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Abstract 

 

Complex traits can share a substantial proportion of their polygenic heritability. 

However, genome-wide polygenic correlations between a pair of traits can mask heterogeneity in 

their shared polygenic effects across loci. We propose a novel method (WML-RCP) to evaluate 

polygenic covariance between two complex traits in small genomic regions using summary 

association statistics. Our method makes no assumption about the causality of one trait on the 

other, but rather tests for evidence that the polygenic effect at a given region affects two traits 

concurrently. We show through simulations that our method is well calibrated and more 

powerful than other co-localisation methods under a polygenic model. As small genomic regions 

are more likely to harbour specific genetic effects, our method is ideal to identify heterogeneity 
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in shared polygenic covariance across regions. We illustrate the usefulness of our method by 

addressing three questions related to cardio-metabolic traits. First, we explore how regional 

polygenic covariance can inform on the strong epidemiological association between HDL 

cholesterol and coronary artery disease (CAD), suggesting a key role for triglycerides 

metabolism. Second, we identify a ~4Mb region including PPP1R3B on chromosome 8p23.1 

with paradoxical polygenic covariance between triglycerides and BMI, as well as evidence of 

polygenic inheritance and pairwise covariance with multiple other metabolic traits. Finally, we 

investigate the potential role of PPARγ activators in the prevention of CAD. Our results provide 

a compelling argument that shared heritability between complex traits is highly heterogeneous 

across loci. 

 

Introduction 

 

Most complex traits follow a polygenic model of inheritance, whereby thousands of 

common genetic variants contribute to phenotypic variance. Furthermore, genetic variance is not 

spread evenly throughout the genome but rather tends to concentrate in specific regions1-3. While 

shared polygenic heritability between pairs of complex traits has been shown at a genome-wide 

level4, there are currently no methods to evaluate regional polygenic covariance between two 

traits using summary association statistics. Existing methods for regional covariance either use 

individual-level data5,6 or test for co-localisation of single variant associations without 

considering polygenic inheritance7-10. Nonetheless, the observation that a majority of polygenic 

heritability lies in variants associated below genome-wide significance coupled with the 

concentration of such associations at specific loci dictates the need for a method that can 
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estimate polygenic covariance within small (~1 Mb) regions. As each genetic region includes a 

different set of genes, genome-wide correlations will miss heterogeneity in the contribution of 

individual genes to shared heritability. Also, current co-localisation methods have been designed 

to identify linked eQTLs7,11, which typically harbour very strong associations unlike most other 

complex traits. 

 

We now propose a novel method (WML-RPC) to estimate the regional polygenic 

covariance between two traits, retaining all variants in a given region irrespective of linkage 

disequilibrium (LD) and using summary association statistics. Our method adopts a weighted 

maximum likelihood approach to estimate the regional polygenic variance of each trait and their 

polygenic covariance. It assumes random polygenic effects, or in other words, that multiple 

genetic variants are associated with a trait in each region. Our framework builds on previous 

work1,12 and has the distinct advantage of being robust to misspecification of either LD or 

genetic effect sizes. Unlike other approaches, our method makes no assumption about the causal 

relationship of one trait over the other but rather is intended to test whether a single polygenic 

effect affects two traits concurrently at a given locus. In addition, as WML-RPC provides 

estimates for the strength of the polygenic covariance, it can be used to test for the presence of 

covariance or alternatively for deviation from a set level of covariance. We illustrate the 

usefulness of our method by applying it to three questions related to cardio-metabolic traits, 

bringing novel insights into the inverse association of HDL cholesterol with coronary artery 

disease (CAD), identifying a region on chromosome 8p23.1 with multiple strong signals of 

pairwise genetic covariance, and exploring the role of PPARγ activators in the prevention of 

CAD. 
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Results 

 

Simulations with 1000 Genomes Project Haplotypes 

 

We simulated two traits using phased 1000 Genomes (1000G) Project13 haplotypes. The 

simulated regions comprised 700 SNPs, corresponding to a physical distance of ~1Mb, and 

summary association statistics were generated in two distinct populations of 100,000 participants 

each. Assuming realistic levels of genetic association, there was no type I error inflation when 

either or both traits were truly genetically associated in the absence of any genetic covariance.  

