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Abstract

We hypothesized that transcription factors (TFs) recognize DNA shape without nucleotide
sequence recognition. Motivating an independent role for shape, many TF binding sites lack
a sequence-motif, DNA shape adds specificity to sequence-motifs, and different sequences
can encode similar shapes. We therefore asked if binding sites of a TF are enriched for
specific patterns of DNA shape-features, e.g., helical twist. We developed ShapeMF, which
discovers these shape-motifs de novo without taking sequence information into account.
We find that most TFs assayed in ENCODE have shape-motifs and bind regulatory regions
recognizing shape-motifs in the absence of sequence-motifs. When shape- and sequence-
recognition co-occur, the two types of motifs can be overlapping, flanking, or separated by
consistent spacing. Shape-motifs are prevalent in regions co-bound by multiple TFs. Finally,
TFs with identical sequence motifs have different shape-motifs, explaining their binding at
distinct locations. These results establish shape-motifs as drivers of TF-DNA recognition
complementary to sequence-motifs.
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Introduction

Diverse cellular processes, including gene regulation, chromatin organization, provirus
activity, and DNA replication, depend upon proteins binding to specific genome sites, either
alone or in complexes with other molecules. Protein-DNA recognition is thus fundamentally
important and critically informs studies of development, disease, and evolution. Protein
bound regions can be measured in living cells via imaging and genomic techniques, such as
chromatin immunoprecipitation followed by sequencing (ChIP-Seq). To pinpoint binding
sites within bound regions, predict binding in the absence of experimental measurements,
and shed light on binding specificity, a variety of in vitro binding affinity assays and
sequence analyses have been deployed.

The specificity of protein-DNA recognition is commonly approached as a problem of
discriminating bound nucleotide sequences from other sequences (Bailey 2011, Arvey,
Agius et al. 2012, Ghandi, Lee et al. 2014, Setty and Leslie 2015). While most methods focus
on enriched patterns of nucleotides, the resulting sequence-motifs become more predictive
of in vitro and in vivo binding when supplemented with structural data based on shape
features of the bound DNA (Zhou, Shen et al. 2015, Mathelier, Xin et al. 2016). However, the
role of DNA shape in binding specificity has not been investigated outside the context of
sequence-motifs. Supporting the hypothesis that DNA-binding proteins can recognize DNA
structure without nucleotide recognition, transcription factors (TFs) can bind sequences
that do not match sequence-motifs identified using sequence-based searches (von Hippel,
Revzin et al. 1974, von Hippel and Berg 1986, Berg and von Hippel 1987, von Hippel 2007,
Wang, Zhuang et al. 2012, Yip, Cheng et al. 2012, Afek, Schipper et al. 2014, Slattery, Zhou et
al. 2014). Furthermore, the best sequence-based discriminative methods fail to identify a
subset of regions bound by TFs, including validated and predicted regulatory elements and
regions harboring polymorphisms that correlate with gene expression. Finally, different
nucleotides can encode similar DNA structure, so shape features have the potential to be
complementary to nucleotide features (Garvie and Wolberger 2001). We therefore sought
to investigate the independent role of DNA shape in protein-DNA binding.

To explore how frequently proteins recognize DNA structure and test the idea that
structural specificity can occur in the absence of nucleotide recognition, we pose a novel
question: are the binding sites of a protein enriched for characteristic patterns of DNA
shape features, such as roll, helical twist, propeller twist, and minor groove width? If so
these “shape-motifs” might explain many aspects of DNA recognition that are not
accounted for by sequence-motifs alone or by DNA shape profiles within sequence-motifs.
These open problems include binding to regions that lack sequence-motifs, differential
binding of proteins that have very similar sequence-motifs, and low sequence information
content positions in and flanking sequence-motifs. To investigate these questions, we
developed a novel Gibbs sampling algorithm to discover shape-motifs de novo without
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conditioning on the presence of a sequence-motif. Applying this method to more than 100
TFs and several different cell types, we find that most TFs recognize DNA shape
independent of nucleotide recognition.

