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Abstract 
While it has long been recognised that anticipatory states amplify early EEG responses to visual targets 

in humans, it remains unclear how such modulations relate to the actual content of the neural 

representation, and help prioritise targets among temporally competing distractor stimuli. Using 

multivariate orientation decoding of high temporal resolution EEG recordings, we first demonstrate that 

anticipation also increases the amount of stimulus-identity information contained in these early brain 

responses. By characterising the influence of temporally adjacent distractors on target identity decoding, 

we additionally reveal that anticipation does not just attenuate distractor interference on target 

representations but, instead, delay it. Enhanced target decoding and distractor resistance are further 

predicted by the attenuation of posterior 8-14 Hz alpha oscillations. These findings offer several novel 

insights into how anticipatory states shape neural representations in service of resolving sensory 

competition in time, and they highlight the potential of non-invasive multivariate electrophysiology to 

track cognitive influences on perception in tasks with rapidly changing displays. 
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Highlights 
 Anticipatory states help resolve visual competition in time 

 Anticipation enhances early target coding and delays distractor interference 

 Attenuated alpha oscillations also enhance target coding and distractor resistance 

 EEG decoding is a powerful tool for tracking percepts in rapidly changing displays 

 

Significance statement 
While the neural mechanisms by which anticipatory states help prioritise inputs that compete in space 

have received ample scientific investigation, the mechanisms by which the human brain accomplishes 

such prioritisation for inputs that compete in time remain less well understood. We used high temporal 

resolution EEG decoding to individuate (and track in time) neural information linked to visual target 

and distractors stimuli that were presented in close temporal proximity. This revealed that anticipatory 

states help resolve temporally competing percepts by a combination of enhanced target (but not 

distractor) coding as well as delayed interference on this target coding caused by temporally adjacent 

distractors – thus allocating a “protective temporal window” for high-fidelity target processing.  
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Introduction 
 

In a world in which the amount of information that reaches our senses is increasing by the day, it is 

becoming increasingly relevant to understand the mechanisms by which our brains extract and prioritise 

information that is most relevant to current goals. Foreknowledge of what, where or when relevant 

events are likely to occur enables the instantiation of anticipatory neural states that provide key 

determinants of such prioritisation (Posner, 1980; Nobre et al., 2011), and it has long been recognised 

that such anticipatory states amplify early brain responses to perceptual targets. In fact, such effects 

provided the first clear evidence in humans that modulatory effects of anticipatory attention occur early 

during sensory processing (e.g., Mangun and Hillyard, 1987, 1991; Luck et al., 1994). Yet, despite a 

long tradition, vast literature, and sustained interest in this line of research (for reviews, see e.g., 

Hillyard & Anllo-Vento, 1998; Luck et al., 2000; Eimer, 2014), it has remained unclear whether 

anticipation actually amplifies the amount of information defining the identity of the perceptual target 

in these early EEG responses. Building on recent progress on multivariate decoding of visual orientation 

information from high temporal resolution M/EEG measurements (e.g. Ramkumar, 2013; Garcia, 2013; 

Myers, 2015; Cichy, 2015; King and Dehaene, 2016; see also Stokes et al., 2015), we tackled this issue 

directly and reveal that anticipatory states also amplify stimulus-identity information. 

 

Multivariate decoding with high temporal resolution additionally enabled us to individuate neural 

information linked to target vs. competing distractor items occurring within the temporal window of 

attentional competition. While the neural mechanisms that prioritise inputs that compete in space have 

received ample scientific investigation (for reviews, see e.g., Desimone and Duncan, 1995; Kastner and 

Ungerleider, 2000; Squire et al., 2013; Anton-Erxleben and Carrasco, 2013), the mechanisms by which 

the human brain accomplishes such prioritisation for inputs that compete in time remains far less well 

understood. This is in part because conventional human neuroimaging approaches have been hampered 

either by insufficient temporal resolution (as with fMRI), or by the presence of strong additive responses 

when stimuli occur in fast temporal succession (as with classical ERP analyses). By combining stimulus 

orientation decoding analyses with high temporal resolution EEG measurements, we reveal that 

anticipatory states not only enhance neuronal target representations, but also delay the interference 

caused by temporally adjacent distractors, thereby providing an extended protected temporal window 

for target analysis.  

 

Results 
 

Task and EEG orientation decoding 
Thirty healthy human volunteers performed a visual orientation reproduction task in which the 

presence/absence of preparatory auditory cues and temporally adjacent visual distractors were 

orthogonally manipulated (Fig. 1a; Methods for details). Auditory cues, when present, indicated the 

target would follow after 500 ms, thus acting as temporal warning signals. Provided that our main 

research questions regard largely unexplored territory, we deliberately focused on an experimental 

design with such simple (but highly effective) temporal warning cues. While we will refer to the 

influence of these cues as anticipation, we acknowledge up front that this type of anticipation likely 

involves a mix of involuntary increases in vigilance and voluntary orienting of attention in time 

(Weinbach and Henik, 2012, for further discussion).  