Power to detect genetic covariance was dependent on genetic effect sizes and strength of true 

underlying genetic covariance (Figure 1). We evaluated the influence of correlated error terms as 

could occur if summary association statistics were derived from overlapping sets of participants. 

With 25% of participants overlapping and the non-genetic correlation between traits set at 

� � 0.2, the impact on both type I error rate and power was minimal (Figures S1 and S2). We 

also tested a more extreme scenario that assumed a complete overlap in participants (i.e. 

correlation of non-genetic error terms of 0.2). Again, minimal type I error inflation was observed 

under the null hypothesis of no covariance (Figures S1 and S2). Finally, we sought to benchmark 

our method against two recently described co-localisation methods8,10. Both methods assess the 

possibility that a single causal variant underlies a genetic association with two traits. As expected 

given their model assumptions, neither method performed well in the presence of polygenic 

inheritance, with both showing inflated type I error rates and decreased power as compared to 

WML-RPC (Figure S3).   
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Insights into the relationship between HDL cholesterol and coronary artery disease 

 

To illustrate how regional polygenic covariance can provide novel epidemiological 

insights, we first explored the genetic relationship between HDL cholesterol (HDLc) and 

coronary artery disease (CAD) using summary association statistics from large genetic meta-

analyses. Blood HDLc concentration is one of the strongest predictor of decreased CAD risk in 

epidemiological studies14, yet the causality of this association remains controversial. Several 

Mendelian randomization studies have been conducted to address this question, supporting a lack 

of causal relationship15-19. Furthermore, pharmacological interventions to raise HDLc have thus 

far been disappointing20-22, further strengthening the hypothesis of a non-causal relationship. If 

the relationship truly is non-causal, then one or more upstream biological pathways can be 

expected to jointly affect HDLc concentration and risk of CAD, thus explaining the strong 

epidemiological association. In other words, there must exist some underlying causal risk 

factor(s) that leads to decreased HDL cholesterol while increasing the risk of CAD, even if 

HDLc itself is an epiphenomenon. Regional polygenic covariance can help address this question 

by identifying regions whose effects on both HDLc and CAD are consistent with 

epidemiological studies, providing insights into the identity of those biological pathways 

responsible for the strong epidemiological association.  

 

We divided the genome into 2,687 regions of ~ 1 Mb and determined which regions 

showed evidence of polygenic covariance between HDLc and CAD. Keeping only the 673 

regions with at least nominal evidence (p < 0.05) of polygenic association with either HDLc or 

CAD, we tested for regional polygenic covariance and applied a conservative Bonferroni 
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correction (p <0.05/673).  Consistent with a non-causal role of HDLc in CAD, none of the 4 

regions identified are directly involved in HDL production (e.g. the APOA1 locus) and 

heterogeneity in polygenic covariance was present, with one region having positive polygenic 

covariance while others had negative covariance (Table 1). The three regions with significant 

negative polygenic covariance between HDLc and CAD are of particular interest since they 

could potentially underpin the epidemiological association. Tellingly, all three of them were 

located at loci known to be directly related to triglycerides metabolism. Both the LPL and TRIB1 

loci are strongly associated with fasting triglycerides23 while APOE is linked to the postprandial 

regulation of triglyceride-rich lipoproteins24. A single region had significant (p = 6.2 x10-5) 

positive covariance, encompassing the gene encoding for hepatic lipase (LIPC). LIPC deficiency 

is known to lead to increased HDLc25 and triglycerides-rich intermediate-density lipoproteins 

(IDL)26, but its role in CAD remains controversial. Consistently, genome-wide significant 

positive polygenic covariance between HDLc and triglycerides was also observed at the locus, 

the only locus across the genome with positive covariance (data not shown). Overall, our results 

support the hypothesis the role of HDLc as a marker of triglycerides levels can help explain the 

strong epidemiological association with CAD. Triglycerides are known causal mediators of 

CAD19. Their levels are notoriously variable and can increase dramatically in the post-prandial 

state.  As HDLc concentrations are both more stable and inversely correlated to triglycerides 

concentrations, they can provide a surrogate for long-term exposure to triglycerides.  Indeed, 

non-fasting triglycerides, although seldom measured, have been shown to better predict CAD 

risk than fasting measurements27. Our results also suggest that high HDLc caused by decreased 