Results

Many strongly bound regions lack a sequence motif

To motivate the need for shape-motifs, we first quantified the prevalence of TF binding
without nucleotide recognition. We called sequence motif hits for 110 TFs from regions
they bind in human ENCODE data from K562 (chronic myelogenous leukemia) and
Gm12878 (lymphoblastoid) cell lines. To broadly define sequence motifs for each TF, we
used a collection of position weight matrices (PWMs) from JASPAR (Sandelin, Alkema et al.
2004), TRANSFAC (Matys, Fricke et al. 2003), in vitro studies (Berger, Philippakis et al.
2006, Berger, Badis et al. 2008, Badis, Berger et al. 2009, Jolma, Yan et al. 2013), and de
novo motif-discovery methods, as were curated in (Kheradpour and Kellis 2014), plus up to
five de novo motifs per TF that we learned from its top 2000 peaks using gkmSVM (Ghandi,
Lee et al. 2014). Combining hits to any of these PWMs, we found that a large fraction of the
top 2000 peaks for each TF lack a sequence motif for that TF (Table S1). For a typical TF,
29.6% of peaks have no sequence motif. This fraction varies significantly across TFs (range
= 0.4-98%), but is fairly consistent between cell lines. These findings show that factors
other than direct nucleotide recognition are likely influencing TF DNA recognition at many
sites in the human genome.

An algorithm to discover variable-length shape-motifs de novo from unaligned
genomic regions

We hypothesized that one reason TFs can bind to regions with no evident sequence motifs
is their ability to recognize DNA shape independent of the underlying nucleotide sequence.
Since different sequences can encode the same values of a DNA structural feature, shape
recognition might occur in the absence of sequence motifs. To explore this idea, we first
defined the concept of a TF shape-motif, which is a significantly over-represented pattern
in the profiles of DNA shape features at the TF’s binding sites as compared to non-bound
regions (Fig. 1, see Methods). For instance, we would say that a TF has a minor groove
width shape-motif if its binding sites are enriched for windows with a particular sequence
of minor groove values (e.g., low, high, low) compared to flanking non-peaks. This
definition is based directly on the shape feature and is not conditional on the presence of
particular nucleotides. It therefore enables us to study shape preferences independent of
sequence preferences, which has not been done in previous analyses of DNA shape in the
context of TF binding.
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Our two-step algorithm to find shape-motifs is called ShapeMF (Fig. 1). It extends a typical
approach to sequence motif discovery to instead identify profiles of quantitative DNA
shape feature values. The resulting shape-motifs retain all the constraints that sequence-
motifs satisfy (see Methods). Before searching for shape-motifs, we translate DNA
sequences of bound regions and matched unbound regions into a vector of shape features
at each nucleotide. The shape features we utilize are helical twist (HelT), minor groove
width (MGW), propeller twist (ProT), and roll (Roll), which are estimated from molecular
dynamics simulations and available from the GBshape database (Chiu, Yang et al. 2015).
These could easily be extended to include additional structural features. Our algorithm
operates directly on the quantitative shape values for each site and does not use DNA
sequence in any other way. Different nucleotide sequences can encode similar shape, so an
enriched shape pattern in bound regions need not correspond to an enriched sequence
pattern.

In the first step of the algorithm, we apply Gibbs sampling to compute local alignments of
windows from shape-profiles of the bound regions (one per region) without using the
unbound regions. The second step uses this alignhment to compute a subset of windows
whose shape defines a pattern that significantly discriminates bound from unbound
regions. Different sets of unbound regions can be used to identify shape-motifs that are
discriminative in different contexts. By repeating the search with different window sizes,
the algorithm can identify variable-length shape-motifs. The final output includes only the
non-redundant motifs.

ShapeMF is implemented in Python and freely available at: https://github.com/h-
samee/shape-motif. The software takes as input sets of bound and unbound regions and
outputs enriched motif profiles with p-values.

Most TFs have at least one shape-motif

We applied ShapeMF to discover shape-motifs in the K562 and Gm12878 ChIP-Seq peaks of
110 TFs (201 ChIP-Seq datasets). For each TF in each cell line, we took the strongest 2000
peaks and extracted 100 base-pair (bp) windows centered at the peak-summit (i.e., the
location of maximum ChIP intensity) as bound regions and flanking 100-bp sequences
sampled 200-bp away as unbound regions (see Methods). We found that >80% of the TFs
in each cell-line have a shape-motif (71/84 TFs in K562, 50/63 TFs in Gm12878;
Bonferroni-adjusted p-value < 10~%; median false positive rate: 0.16-0.19) (Fig. 2A). Few
TFs have shape-motifs for all features. However, most TFs have a ProT-motif, while Roll-
motifs are much less common (Fig. 2B). We found shape-motifs up to 29 bp long, with an
average length of 15 bp (Fig. 2C), which is much longer than a typical sequence motif (6-10
bp) (Stewart, Hannenhalli et al. 2012). In the following analyses, we focus only on the TFs
for which we found shape-motifs.
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Shape-motifs are prevalent and distinct from sequence-motifs

