information
and Control 39(3), 337–350 (1978)

2. Coste, F.: Learning the language of biological sequences. In: Heinz, J., Sempere,
J.M. (eds.) Topics in Grammatical Inference, pp. 215–247. Springer (2016)

3. Gold, E.M.: Complexity of automaton identification from given data. Information
and control 37(3), 302–320 (1978)

4. Gruber, H., Holzer, M., Jakobi, S.: More on deterministic and nondeterministic
finite cover automata. Theoretical Computer Science (to appear)

5. Jolma, A., Kivioja, T., Toivonen, J. et al: Multiplexed massively parallel SELEX
for characterization of human transcription factor binding specificities. Genome Re-
search 20(6):861–873 (2010)

6. Jolma, A., Yan, J., Whitington, T., Toivonen, J. et al: DNA-Binding Specificities
of Human Transcription Factors. Cell 152(1–2):327–339 (2013)

7. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,
McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D.:
Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947–2948 (2007).

8. Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren,
J., Li, W.W., Noble, W.S.: MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Research, 37:W202-W208 (2009).

9. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., Noble, W.S.: Quantifying simi-
larity between motifs. Genome Biology, 8(2):R24 (2007).

10. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA
learning competition and a new evidence-driven state merging algorithm. In: Pro-
ceedings of the 4th International Colloquium on Grammatical Inference (ICGI). pp.
1–12. Springer (1998)

11. Vázquez de Parga, M., Garćıa, P., López, D.: A sufficient condition to polynomially
compute a minimum separating DFA. Information Sciences 370, 204–220 (2016)

12. Schneider, T.D., Stephens, R.M.: Sequence logos: a new way to display consensus
sequences. Nucleic Acids Research 18(20), 6097–6100 (1990)

13. Stormo, G.D., Schneider, T.D., Gold, L., Ehrenfeucht, A.: Use of the ’Perceptron’
algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Re-
search 10(9), 2997–3011 (1982)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2017. ; https://doi.org/10.1101/143024doi: bioRxiv preprint 

https://doi.org/10.1101/143024
http://creativecommons.org/licenses/by-nc-nd/4.0/