LIPC activity increases risk of CAD. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2017. ; https://doi.org/10.1101/143644doi: bioRxiv preprint 

https://doi.org/10.1101/143644
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

 

Triglycerides and Body Mass Index (BMI) 

 

Increased BMI is strongly associated with increased blood triglycerides (TG) levels and 

evidence suggests this relationship reflects a causal effect28,29.  We sought to determine if, even 

in the context of this well-established relationship, there were loci affecting TG and BMI in 

opposite directions. Similar to the previous analysis, we only kept the 841 regions with at least 

nominal evidence (p < 0.05) of polygenic association with either TG or BMI, and then tested for 

regional polygenic covariance, applying a conservative Bonferroni correction (p < 0.05/841).  A 

single region on chromosome 8p23.1 had significant negative polygenic covariance (Figure 2 

and Table S1).  A closer inspection revealed that this region was flanked by three other regions 

showing a similar pattern of association.  Polygenic associations were stronger than univariate 

ones, as evidenced by comparing polygenic regional association p-values to minimum univariate 

p-value in the corresponding regions.  Merging all four regions together resulted in a much 

stronger polygenic association signal, as expected.  The merged region itself is flanked by poorly 

characterized and difficult to sequence regions.  Remarkably, polygenic covariance was also 

observed with multiple other metabolic traits (Table S2).  The extended region encompasses the 

PPP1R3B gene, among others30,31.  Product of the PPP1R3B gene is the regulatory subunit of 

PP1, a phosphatase involved in the modulation of glycogen synthesis in the liver and whole-body 

glucose homeostasis32. This locus has been implicated in genetic associations with several traits, 

including fasting glucose, fasting insulin33, lipids34, C-reactive protein35 and plasma lactate36. 

 

Thiazolidinediones, PPARγ and risk of CAD 
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Pharmacological activation of PPARγ with thiazolidinediones is used to treat and prevent 

diabetes. However, the role of thiazolidinediones in prevention of CAD is controversial.  Post 

hoc analyses of randomized trials identified a potential deleterious effect of thiazolidinediones on 

CAD risk37, which led to the removal of all thiazolidinediones from clinical use except one, 

pioglitazone.  Based on these observations, a large clinical trial addressing the issue of CAD risk 

reduction by rosiglitazone was stopped early38, thus leaving this important clinical question 

unanswered.  The controversy was further fueled by the recent publication of the IRIS trial 

showing a significant reduction in cardiovascular events in individuals randomized to 

pioglitazone39.  Regional polygenic covariance can provide insights into the issue.  We tested the 

region surrounding PPARG (+/- 500 Kb) for evidence of association with cardiometabolic traits.  

As expected from the known pharmacological effects of thiazolidinediones40, significant (p < 

0.05) regional associations were observed with diabetes, triglycerides, HDLc, LDLc and BMI.  

We then tested this set of traits for polygenic covariance with diabetes and CAD (Table 2).  

Significant and positive polygenic covariance was observed between diabetes and triglycerides, 

triglycerides and CAD, and LDLc and CAD.  Significant negative polygenic variance was 

observed between diabetes and BMI. However, polygenic covariance was not significant 

between diabetes and LDLc, or diabetes and CAD.  Polygenic covariance between LDLc and 

CAD is of particular interest since pioglitazone has recently been shown to reduce LDL particle 

number and size 41,42.  This observation and the polygenic covariance with triglycerides support 

the hypothesis that the protective effect of pioglitazone (and perhaps other thiazolidinediones) on 

CAD risk is the consequence of its beneficial effect on atherogenic lipoproteins. 

 

Discussion 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2017. ; https://doi.org/10.1101/143644doi: bioRxiv preprint 

https://doi.org/10.1101/143644
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 

 

We herein propose a novel method to estimate regional polygenic covariance between 

two traits.  Our method is distinct from other co-localisation tests as it is based on a polygenic 

model of inheritance and it makes no assumptions about the causal relationship between traits. 

This approach is particularly attractive when studying complex traits with strong polygenic 

inheritance, where any single genetic association is unlikely to fully capture a large proportion of 

genetic effects.  Our method has several other advantages, including the ability to adjust for LD, 

the possibility to test specific hypotheses regarding polygenic covariance, and the use of 

summary association statistics as inputs.  WML-RPC has wide ranging applications, as we have 

illustrated.  It can help discover biological pathways explaining epidemiological associations 

such as for HDLc and CAD, identify regions with complex patterns of polygenic covariance, or 

help gain insights into the role of single genes or drug targets.  