We identified all significant sequence matches to each TF’s shape-motifs and sequence-
motifs within its genome-wide ChIP-seq peaks in each cell line (see Methods). While we
used all five gkmSVM sequence motifs for the TF, we allowed at most one shape-motif per
feature, thus using at most four shape-motifs per TF in each cell line. As such, our estimates
of shape-motif prevalence are likely conservative. We refer to shape-motif occurrences as
shape-sites, sequence-motif occurrences as sequence-sites, and overlapping occurrences of
both types of motifs as overlapping-sites.

This analysis identified thousands of shape-sites across the human genome, with a typical
TF having 1.56 shape-sites per peak (range: 1.03-5.18 per peak), compared to 2.60
sequence-sites (range: 1.08-4.51), and 3.12 overlapping-sites (range: 1.02-6.61) (Table S2).
The higher rate of sequence-sites and overlapping-sites could be driven in part by our
being more conservative in calling shape-motifs than sequence-motifs. The amount of TF
binding associated with each type of motif is explored below. Both sequence-sites and
shape-sites are more prevalent in the top peaks compared to less significant peaks or all
called peaks (Fig. S1). Shape-sites (Fig. 2D) generally occur within +30 bps of the ChIP-Seq
peak-summit, as do sequence-sites and overlapping-sites. However, most shape-sites do
not overlap a sequence-site (mean: 60.16%, range: 16.36-99.16%), though overlapping-
sites are common for certain TFs, such as USF1, USF2, BHLHE40, CTCFL, EGR1, FOS, and
YY1. The GC-content of shape-sites is very similar to that of sequence-sites (66.3% vs.
66.8% in K562, 63.8% vs. 63.4% in Gm12878) and is consistent with a previous analysis of
sequence-motif hits in these cell-lines (Wang, Zhuang et al. 2012). Interestingly,
overlapping-sites have particularly high GC-content (72% in K562, 69.8% in Gm12878).

Next, we built sequence logos from the shape-sites of each TF and compared these to its
sequence-motif logo. This revealed that most shape-motifs are not sequence-specific (Table
S3). Their average information content is less than half that of sequence-motifs (6.98 bits
versus 15.58 bits for sequence-motifs in TRANSFAC (Matys, Fricke et al. 2003)). Similarly,
average shape-motif information content per position is only 0.63 bits, compared to 1.27
bits for TRANSFAC sequence-motifs. The different shape features varied remarkably in
their sequence specificity, especially when we consider motifs of different features based
on information content per position (ICP): the maximum ICP of an MGW-motif and the
minimum ICP of a Roll-motif occur at around the same value of ~0.5 bits, whereas the ICP
of HelT-motifs is centered around ~0.5 bits and of ProT-motifs is more uniformly spread
within 0.1-1.2 bits (Fig. S2). Across shape features, TFs differed in the information content
of their shape-motifs by 3.15-fold. The TFs whose shape-motifs had high sequence
information content were largely the same as those with the highest number of
overlapping-sites (Fig. S3). Thus, sequence-motifs can encode DNA shape, but shape-motifs
frequently occur without a consistent DNA sequence pattern.
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TFs recognize DNA shape of regulatory elements in the absence of sequence motifs

We next examined ChIP-Seq peaks to determine if TF binding at each genomic location is
determined by shape-sites, sequence-sites, or a combination. Peaks fall into four categories:
(i) sequence-only, (ii) co-occurrence, (iii) shape-only, and (iv) no motif occurrence (Fig. 3A).
While TFs vary in the proportion of peaks with shape-motifs, shape-recognition is very
prevalent. Excluding TFs with no motifs of either type, the majority of peaks for most TFs
have a shape-site. For a typical TF, co-occurrence peaks are the most common category,
followed by shape-only peaks, with sequence-only peaks being the least common. On
average, ~20% of genome-wide peaks in a ChIP-Seq dataset are shape-only. For ~60% and
~50% TFs in the K562 and Gm12878 cell-lines respectively, more than 10% of genome-
wide peaks are shape-only (Fig. 3B). The TFs with the most shape-only peaks include
EP300, BCL3, MYC, and PAX5. These results demonstrate that most TFs can bind DNA
through shape recognition without underlying nucleotide specificity.