 

Figure 1b depicts average reproduction errors and highlights the utility of the cue in reducing distractor 

interference. While we found no cueing benefit on performance in distractor-absent trials (t(29) = 0.345, 

p = 0.733, d = 0.063), reliable cueing benefits occurred in distractor-present trials (i.e. lower 

reproduction errors to cued vs. uncued targets), which interacted with inter-stimulus-interval (ISI; F(2,58) 

= 12.926, p = 2.277e-5, ηp
2 = 0.781). Planned comparisons confirmed a moderate cueing benefit at the 

20-ms ISI (t(29) = -3.537, p = 0.001, d = -0.646), a large benefit at the 100-ms ISI (t(29) = -6.476, p = 

4.353e-7, d = -1.182), but no longer any benefit when distractors followed targets at an ISI of 200 ms 

(t(29) = -0.02, p = 0.984, d = -0.004). Cueing benefits were also significantly larger in distractor-present 

compared to distractor-absent trials, both at 20-ms ISI (t(29) = -3.617, p = 0.001, d = -0.66) and at 100-

ms ISI (t(29) = -7.291, p = 4.97e-8, d = -1.331). Because we had anticipated (based on prior piloting) that 
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the 100-ms ISI would be particularly effective, we deliberately used this ISI in the vast majority (80%) 

of distractor-present trials and focused our EEG analyses exclusively on this set.  

 

Our main aim was to investigate the influence of the preparatory cues and temporally competing 

distractors on the amount of sensory information contained in the EEG responses regarding the identity 

of target and distractor stimuli (i.e., grating orientation). To this end, we applied a time-resolved 

“decoding” approach. Per time point, we calculated the multivariate Mahalanobis distance (using 

electrodes as dimensions) between the left-out trial (the “test trial”) and all other trials (the “training 

trials”) in which the target orientation was at a particular angular difference from the test trial. By 

evaluating this multivariate distance metric for a range of angular differences between test and training 

trials, we were able to reconstruct an orientation tuning profile (as in Wolff et al., 2017).  

 

 
 

Figure 1. Task design, perceptual performance, and EEG orienting decoding. (a) Visual orientation 

reproduction task with preparatory auditory cues and visual distractors. Participants reproduced the orientation 

of the visual target grating using a computer mouse. In half the trials, targets were preceded by an auditory 

warning cue. Targets could be followed by no distractors, or by a visual distractor at one of three ISIs (20, 100, 

200 ms). Target-probe intervals and inter-trial intervals were drawn independently of cue and distractor 

presence. (b) Average orientation reproduction errors (in degrees) for cued and uncued trials as a function of 

distractor presence and ISI. Error bars represent ± 1 SE calculated across participants (n = 30). (c) Time 

resolved orientation tuning profile based on all targets. Data represent the mean normalised pattern similarity 

(quantified using the Mahalanobis distance) between the test trials and the training trials, as a function of the 

angular difference between test and training trials (y axis). The inset highlights the 8 electrodes that were used 

for the orientation decoding analysis. Overlaid timecourse depicts the associated summary decoding statistic 

(Methods for details). The right panel shows the associated tuning profile averaged over the interval between 

0 and 500 ms post-target. (d) Time resolved decoding (summary statistic) as a function the EEG electrode row 

used for decoding. 

 

Figure 1c illustrates the utility of this approach, by depicting the time-resolved tuning profile averaged 

over all target presentations (i.e. independent of experimental condition). Target evoked EEG responses 

are most similar to other targets that have similar orientations (red), relative to other target that have 

more dissimilar orientations (blue). Robust tuning was most evident between 75 to 300 ms after target 

onset. To capture this orientation decoding in single metric (per time point), we simply multiplied the 

(mean normalised) tuning profiles with an inverted cosine function and averaged the result along all 

angular differences between test and training trials (as in Sprague et al., 2016; Wolff et al., 2017). To 

illustrate that this summary statistic captures the EEG orientation tuning well, we superimposed its time 

course on the orientation tuning profile in Figure 1c. We report on this summary statistic in all further 

analyses. 
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To concentrate our decoding analysis on visual activity, we limited the decoding analysis to data from 

the eight most posterior electrodes (inset Fig. 1c), which also showed the largest ERP (Fig. S1a). To 

further substantiate the visual origin of the orientation decoding, we additionally ran this analysis 

separately for each of the electrode rows. As shown in Figure 1d, this confirmed a predominantly 

posterior (putatively visual) origin. 

 

Anticipation increases target decoding and delays distractor interference 
We next evaluated EEG orientation decoding as a function of cue and distractor presence, and 

considered six (non-mutually exclusive) scenarios by which anticipatory states may help extract and 

prioritise relevant over irrelevant sensory inputs that compete in time (Fig. 2). As we detail below, we 

found evidence in support of scenarios 1 (enhanced target decoding) and 6 (delayed distractor 

interference). 