 

Our examples make a compelling argument that shared heritability is highly dependent 

on regional genetic effects.  Even for established relationships such as the one between BMI and 

triglycerides, some regions could be found where increased BMI was linked to decreased 

triglycerides.  Unless a locus has a direct effect on a risk factor (e.g. the APOB or LDLR loci on 

LDLc), it thus cannot be assumed covariance implies a causal effect of the risk factor on 

outcome.  For instance, genetic covariance between HDLc and CAD at the LIPC locus, 

combined with prior knowledge of the effect of LIPC on intermediate density lipoproteins, 

suggests that decreased LIPC activity leads to both increased HDLc and CAD risk.  Inclusion of 

that locus in Mendelian randomization studies may thus result in biased inferences about the 

causal role of HDLc in CAD.  These considerations stress the importance of taking the biological 
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effects of each genetic region into account before concluding on the relationship between a risk 

factor and outcome.  Knowledge of biological effects can also provide insights into 

epidemiological relationships, such as regions with negative covariance between HDLc and 

CAD pointing to triglycerides metabolism as a key factor to explain the epidemiological 

association.  

 

WML-RPC can also be used to explore candidate gene regions.  We found that regional 

polygenic associations recapitulate the effects of PPARγ agonist thiazolidinediones on cardio-

metabolic traits.  Our results support the hypothesis thiazolidinediones can reduce CAD risk 

through their effect on lipids, particularly LDLc and triglycerides.  In line with this hypothesis, 

recent data have shown pioglitazone decreased the concentration of atherogenic lipoproteins 41,42. 

However, genetic covariance with CAD was only significant with LDLc and triglycerides but not 

diabetes itself, as might have been expected given triglycerides had significant covariance with 

both diabetes and CAD.  While this could have been the results of the play of chance, it is also 

possible that genetic variants regulating PPARG function vary from one tissue to the other, such 

that genetic regulation of LDLc at the PPARG locus (and thus risk of CAD) only partially 

overlaps with its effect on diabetes.  Indeed, tissue-specific effects of PPARG have been 

described 40, with adipocytes mainly responsible for glycemic effects and hepatocytes regulating 

atherogenic lipoprotein metabolism 43.  It is likewise possible thiazolidinediones have varying 

affinities for different tissues.  This illustrates a further advantage of our method as it is agnostic 

to gene regulation mechanisms and thus not dependent on known eQTL associations, which may 

vary according to tissue and cellular context. 
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There are some limitations. First, WML-RPC assumes that a single genetic effect (i.e. 

gene) underlies covariance at each region, which might not always be the case even within small 

regions.  Second, some loci might not fit a polygenic model, for example when there is a single 

very strong association at a locus, and other methods might be better suited.  However, as we 

have shown at the PPP1R3B locus there clearly are situations where the polygenic model best 

captures genetic variance and covariance.  Third, statistical power to detect genetic covariance 

depends on sample size and genetic variance.  While confident in regions identified using 

stringent statistical criteria, many other truly covariant regions have likely been missed.  Fourth, 

many regions have no known candidate genes, in which case our method can point to regions of 

interest but not necessarily biological interpretations.  Nonetheless, improving knowledge of 

gene function and regulation, combined with the expanding repertoire of genome-wide 

association studies, should provide increasing opportunities for WML-RPC to lead to novel 

insights into complex traits. 

 

In conclusion, we present a novel method to estimate regional polygenic covariance using 

summary association statistics.  WML-RPC can estimate polygenic covariance within relatively 

small genetic regions, enabling a more detailed characterization of genetic covariance than 

genome-wide genetic correlations.  Our method can be used to identify pathways shared between 

two traits, pinpoint regions of interest, or test specific hypotheses for a given gene. Our examples 

illustrate the heterogeneity in pairwise genetic covariance across loci.  They support the notion 

that genetic effects are specific to each region and that unless a locus directly affects a risk 

factor, caution must be exercised when making causal inferences.  
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Methods 

 

Estimation of regional genetic variance and covariance 

 