To more rigorously test whether shape-specificity is present in the absence of sequence-
specificity, we repeated shape-motif discovery on the set of peaks where we could not find
any occurrence of a gkmSVM motif. For 58/84 TFs in the K562 cell-line and 37/63 TFs in
the Gm12878 cell-line, we found a shape-motif (Fig. 3C). Importantly, 65% of the shape-
motifs discovered using peaks without sequence-motifs were also found using the top
peaks. Of these, ~80% are similar to the motifs discovered from the top peaks (Fig. 3D).
Altogether this analysis supports the conclusion that shape-specificity commonly occurs
independent from nucleotide recognition and is a potential explanation to TF binding in
regions that lack a sequence-motif.

To explore the functional role of TF shape recognition, we checked how likely a shape-only
peak is to occur in putative regulatory regions as compared to a peak that contains a
sequence motif (sequence-based, i.e., sequence-only or co-occurrence peak). We first
considered the active regulatory categories in ENCODE segmentation predictions
(ChromHMM and Segway combined) (Ernst and Kellis 2010, Ernst and Kellis 2012,
Hoffman, Buske et al. 2012). Shape-only peaks are more likely than sequence-based peaks
to occur in enhancers, weak enhancers, and TSS (Fig. 3E). We discovered the same trend
upon analyzing enhancers from EnhancerAtlas (Gao, He et al. 2016), ENCODE FAIRE-Seq
regions (Consortium 2012), regions in Hi-C contacts (Rao, Huntley et al. 2014), and
promoter-proximal and -distal regions (see Methods). These results strongly suggest a role
for shape-recognition in functional regulatory elements.

Shape-specificity is complementary to sequence-specificity

Because co-occurrence peaks are prevalent for most TFs, we sought to understand the
relationship between shape-recognition and sequence-recognition within these peaks. We
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therefore analyzed the spacing of shape-sites and sequence-sites for each TF to find
conserved patterns (Fig. 4A-F, Fig. S4; see Methods). Many pairs of shape- and sequence-
motifs lack any preference for occurring within, surrounding, or neighboring each other.
However, 39% of shape-sites completely contain a sequence-site for the same TF with
shape information encoded by and on both sides of the sequence-motif instance (Fig. 4A).
Some TFs representative of this trend are EFOS, ATF3, EGR1, ETS1, and ELF1. The converse
also occurs, but less frequently: 12% of shape-sites are completely contained within a
sequence-site (flanked on both sides by the edges of the sequence-motif) (Fig. 4B,C).
Examples include motifs for ATF1, GATA2, MAX, NR2F2, and SPI1. Thus, shape-motifs
explain binding to low sequence information content positions within and flanking
corresponding sequence-motifs.

We also observed many cases of side-by-side sequence-sites and shape-sites. The flanking
shape-sites occur both upstream (48% of motif pairs) (Fig. 4D) and downstream (45%)
(Fig. 4E) of sequence-sites, defined as up to 21 bp away with overlap up to 9 bp. In 2% of
motif-pairs, the sequence- and shape-motifs do not overlap (Fig. 4F). These often occur
with a conserved inter-motif spacing, which can be up to 16 bp. Examples of TFs with
conserved spacing include CTCF, CTCFL, NRSF, MAX, MAFF, and ATF1. Some of these cases
correspond to hetero- or homodimer binding motifs. For example, a MAFF MGW-motif
encodes a half-site corresponding to the MAFF recognition motif TGCTGA (Yoshida,
Ohkumo et al. 2005) (Fig. 4G), and a HelT-motif encodes the TGAGTCA motif of JUN, a well-
known co-factor of MAFF (Fig. 4H). Similarly, a HelT-motif for NFYB, commonly located 15
bp upstream of NFYB'’s sequence-motif, encodes the same sequence-motif (Fig. 4I). On the
other hand, a ProT-motif of NRSF (REST), commonly located 3 bp upstream of the sequence
motif of NRSF, does not encode the sequence motif of NRSF, and to our knowledge NRSF
does not have any dimerization partner (Fig. 4]). In the following subsection, we analyze
this phenomenon of shape-motifs of a TF specifying binding sites for its co-factors in more
detail.