 

 
 

Figure 2. Schematic of ways in which anticipation may prioritise relevant over irrelevant sensory inputs 

that compete in time. We consider six non-mutually exclusive scenarios. Anticipation can influence the target 

representation (left), the distractor representation (middle), or the interference on the target representation 

when distractors are present compared to absent (right). This influence can be manifest either as a change in 

magnitude (“representation strength”), or a change in latency (“representation timing”). We find evidence for 

scenarios 1 (increased target identity decoding) and 6 (delayed distractor interference on the target identity 

decoding). See also Figure S2. 

 

Figure 3a depicts time-resolved orientation decoding for each of the experimental conditions, both for 

targets and for distractors. Cluster-based permutation statistics (Maris and Oostenveld, 2007) revealed 

three significant clusters (corrected for multiple comparisons along the time axes) that each involved 

differences in target decoding (see also Fig. 3c). First, we observed a main effect of cue presence (cyan), 

as reflected in better orientation decoding for cued compared to uncued targets (cluster p = 0.006, cluster 

interval: 118 to 248 ms post target). This is in line with scenario 1 in Figure 2. In contrast, we found no 

significant cueing effect on distractor decoding (if anything, we observed a numerical increase, rather 

than a decrease, arguing against scenario 2 in Fig. 2). Second, we observed a main effect of distractor 

presence (magenta), as reflected in reduced target decoding for distractor present compared to distractor 

absent trials (i.e. distractor interference; cluster p = 0.004, cluster interval: 262 to 414 ms post target). 

Finally, we observed an interaction between cue and distractor presence (green; cluster p = 0.03, cluster 

interval: 196 to 268 ms post target). This effect was constituted by a larger cueing benefit for distractor 

present trials, or, equivalently, a larger distractor interference for cue-absent trials. While we note that 

the main effect of distractor presence on target decoding was maximal in the time window in which 

distractor decoding itself was also maximal, the interaction effect on target decoding was maximal in 

the time window in which the distractor decoding emerged (Fig. 3a). All three effects were again largely 

confined to the posterior electrode rows (Fig. 3c). 

 

Figure 3b shows the time courses of the distractor interference effect on target decoding (i.e., target 

decoding with distractor present minus absent), and suggests that the observed interaction may be best 

understood as a delayed distractor interference effect (scenario 6 in Fig. 2). While both cued and uncued 

trials ultimately reach a similar level of distractor interference (unlike scenario 3 in Fig. 2), the onset of 
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this interference appears delayed in cued trials. To further quantify this delay, we estimated the latencies 

at which the cued and uncued interference effects first reached the value associated with 50 percent of 

the maximal interference value (averaged over both conditions), and used a Jackknife approach (as 

described in Miller et al., 1998) to evaluate this delay statistically. This confirmed a 77 ± 18.57 ms 

(mean ± SE) delay in cued compared to uncued trials (Jackknife t(29) =  -4.145, p = 6.74e-5). Moreover, 

although we initially selected 50 percent of the maximum interference value for these analyses, it is 

reassuring to note that similar statistics were obtained when estimating latencies from values ranging 

anywhere from 10 to 70 percent of the maximum interference value (right panel Fig. 3b).   

 

 
 

Figure 3. Anticipation increases target identity information and delays distractor interference in early 

visual EEG responses. (a) Time courses of target and distractor orientation decoding (summary statistic) as a 

function of cue and distractor presence. Horizontal lines indicate significant temporal clusters (Methods for 

details) for the main effects of cue presence (cyan), distractor presence (magenta), as well as their interaction 

(green). All clusters involve target decoding; no significant cueing effect cluster was observed for distractor 

decoding. See Figure S1 for the corresponding ERP results. (b) Time courses of the distractor interference 

effect on target decoding. Distractor interference is quantified as the difference in target decoding for distractor 

present vs. absent trials. Right panel shows Jackknife T values for latency differences between cued and uncued 

trials at thresholds ranging from 10 to 100% of the maximal interference effect. Maximal interference was 

calculated as the lowest value in the average of the cued and the uncued trials (denoted “avg min”). (c) Main 

and interaction effects as a function of time and electrode row. The interaction is expressed as the difference 

between cue-present vs. absent trials in distractor-present vs. absent trials. Upper plots show decoding based 

on the same channels as in a (see Fig. 1c). Shadings represent ± 1 SE calculated across participants (n = 30).  