We recently described a simple procedure to estimate regional genetic variance using 

summary association statistics, adjusting for linkage disequilibrium (LD)12. We now propose to 

adapt this procedure to estimate polygenic covariance between a pair of traits using a weighted 

maximum likelihood (WML) approach. Suppose the genotype matrix is fixed while the true 

genetic effect is a random vector �, whose individual components, i.e. the effect size of SNPs, I 

= 1,2,…,m, have mean zero and variance ��.  The true, unobserved, genetic model can be 

expressed as: 

 

� � 	���� 
 � (Equation 1) 

 

where ε is a vector of standard normal error with identity variance covariance matrix and the 

genetic variance is given by ���. Without loss of generalizability, we assume the observed 

quantitative trait (y) and the n x m genotype matrix X standardized to have zero mean and unit 

variance throughout. The pairwise LD (r2) between two SNPs k and l is denoted by r2
k,l . For a 

SNP d, the following LD adjustment (
�) can be defined as the summation of LD between the dth 

SNP and 200 SNPs upstream and downstream: 

 


� � ∑ ��,�����		
�
���		  (Equation 2) 
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with a distance of 200 SNPs assumed sufficient to ensure the extend of LD (other values might 

be used). Only including SNPs with summary GWAS statistics in the sum, variance explained by 

each SNP d is given by: 

 

��
� � ��

�


�
 (Equation 3) 

 

where bd denotes the univariate regression coefficient commonly reported in GWAS results with 

sample size N (assuming genotypes from external GWASs have also been standardized to have 

zero mean and unit variance). Assuming a strictly additive genetic model where each SNP 

contributes additively to a trait without any interaction or haplotype effects, we have previously 

shown12 that ∑ ��
��

�
�  is an estimator of the regional variance explained ��� by demonstrating 

the approximated equivalence between the expected total genetic variance over a region 

 

��∑ ��
��

�
� � � ��� 
 �

�
∑ �


�

�
�
�     (Equation 4)  

  

and the multiple linear regression variance explained  

 

����� � ��� 
 �

�
    (Equation 5) 

 

when the sample size is sufficiently large. 

 

 Since the true genetic effects are given by a random vector �, this implies: 
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�~���, ��
�	�	��	�	�

��

 �	�	�

��
� 

or marginally: 

��~��0, 
��� 
 �

�
�  (Equation 6) 

 

As we are interested in estimation of �� via the surrogate ∑ ��
�


�

�
�
�  , the following weighted 

likelihood function is maximized to find ���: 

 

 !"#���|�� � % ∑ �

�
�
�log )
��� 
 �

�
* 
 ��

�


��
��

�

�

��
�
�    (Equation 7) 

 

where the log-likelihood of each observed ��+ is weighted by the inverse of the LD adjustment 

such that if two SNPs were in complete LD, then effectively only one SNP contributes to the log-

likelihood for the genetic variance. 

 

This framework can be extended to study the genetic covariance between a pair of traits. In this 

scenario we have ����� and ����� the summary association statistics for trait 1 and 2, respectively, 

following a bivariate normal distribution: 

 

,��
���

�
�
�	�- ~���, .�� (Equation 8) 

with covariance matrix: 
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���� 
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��

Cov��� 
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Cov��� 
 Cov����� 
���� 
 1
�� 3

4
4
5
 

 

Where ��� and ��� are the genetic variance of trait 1 and 2, respectively, and ��and �� the 

corresponding sample sizes. Cov���represents the genetic covariance between both traits 

whereas Cov����� is the error term covariance and can be assumed to be zero. 

 

The weighted likelihood function can be adapted using genetic variance estimates from the 

previous weighted likelihood: 

 

log#6Cov���7��, ����, ���� ,Cov�����  8 � % ∑ �

�
�
�log|.�| 
 ��

� .�������
�
�  (Equation 9) 

 

The maximum likelihood estimates of Cov��� enables the use of a likelihood ratio test for 

hypothesis testing. While Cov����� could be estimated, we found that under realistic scenarios its 

effect is negligible and has therefore been set to zero for current analyses.  This might not be 

ideal when the correlation of error terms is very strong, in which case a non-zero Cov����� could 

be used in the likelihood estimation.  As a note, Cov��� estimated from empirical data can cause 

numerical estimates of the genetic correlation to be higher than 1 or lower than -1, and will 

correspondingly be set to 1 or -1.  Also note that stable and meaningful estimates of  Cov��� can 

only be obtained when both trait 1 and 2 have non-zero genetic variance. Finally, although the 

aim of the method is to estimate regional polygenic covariance, it is important to confirm there is 
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no bias in regional polygenic variance under the null hypothesis of no genetic association, which 

we checked using simulations (Figure S4).  