Overall, these analyses suggest that shape- specificity is largely complementary to
sequence- specificity, and shape- and sequence-motifs collectively define a broader
genomic context defining the TF’s putative binding locations. Hence, the shape-specificity
of a TF cannot be fully captured by simply taking the shape-profiles underlying sequence-
sites. Our results also corroborate and extend the previous findings that implicate flanking
nucleotides of sequence-motifs in dictating TF-DNA binding (Dror, Golan et al. 2015) by
showing that flanking regions often harbor shape-motifs despite lacking preferred
nucleotide patterns.
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Some TFs extensively use shape-specific binding to co-bind with other TFs

Co-binding of TFs is a common phenomenon and is critical for precise spatio-temporal
regulation of gene transcription (Gerstein, Kundaje et al. 2012). However, we found that
about half (mean 53%) of a TF’s peaks that overlap peaks for other TFs (co-bound peaks)
have no sequence-sites and ~27% are shape-only (Fig. S5, see Methods). We therefore
sought to better understand the extent of shape-only binding as a mechanism for TFs to co-
bind with other TFs. We found that shape-only binding is more common than sequence-
based binding for ~28% of co-bound TF pairs (Fig. 5A, Fig. S6). TFs that mostly use shape-
only binding belong to multiple different protein families and include TFs that are known
to bind in the context of many other proteins (e.g., MYC, MAX, JUND, STAT5A, GATAZ,
CCNTZ2, MEF2A, PAX5, POUF2 (Gerstein, Kundaje et al. 2012)) or to function broadly in
genome-wide transcriptional regulation (e.g., EP300).

By examining the prevalence of shape-recognition for each TF in peaks co-bound by every
other TF, we learned that TFs use shape- and sequence-recognition differently when
binding alone and with each TF partner. First, many TFs enriched for sequence-only peaks
genome-wide (e.g, CHD2, REST, CEBPB, MEF2A, STAT5A, GATA2, JUND, MAX, MXI1,
MEF2C, MEF2A, POUF2, RUNX3) use mostly shape-sites when co-binding with other TFs.
There are also TF pairs where the modes of binding (mostly sequence-based vs. mostly
shape-only) of both TFs are different in co-bound peaks compared to the their genome-
wide preference (Fig. 5B, Fig. S6). However, the opposite scenario is more common: the
same mode of binding is found genome-wide and in co-bound regions (Fig. S7). Also,
whether a TF in a given pair will mainly have shape-only binding in their co-binding peaks
typically depends on the TF itself. Finally, some TFs that mainly utilize sequence-
recognition switch to shape-recognition being more dominant in regions co-bound with a
TF that is mainly shape-based and vice versa (Fig. 5C, Fig. S6). We conclude that while the
shape preferences of a TF are fairly consistent across the genome, there are many TF pairs
where co-binding is characterized by unique shape-motifs.

Co-bound TFs may interact physically and form a complex. In such cases, it is likely that
motifs of the partnering TFs occur with some bias in their inter-site spacing. Our
observation that co-bound TFs commonly use shape-specific binding led us to hypothesize
that some TFs of a DNA-binding TF-complex may bind DNA shape-specifically. This
scenario is in contrast with the general notion of “tethering” whereby it is assumed that
one or more TFs of a complex recognize the DNA by sequence-specificity and the other TFs
do not recognize DNA (Fig. 5D). To assess whether and to what extent TFs that lack
sequence-sites in co-bound regions use shape-sites versus tethering, we first evaluated
motif spacing and found that 2633 out of 3710 (71%) TF pairs have sites that occur with a
bias for short (~3 bps) inter-site spacing (Fig. S8). This high proportion raises the
possibility that these TFs might form TF-complexes. Interestingly, for 1245 of these pairs,
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motifs of one or both TFs are shape-motifs. These shape-sequence or shape-shape motif
pairs confirm that about a third of adjacent co-binding occurs with at least one TF using
shape recognition without nucleotide recognition. We also found that 57 of these pairs
have previously been reported to have physical interaction (Stark, Breitkreutz et al. 2006,
Ravasi, Suzuki et al. 2010) or predicted for tethered binding (Wang, Zhuang et al. 2012).
Some shape-shape motif pairs (e.g., JUN-TAF7, CTCF-YY1, ETS1-TAL1) were not reported in
the above studies but were validated elsewhere to have physical interaction or to co-bind
(Munz, Psichari et al. 2003, Palii, Perez-Iratxeta et al. 2011, Schwalie, Ward et al. 2013).
Therefore, we find an interesting line of evidence that some TFs in a DNA-binding complex
may actually bind DNA in a shape-specific manner, and it is unlikely that tethered binding
is the only explanation for TF complex members that lack sequence-maotifs.