 

In contrast to scenarios 4 and 5 in Figure 2, Figure 3a showed no evidence for a cueing effect on the 

latencies of either target or distractor decoding alone (target: Jackknife t(29) = 0.251, p = 0.299; 

distractor: Jackknife t(29) = 0.342, p = 0.316). To provide further support against these scenarios, we 

also ran a cross-temporal decoding analysis whereby we trained the model on uncued trials and tested 

decoding performance on cued trials. Decoding was always best when train and test times corresponded 

(Fig. S2), thus providing further evidence that the EEG “orientation code” does not appear to shift 

forward (for targets) or backward (for distractors) in time with cueing.  

 

Because our decoding was based on the broadband visual responses, a natural question is whether the 

observed cueing effects on target decoding and distractor resistance may simply be carried over from 

amplified ERP responses in cued trials (for example, by virtue of higher signal-to-noise ratio; SNR). 

When evaluating ERP amplitudes (Fig. S1a,c), we did also observe a main effect of cue presence that 

occurred at a similar time window as the main cueing effect on decoding (putatively reflecting 
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amplification of the classic N1 potential). Interestingly, however, across our pool of 30 participants, the 

magnitude of this cueing effect on the ERP was uncorrelated with the magnitude of the cueing effect 

on decoding (r = -0.093, p = 0.624; Fig. S1d). In further contrast to the decoding results, we also did 

not observe an interaction between cue and distractor presence on the ERP that could account for the 

increased distractor resistance observed in decoding (Fig. S1b,c).  

 

Attenuated posterior alpha oscillations predict enhanced target decoding and 
distractor resistance 
A key marker of attentional orienting in human M/EEG measurements is provided by the anticipatory 

attenuation of 8-14 Hz alpha oscillations in relevant sensory brain areas (Foxe et al., 1998; Worden et 

al., 2000, Thut et al., 2006; Mazaheri and Jensen, 2010; Foxe and Snyder, 2011; van Ede et al., 2012). 

Here we link such brain states in posterior electrodes to increased target decoding as well as distractor 

resistance, thereby also corroborating (using orthogonal analyses) the above described influences of the 

anticipatory cues. 

 

Figure 4a shows the time- and frequency-resolved difference in spectral power between cued and 

uncued trials, averaged over all posterior electrodes. Immediately after the cue, we observed a transient 

increase in low-frequency power with a frontal-central topography (left inset Fig. 4a) that likely reflects 

cue processing. At a later stage, however, we also observed a decrease in 8-14 Hz power with a posterior 

topography (right inset Fig. 4a). Rather than cue processing, the latter likely reflects the instantiation of 

an “attentional brain state”. This state appears to emerge before target onset (in line with above 

references) although in our data it becomes most prominent during target and distractor processing 

(likely as consequence of the relatively short 500-ms cue-target interval that we used). To address 

whether the cue-induced modulation of this brain state is related to the cue-induced amplification of 

target decoding, we correlated each time-frequency sample in Figure 4a with the participant specific 

magnitude of the main cueing effect on target decoding. Figure 4b shows the resulting correlation map, 

revealing that those participants who show a stronger alpha attenuation following the cue also have a 

larger cueing effect on decoding (cluster p = 0.024, cluster interval: -20 to 300 ms post target, cluster 

frequency range: 6 to 11 Hz). This correlation also has a clear posterior topography (inset Fig. 4b). 

 

We additionally evaluated the relation between alpha states and target decoding across trials. To this 

end, we focused on all uncued trials (where spontaneous variability is expected to be largest, and where 

there is no contamination with cue processing) and sorted the trials by alpha amplitude in the 500-ms 

pre-target window. Figure 4c shows target decoding as a function of both pre-target alpha amplitude 

(median split; inset for associated spectra) and distractor presence, while Figure 4c quantifies this 

relation on the basis of a trialwise correlation between alpha amplitude and target decoding. Both 

analyses yield the same result: the influence of pre-target alpha amplitude appears particularly 

prominent when distractors were present, whereby attenuated alpha states are associated with a 

“protective” effect (Fig. 4d, cluster p = 0.02, cluster interval: 186 to 307 ms post target). This is highly 

reminiscent of the interaction effect observed between cue and distractor presence (Fig. 3a). In fact, we 

noted a strikingly similar time window between both effects (as highlighted in Fig. 4c,d). This analysis 

thus replicates (using an orthogonal measure) the influence of anticipatory states – either after a cue as 

in Figure 3, or as reflected in “spontaneously” attenuated alpha oscillations as in Figure 4c,d – on 

preserving target decoding in the presence of distractors.  