 

Simulations using 1000 Genomes Project data and study of cardio-metabolic traits 

 

We tested our method using summary association statistics from large genetic meta-

analyses of cardiometabolic traits, including coronary artery disease44, LDL cholesterol, HDL 

cholesterol, triglycerides45, type 2 diabetes46, body mass index47, and blood pressure48. We 

identified a common set of SNPs among all corresponding meta-analyses and subsequently 

divided the genome into blocks of ~1Mb minimizing inter-block LD, as described in12.  We used 

1000G13 participants of European descent as the reference panel for LD as it is the dominant 

ancestry in the studies included.  
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Figures Legends 

 

Figure 1: Performance of WML-RPC in simulated data using 1000 Genomes Project haplotypes. 

Power to detect polygenic covariance at an alpha level of 0.001 according to true polygenic 

covariance in 1,000 simulated replicates with 700 SNPs from the 1000G Project. In panel A, 

sample size ranged from 25K to 100K individuals while keeping the true regional genetic 

variance constant at 0.005 for each trait. In Panel B, sample size was set at 100K individuals, but 

the genetic variance varied from 0.001 to 0.005. In Panel C, the mean (SD) estimated genetic 

covariance is illustrated as a function of the true (red dashed line) genetic covariance, assuming a 

sample size of 100K and genetic variance of 0.005 for both traits. 

 

Figure 2: Genetic associations and polygenic covariance of BMI and triglycerides at the 8p23.1 

locus 

Genetic associations with BMI at the 8p23.1 locus are illustrated with blue points (univariate 

SNP p-values), short horizontal lines (regional genetic variance p-values) and long horizontal 

line (regional genetic variance p-value of the merged region). Corresponding p-values for 

triglycerides are shown in red.  BMI-triglycerides regional polygenic covariance p-values are 

similarly illustrated with cyan horizontal lines. 
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Table 1: Regions with significant polygenic covariance between HDLc and CAD 

 

CHR Position (Kb) 
Candidate 

gene 

Candidate 

Gene function 

HDLc 

polygenic 

regional 

p-value 

CAD 

polygenic 

regional 

p-value 

Polygenic covariance 

(95% CI) 

Polygenic 

covariance 

p-value 

8 18,869-19,875 LPL Lipoprotein triglyceride lipase 1.03E-266 7.90E-05 -0.93 (-1.00, -0.74) 1.31E-07 

8 126,042-127,062 TRIB1 Regulation of hepatic lipogenesis 5.67E-39 4.45E-03 -1.00 (-1.00, -0.74) 4.00E-05 

15 58,311-59,348 LIPC Hepatic triglyceride lipase <1.00E-323 2.12E-01 1.00 (0.85, 1.00) 6.17E-05 

19 44,789-45,840 APOE 
Catabolism of triglyceride-rich 

lipoproteins 
1.50E-31 7.51E-07 -0.86 (-1.00, -0.66) 2.76E-06 
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Table 2: Polygenic covariance at the PPARG locus 

 

Trait Regional 

association 

p-value 

Polygenic covariance 

with diabetes 

(95%CI) 

Polygenic covariance  

with diabetes p-

value  

Polygenic 

covariance 

with CAD (95%CI) 

Polygenic 

covariance 

with CAD p-value 

BMI 0.036 -0.98 (-1.00,-0.25) 0.012 0.18 (-0.95,1.00) 0.76 

Diabetes 1.62E-03 N/A N/A 0.41 (-0.56,1.00) 0.42 

HDL 4.19E-03 -0.51 (-1.00,0.12) 0.14 0.27 (-0.78,1.00) 0.61 

LDL 2.99E-13 0.36 (-0.14,0.87) 0.18 0.99 (0.36,1.00) 1.71E-3 

Triglycerides 5.20E-06 0.93 (0.54,1.00) 9.9E-4 0.90 (0.00,1.00) 0.039 
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