In a ChIP-exo based study of TBX5 and NKX2-5 occupancy in cardiac differentiation, we
determined that the binding of these two TFs can be interdependent (Luna-Zurita,
Stirnimann et al. 2016). Sequence motifs of TBX5 and NKX2-5 co-occur in only 17% of the
regions where their ChIP-exo peaks overlap. Motivated by the above analysis, we
hypothesized that TBX5 and NKX2-5 may bind shape-specifically in their co-binding
regions. We applied ShapeMF on TBX5 and NKX2-5 ChIP-exo peaks and found that both
TFs have shape-motifs for all four features. Importantly, we found strong relationships
between the sequence and shape motifs of these TFs, which gave us a strong premise for
the above hypothesis. In particular, we found that the sequences underlying the HelT motif
of NKX2-5 contain the TF’s sequence motif, CACTT (Fig. 5E). Likewise, the sequences
underlying the ProT motif of TBX5 contain a partial sequence motif of TBX5, TGTCA (Fig.
5F). Interestingly, we also found that the sequences underlying the ProT motif of NKX2-5
contain TGTCA sequences (Fig. 5G) - implicating that in many NKX2-5 peaks, TBX5 may co-
bind by recognizing the ProT pattern, without full sequence recognition.

In support of our hypothesis that TBX5 and NKX2-5 may bind shape-specifically in their co-
binding regions, we found that 79% of co-binding regions have a shape-site for one TF and
a sequence motif for the other TF, and 73% contain shape-motifs of both TFs. Furthermore,
co-occurrences of the shape- and sequence-motif pairs of TBX5 and NKX2-5 are enriched
for 0-4 bps inter-site spacing, which is in the same range as the preferential distances
between TBX5 and NKX2-5 sequence motifs that we identified previously, supported by
crystal structure (Fig. 5H) (Luna-Zurita, Stirnimann et al. 2016). Overall, this analysis
shows that the TBX5-NKX2-5 co-occupancy occurs to a large extent by recognizing DNA
shape. The use of shape-recognition in TBX5-NKX2-5 co-bound regions exemplifies the use
of shape-motifs as an alternative to tethering, and is highly relevant to coregulation of a
cardiac transcriptional program, as well as a potential mechanism for their
haploinsufficiency in congenital heart disease.
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Shape-motifs explain genomic occupancy of TF-complexes where sequence-based
models are inadequate

The above cases of shape-specific binding in regions of TF-TF co-occupancy motivated us to
examine whether DNA shape may explain the genomic occupancy of TF complexes for
which sequence-based models have not been able to explain complex patterns of co-
binding. We focused on two well-known TF-complexes, namely the MAX homodimer and
the MYC-MAX heterodimer, several aspects of whose in vivo occupancies have remained
unresolved in sequence-based analyses (Guo, Li et al. 2014, He, Johnston et al. 2015).