 

We note that these correlations cannot be trivially explained by an increase in signal variance due to 

higher alpha amplitude. To take away this potential concern, all presented decoding analysis were 

performed on the time domain signal from which we had removed the 8-14 Hz band using a band-stop 

filter (and we confirmed that qualitatively similar results were obtained when this filter was not applied).  
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Figure 4. Attenuated posterior alpha oscillations predict enhanced target decoding (across participants) 

and distractor resistance (across trials). (a) Time-frequency plot of the cue-induced modulation in spectral 

power, expressed as a percentage change (i.e. [[cued – uncued] / [uncued]]*100). Data from all posterior 

electrodes marked in the inset in the right top. Topographies show modulations from 5-10 Hz in the interval 

between -400 to -200 ms (left) and from 8-14 Hz in the interval between 0 and 300 ms post-target (right). (b) 

Time-frequency plot of correlation (across participants) of the cue-induced power modulation with the 

magnitude of the main cueing effect (collapsing distractor present and absent trials) on target decoding 

(averaged over 118 to 248 ms post-target; see Fig. 3a). The insets show the topography and scatter plot 

associated with the significant time-frequency cluster. (c) Time courses of target decoding in uncued trials as 

a function of distractor presence and pre-target alpha amplitude (median split).  Trials were sorted by alpha 

amplitude averaged over all posterior channels in the 500 ms pre-target interval. (d) Time courses of the trial 

wise correlation between pre-target alpha amplitude and target decoding, separately for distractor-present and 

absent trials. Shadings represent ± 1 SE calculated across participants (n = 30). The green shaded band 

highlights the similarity of the alpha- and distractor-dependent decoding effect with the cue-dependent 

interaction effect in Figure 3. 

 

 

Discussion 
Combining multivariate decoding and high temporal resolution EEG enabled us to investigate whether 

and how anticipation influences the amount of sensory information extracted by the brain from target 

stimuli and temporally adjacent competing distractors. We observed two complementary effects – 

enhanced target identity coding and delayed interference from temporally adjacent distractors. 

Enhanced target processing and distractor resistance were furthermore each correlated with alpha 

oscillatory markers of preparatory attention, thus linking these target decoding effects to two 

independent operationalisations (cueing and variability in neural dynamics) of “anticipatory state”. The 

observed effects emerged clearly from a larger set of possible mechanisms by which anticipatory states 

may help resolve resolve competition between sensory inputs that compete in time.  

 

It is evident that the relevant “coding variable” for perception is not carried by response amplitude per 

se, but instead by stimulus identity information contained in these responses (see also Kriegeskorte et 

al., 2006). Our results confirm that anticipatory cues boost the representational quality of visual 

responses, and reveal that this starts during early sensory processing. Specifically, this “representational 

boost” peaked around the classical N1 time range. Interestingly, however, while we also observed a 

parallel cueing effect on ERP amplitude (an amplified N1 response), the magnitude of the cueing effects 

on target identity decoding and on ERP N1 amplitude were uncorrelated. This suggests that the 

influence of anticipatory cues on ERP amplitudes and on target identity decoding are mediated by 

complementary aspects of the EEG (e.g., multivariate patterns that are exclusively available to the 
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decoding analysis), and that the boost in target decoding cannot be simply attributed to a boost in 

response amplitude (i.e. SNR).  

 

An open question remains what physiological mechanisms may underlie the observed enhancement in 

target decoding. As likely sources for this modulation, we consider a combination of heightened level 

of arousal, anticipatory orienting in time (see Nobre et al., 2011), and preparatory upregulation of 

neuronal populations coding for the relevant feature dimension (i.e. orientation channels; in  Garcia et 

al., 2013 during sustained attention).We speculate that each of these possible “causes” may in turn be 

mediated by upregulation of the cholinergic system (see Everitt & Robbins, 1997; as well as possibly 

the norepinephrinic and dopaminergic systems; Warren et al., 2016), in line with the observation that 

basal forebrain stimulation similarly enhances discriminability of visual input in a rodent model (Goard 

and Dan, 2009). In the latter work, increased discriminability of visual responses was furthermore 

linked with decorrelation of neuronal firing rates in visual cortex. It is conceivable that macroscopic 

states of attenuated alpha oscillations (i.e. alpha “desynchronization”; Pfurtscheller, 1999) provide a 

non-invasive index of such decorrelated visual activity. 

 

In addition to a direct influence of anticipatory cues on target processing, we also observed a second 

effect that depended on distractor presence. While distractors always interfered with target decoding, 

this interference was delayed when targets could be anticipated. Anticipation may therefore enable 

adaptive perception by allocating a “protective temporal window” from distractor interference (see also, 

e.g., Shapiro et al., 1997), thereby possibly extending the high fidelity processing of the task-relevant 

target information and further orthogonalising target and distractor representations. Interestingly, this 

delayed interference on target decoding by distractors occurred despite the fact that distractor decoding 

and distractor ERPs themselves appeared not to be delayed. How these observations are to be reconciled 

remains an important question for future research. One possibility is that, following anticipatory cues, 

distractor input is being routed to neural populations that show less overlap with those processing targets 

(despite the fact that both targets and distractors always occupied the same part of visual space). Another 

possibility is that this reflects increased investment in target processing only until sufficient target 

orientation information is extracted (after which distractor interference is tolerated again, yielding the 

observed pattern of delayed distractor interference).  