The bHLHZip domain protein MAX recognizes the canonical E-box motif CACGTG. Current
models suggest that MAX can bind DNA either as a homodimer or upon forming
heterodimers with other bHLHZip proteins, such as MYC and MAD. Max footprints in ChIP-
nexus data (He, Johnston et al. 2015) were found to span ~8 bases flanking either side of
the E-box motif. Although the footprints were enriched for the E-box motif, the footprints
covered the E-box motif only partially and there was no specificity in the flanking
sequences. Our analysis of MAX ChIP-Seq peaks identified HelT-, MGW-, and ProT-motifs
for Max, and suggest an interesting model involving DNA shape and sequence determining
the specificity of MAX homodimers (Fig. 6A). In particular, sequences underlying the HelT-
motif directly match the E-box sequence motif (Fig. 6B, left panel). On the other hand, the
MGW- and ProT-motifs show very low sequence-specificity and in the co-occurrence peaks
(i.e., where these shape-motifs co-occur with MAX’s sequence motif), they occur 6-10 bases
up- and 4-5 bases downstream of the E-box motif, respectively (Fig. 6B, middle and right
panels). This result provides a shape-based explanation of MAX binding where specificities
for HelT, MGW, and ProT explain Max binding both at the E-box motif and the inclusion of
flanking sequences in Max-bound footprints.

MYC is another bHLHZip domain protein known to bind very weakly at E-box motifs as a
monomer, but binds the same sequences with high affinity upon dimerization with MAX
(Guo, Li et al. 2014). Our analysis of MYC K562 ChIP-Seq data supports this model, since
~75% MYC peaks overlap MAX peaks, and the intensity of MYC ChIP signal has a strong
dependence on the extent of overlap (Fig. S9, see Methods). However, MAX binds in almost
twice as many locations as MYC, and it is not clear how the specificity of the MYC-MAX
dimer is different from that of MAX in the other MAX-bound locations. There is a
hypothesis that bases flanking E-box motifs play a role in MYC-MAX co-bound regions (Nair
and Burley 2003).

We hypothesized that MYC-MAX binding could be distinguishable from the binding of MAX
homodimers in terms of shape-specificity. We therefore performed differential shape-motif
discovery from MYC-MAX peaks utilizing MYC-unbound MAX regions as the negative
control. This analysis indeed suggests a model whereby MYC-MAX binding is distinct from
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the binding of MAX homodimers in terms of DNA shape (Fig. 6C). We identified HelT-,
MGW-, and ProT-motifs for the MYC-MAX dimer and found that the HelT-motif for MYC-
MAX encodes the E-box sequence motif (Fig. 6D, left panel), similar to the case for the MAX
homodimer. Interestingly, HelT values at certain positions of the two motifs are
significantly different (Fig. 6D, left panel, positions shown with asterisks). Moreover, the
MGW- and the ProT-motifs for MYC-MAX are different from those of MAX in terms of
length, pattern, the sequences underlying those motifs, and their spacing with the E-box
motif (Fig. 6D, middle and right panels). In the co-occurrence peaks, the MGW-motif is
often located 12-14 bp upstream of the E-box motif and the ProT-motif occurs 1-3 bp
downstream. It is known that crystallized structures of the MYC-MAX dimer and the MAX
homodimer are different despite their apparent resemblances (Nair and Burley 2003).
Combining this with our shape-motif analysis, we speculate that the structural differences
between the MYC-MAX dimer and the MAX homodimer cause subtle differences in their
DNA-binding specificities that are largely accommodated by changes in MGW and ProT
profiles. Overall, the above examples suggest that TF complexes, like individual TFs, utilize
shape recognition as a mechanism to discern their binding locations.

Non-targeted TF motifs (aka “zingers”) can be shape-specific

Hunt and Wasserman recently reported zinger motifs: sequence-motifs of a small group of
TFs enriched across the binding locations of multiple other TFs (Worsley Hunt and
Wasserman 2014). Along the same lines, we next asked if there are shape-zingers, i.e.,
shape-motifs enriched across ChIP-Seq peaks for many TFs. We tested for enrichment of
shape-sites for each TF within the top 2000 peaks of every other TF. Results were
consistent when we repeated the analyses using all peaks without a sequence-site for the
other TF. We found that ~25 ENCODE TFs are shape-zingers, including previously reported
sequence-zingers, such as JUN, FOSL1, and the ETS-family TFs EBF1 and ELK1. However,
most shape-zingers are not sequence-zingers (Fig. 7, Fig. S10). Importantly, some of these
novel shape-based zingers (e.g.,, GATA, ARID3A, P300, PAX5) are known to act as global
regulators or regulators of large gene networks (Goodman and Smolik 2000, Medvedovic,
Ebert et al. 2011, Rhee, Lee et al. 2014, Lentjes, Niessen et al. 2016). This finding suggests
that shape-specificity enables these regulators to recognize a larger set of locations (and
thus regulate more genes) than would be possible based on sequence-specificity alone.
Consistent with the “loading station” model suggested by Hunt and Wasserman, all our
shape-zingers (except P300 in the Gm12878 cell-line) show enrichment within peaks of
CTCF, RAD21, and SMC3.