 

Enhanced target decoding (across participants) and distractor resistance (across trials) were each also 

related to the attenuation of posterior alpha oscillations – a robust electrophysiological proxy for the 

level of attentional engagement in human extracranial M/EEG measurements (Foxe et al., 1998; 

Worden et al., 2000, Thut et al., 2006; Mazaheri and Jensen, 2010; Foxe and Snyder, 2011; van Ede et 

al., 2012). This was the case both for the task-related modulation by anticipatory cues, as well as for 

the spontaneous fluctuations in alpha amplitude in the absence of cues. By linking such states to the 

quality of content-specific early visual brain responses, the current work makes an important extension 

to a growing body of evidence suggesting a role for such states also in shaping response amplitudes 

(e.g., Becker et al., 2008), underlying neurophysiology (e.g., Haegens et al., 2011; Snyder et al., 2015), 

and perceptual as well as mnemonic performance (e.g., van Dijk et al., 2008; van Ede et al., 2012; 

Myers et al., 2014). 

 

To maximise sensitivity in the current study, we focused on a set-up with simple (but highly effective) 

temporal warning cues and with large centrally presented high contrast visual gratings. Because of this, 

we cannot be sure whether our effects are driven primarily by changes in vigilance, voluntary orienting 

of temporal attention, or both. Still, by linking increased target decoding and distractor resistance 

observed with cueing also to states of attenuated posterior alpha oscillations, these data do provide a 

direct link to the voluntary attention literature where such brain states are commonly observed (as 

discussed above). In future studies, it will be interesting to also track target and distractor identities in 

relation to more refined attentional and stimulus manipulations (e.g., embedding targets in streams of 

distractors, cueing different foreperiods, manipulating also spatial and feature-based expectations, etc.). 

Indeed, as this work showcases, high temporal resolution M/EEG stimulus identity decoding provides 

a powerful tool for reaching out to previously inaccessible questions regarding cognitive influences on 

sensory processing in humans (see Garcia et al., 2013; King and Dehaene, 2014; Stokes et al., 2016, for 
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similar arguments). This will prove particularly advantageous in tasks with rapidly changing displays 

as the decoded output appears largely robust against additive responses (unlike classical ERP responses; 

compare Fig. 3a with Fig. S1a) while maintaining excellent temporal resolution (unlike fMRI 

responses). 
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Methods 
Experimental procedures were reviewed and approved by the Central University Research Ethics 

Committee of the University of Oxford.  

 
Participants 
Thirty healthy human volunteers (10 female; age range 19-35; mean age 25.5 years) participated in the 

study. All participants had normal or corrected-to-normal vision and either held a university degree or 

were enrolled in university at time of participation. One participant was left handed. Data from all 

participants were retained for analysis. All participants provided written informed consent prior to 

participation and were reimbursed £10/hour. 

 
Stimuli, procedure, and task 
Participants were seated in front of a monitor (100-Hz refresh rate) at a viewing distance of 

approximately 90 cm. We presented both visual and auditory stimuli (Fig. 1a). Visual grating stimuli 

consisted of 6 square wave cycles with a total diameter of 18 cm (11.4 degrees visual angle) such that 

the spatial frequency was approximately 0.53 cycles per degree. We randomly interleaved two types of 

gratings that were in anti-phase (gratings were either black or white centred), and over which we 

collapsed in all analyses. Grating orientations were randomly drawn, but were redrawn if within ± 5 

degrees from cardinal (0, 90, 180 degrees). We used the same stimuli for target, distractor, and probe 

displays (see Fig. 1a), although their orientations were independently drawn. Distractors were presented 

in half the trials and were defined simply by their serial position (i.e. the second grating). Distractors 

thus acted as visual masks, with the main difference with conventional masks being that distractors 

consisted of oriented gratings too, enabling us to decode and track both target and distractors identities. 

Targets and distractors were always presented for 50 ms each, and separated by an inter-stimulus-

interval (ISI) of 20, 100 or 200 ms (on distractor present trials). Based on a prior pilot, we anticipated 

that the 100-ms ISI would yield the largest cueing benefit and we therefore used this ISI in the majority 

(80%) of distractor-present trials (Fig. 1a). Probe displays always appeared 500 ms after target offset 

(to avoid response-related contamination of the EEG traces immediately following target onset) and 

remained on the screen until the participant completed their orientation dial-up using the mouse (or until 

dial-up time ran out, see below). Auditory cues occurred in half the trials and consisted of 500-Hz pure 

tones that were presented for 50 ms. Cues indicated that the target would occur after 500 ms, but did 

not predict whether a distractor would also be present (i.e. cue and distractor presence were manipulated 

orthogonally). Inter-trial intervals (ITIs), defined as the interval between the response and the next 

target, did not differ between cue present and absent trials. To maximise the effect of the cues, ITIs 

were drawn from a truncated negative exponential distribution ranging between 600 and 5000 ms, with 

a mean of 1000 ms. Because this distribution approximates a flat hazard rate, target onset times were 

hard to predict, unless a cue was presented. 

 

Participants’ task was to reproduce the perceived orientation of the target stimulus as accurately as 

possible. To probe perception, we placed a probe grating on the screen, at a randomly drawn orientation. 

Participants used the computer’s mouse to dial-up the perceived target orientation and clicked once 

satisfied. Participants were given unlimited time to decide what to report once the probe display 

appeared, but had to complete their dial-up within 2500 ms once they initiated their response. At 

response completion, feedback was provided by turning the fixation cross green for 300 ms for 

responses closer than ± 15 degrees from the actual target orientation (with brighter green colours for 

more accurate responses); and red otherwise. In total, participants completed 30 blocks of 40 trials each, 

lasting about 1 hour.  

 
EEG acquisition and analysis 
EEG was acquired with Synamps amplifiers and Neuroscan acquisition software (Compumedics 

Neuroscan, North Carolina, USA). We used a custom 38-channel set up, sampling all electrodes 

posterior to the midline from the international 10-10 system and the rest from the associated 10-20 

system; thus providing highest density at posterior sites of interest. Data were referenced to the left 

mastoid during recording, and re-referenced to an average-mastoid reference offline. The ground was 
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placed on the left upper arm. Two bipolar electrode pairs recorded EOG. One pair was placed above 

and below the left eye (vertical EOG), whereas the other pair was placed lateral of each eye (horizontal 

EOG). Data were low-pass filtered by an anti-aliasing filter (250 Hz cutoff), digitized at 1000 Hz, and 

stored for offline analysis. All analyses were run on data with a sampling rate of 1000 Hz. Participant-

specific trial-averaged ERP and decoding time courses were subsequently smoothed with a Gaussian 

kernel with a 15 ms standard deviation.  

 

Data were analysed in Matlab using a combination of FieldTrip (Oostenveld et al., 2011) and custom 

code. During data preprocessing, we cut out our epochs of interest (relative to target onset), and removed 

excessively noisy epochs based on visual inspection of the signal’s variance across trials and channels. 

Artifact rejection was performed on all trials, without knowledge of the conditions to which trials 

belonged. We additionally removed all trials in which targets and distractors may not have been 

perceived properly as a result of blinking. To this end, we iteratively removed all trials in which the 

vertical EOG contained samples with a z-score higher than 5 anywhere within the 400-ms window 

surrounding target onset. 

 

Time frequency analysis was based on a short-time Fourier transform of Hanning tapered data. We 

estimated frequencies between 2 and 50 Hz in 1-Hz steps, using a 400-ms sliding time window that was 

advanced over the data in 80-ms steps. 

 
EEG orientation decoding 
Stimulus orientation decoding was based on the broadband time domain signal that was preprocessed 

in two ways. First, a 250-ms pre-target baseline was subtracted. Second, the classical alpha band was 

filtered out of this signal. This was done to ensure that conditional differences in decoding could not be 

attributed to conditional difference in the signal’s variance related to conditional differences in alpha 

amplitude (that we anticipated and observed). This is particularly relevant for interpreting the observed 

correlations of alpha amplitude (across trials) and amplitude modulation (across participants) with target 

orientation decoding. For filtering, we used an 8-14 Hz band stop Butterworth filter (two pass, filter 

order 4).  

 

Visual orientation decoding was based on the multivariate (across electrode) Mahalanobis distance 

metric (as in Wolff et al., 2015; 2017), using the data from the eight most posterior electrodes that 

showed the largest evoked response (O1, Oz, O2, PO7, PO3, POz, PO4, PO8). For generalization, we 

applied a leave-one-out procedure. Because this procedure provides a trial-wise decoding estimate, this 

also enabled subsequent trial wise correlation analyses with pre-target alpha amplitude. Per trial, we 

calculated the Mahalanobis distance between that trial (the test trial) and all other trials (the training 

trials) in which the target orientation was at a particular angular difference from the test trial. We did 

this for 19 bins of training trials centered at angular differences ranging from minus 90 to plus 90 

degrees (i.e. in steps of 10 degrees). For each bin, we included training trials whose angular difference 

from the test trial were within ± 22.5 degrees of the bin’s center. We then mean normalized the resulting 

distances across all angular bins and averaged the outcome across all trials within each of the 

experimental conditions. We ran this analysis separately for each time point, thus resulting in a time-

resolved orientation tuning profile. For interpretability, we inverted this profile such that angular bins 

for which neuronal responses that were more similar to the test trial (and thus associated with a lower 

Mahalanobis distance) were associated with larger values. To capture orientation decoding in a single 

metric (per time point), we multiplied the mean normalized tuning profile with an inverted cosine 

function and summed the result across all angular difference bin (as in Sprague et al., 2016; Wolff et 

al., 2017). Due to low trial numbers, we did not consider the distractor present trials with an ISI of 20 

or 200. Target decoding incorporated all remaining trials, whereas distractor decoding incorporated all 

remaining distractor present trials.  
 

Statistical analysis 
Behavioural performance data (quantified as the absolute angular deviation between target orientation 

and reported orientation) were analysed using conventional repeated-measures Analysis of Variance, 

combined with paired samples t-tests.  
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Decoding time courses were statistically compared between conditions using cluster-based permutation 

tests (as described in Maris and Oostenveld, 2007) that effectively deal with the multiple comparisons 

encountered along the time axes. Specifically, this approach clusters neighbouring samples that survive 

univariate statistical testing (p<0.05, two-tailed) and evaluates these clusters under a single permutation 

distribution of the largest cluster that is observed after permuting conditions (at the level of participant 

specific condition averages). We used 1000 permutations and considered both positive and negative 

clusters. For target decoding, we evaluated the main effects of cue presence and distractor presence, as 

well as their interaction (defined as cue present vs. absent for distractor present vs. absent trials). For 

distractor decoding, we could only quantify the effect of cue presence.  

 

In a complementary analysis, we also evaluated latency differences in these time courses, on the basis 

of a jackknife approach (as described in Miller et al., 1998). Latency differences were estimated as the 

temporal difference (between cued and uncued conditions) at which the distractor interference effect 

first crossed the value associated with 50% of the maximal interference effect (the latter being estimated 

on the basis of the average of the cued and uncued interference effects). To obtain a jackknife estimate 

of the reliability of the observed latency difference, we iteratively removed one participant from the 

participant pool and compared the resulting latency difference to the one observed when all participants 

were included. The jackknife based estimate of the standard error then allowed us to compare the 

observed latency difference against 0 (i.e. the null hypothesis of no latency difference) under the 

student’s t-distribution.  

 

Correlations between EEG amplitudes (across trials) and amplitude modulations (across participants) 

were quantified using Pearson’s correlation coefficients. EEG amplitudes were averaged over all 

channels posterior to the midline where alpha amplitude, and its cue-related modulation, were most 

prominent. For the trial-wise correlation analysis, we partialled out trial number as well as a trial-

specific noise estimate that was anticipated to be associated with high amplitude (across most 

frequencies) and low decoding, thus constituting a potential confounding variable. This noise estimate 

was obtained by taking the trial-specific variance (across samples) of the high-pass filtered (40 Hz cut-

off) data, and averaging this over all posterior electrodes. Correlations were again evaluated using 

cluster-based permutation analysis to circumvent the multiple comparisons encountered along the time 

and frequency axes.  

 

All reported inferential statistics involved two-tailed tests, at an alpha level of 0.05. 
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Supplemental Information 
 

 
 
 

Figure S1 (related to Fig. 3). Event-related potentials as a function of cue and 

distractor presence. (a) Time courses of the ERP in the selected eight most posterior 

channels as a function of cue and distractor presence (cf. Fig. 3a). Horizontal lines indicate 

significant temporal clusters for the main effects of cue presence (cyan) and distractor 

presence (magenta). No significant interaction effect was observed. Data are baseline 

corrected by a 250-pre-target baseline. Topography inset shows the visually-evoked ERP 

component between 75-300 ms post-target (collapsed across all trial types). (b) Difference 

ERP for distractor present vs. absent trials, as a function of cue presence. (c) Time courses 

of the main effects of cue and distractor presence, as well as their interaction. The 

interaction is expressed as the difference between cue present vs. absent trials in distractor 

present vs. absent trials (cf. Fig 3c). (d) Scatter plot showing absence of a correlation 

between the main cueing effect on the ERP (130-229 ms post-target), and the main cueing 

effect on target orientation decoding (118 to 248 ms post-target). Individual data points 

represent individual participants (n = 30). 
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Figure S2 (related for Fig. 2). Cross temporal decoding between cued and uncued trials reveals no cueing 

effect on the latencies of either target or distractor decoding. (a) Schematics of potential cueing effects on 

target (left) and distractor (right) decoding (taken from Fig. 2), together with predicted pattern in cross-

temporal decoding analysis. If cueing results in an earlier target representation, then the cross-temporal plot 

(training on uncued trials and testing on cued trials) should reveal a leftward shift from diagonal when 

considering the decoding of the target orientation (e.g., the code at t = 100  during cued trials should resemble 

the code at t = 100+x in uncued trials). Similarly, if cueing results in delayed distractor coding, then this should 

reveal a rightward shift from the diagonal when considering the decoding of the distractor orientation. (b) 

Observed cross-temporal decoding data when training on uncued trials and testing on cued trials. For both 

target and distractor decoding, these plots reveal a clear diagonal focus. Thus, while the “orientation code” is 

highly dynamic over time, the latencies of this dynamic code remain highly similar between cued and uncued 

trials. 
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