TFs within the same class recognize distinct shape-motifs

TFs within the same class of DNA-binding domain often recognize statistically
indistinguishable sequence motifs, although such TFs still bind distinct locations in the
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genome. It has been shown that sequence-based models of TF-occupancy achieve improved
performance for TFs within the same class if the models use shape-features underlying
sequence-motif hits (Mathelier, Xin et al. 2016, Yang, Orenstein et al. 2017). However, it is
not clear whether TFs within a class show preferences for distinct shape-patterns and/or
for distinct combinations of shape-features. To test this possibility, we applied ShapeMF on
ENCODE ChIP-Seq datasets of the bHLH and bZIP class TFs (see Methods). For each TF
within a class, we considered only those ChIP-peaks that do not overlap with peaks of any
other TF within that class so that we could identify the shape-specificity intrinsic to each
TF. Our analysis not only found that most TFs within these two classes recognize distinct
motifs of different shape features, but also that some shape-motifs do not encode the
common sequence-motif of that class (Fig. 8, Fig. S11). Overall, we conclude that preference
for distinct shape-patterns, and sometimes for distinct combinations of shape-features, is a
mechanistic explanation of how TFs within the same class of DNA-binding domains bind at
distinct locations genome-wide.

TFs bind shape motifs in vitro

To complement and validate our analyses of shape-motifs in ChIP-Seq peaks, we analyzed
their occurrence in oligonucleotides that have been assayed for in vitro binding. Nineteen
ENCODE TFs were investigated via HT-SELEX (Jolma, Yan et al. 2013, Yang, Orenstein et al.
2017) and have shape-motifs that are 15-bp or less, which is short enough to be present in
these libraries. We found that shape-motifs are enriched in the final round (i.e,
preferentially bound) oligonucleotides for all 19 TFs. Furthermore, shape-motif prevalence
is in good agreement between HT-SELEX and ChIP-seq data (correlation 0.54; Fig. S12). We
additionally found enrichment of shape-motifs for MAX and MYC amongst bound versus
unbound oligonucleotides in genomic-context protein binding microarray (gcPBM) data
(Gordan, Shen et al. 2013, Afek, Schipper et al. 2014). Shape-motifs of MAX and MYC
frequently co-occur with their sequence-motifs, as expected since these gcPBMs were
designed to contain sequence-motifs (Zhou, Shen et al. 2015). Thus, despite several design
features that bias currently available in vitro data against shape-specific binding (see
Discussion), we observe a strong and consistent signal that TFs bind shape-motifs when
they do occur in assayed oligonucleotides.

Discussion

Analyzing in vivo binding data of hundreds of human TFs with a novel algorithm that treats
DNA as a structure rather than a string of nucleotides, we showed that TFs frequently bind
DNA by recognizing specific patterns of DNA shape features. These shape-motifs can occur
independently from the TF’s nucleotide sequence-motifs, and ChIP-Seq peaks that contain a
shape-motif but no sequence-motifs are as abundant as peaks with only sequence-motifs or
with both. Shape motifs also shed light on TFs that bind low information-content sites and
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weak matches to sequence-motifs. Thus, in addition to confirming the importance of DNA
shape in the context of sequence-motifs as shown in several recent studies (Abe, Dror et al.
2015, Zhou, Shen et al. 2015, Mathelier, Xin et al. 2016), our results establish shape-
recognition as an independent and sometimes exclusive mechanism for TF-DNA binding
within regulatory regions.

Our analyses also reveal important functional and mechanistic consequences of shape-
based TF-DNA binding. Binding of TFs within the same family to distinct instances of a
shared sequence-motif can be explained by TF-specific shape-motifs that overlap or flank
the sequence-motif. Similarly, TFs (e.g., MAX) that bind different instances of a sequence
motif as monomers, homodimers, or heterodimers appear to recognize different DNA
shapes in each of these contexts. These examples suggest that DNA shape may be a general
mechanism to increase the information content of binding sites beyond that encoded by
sequence-motifs, which is insufficient for eukaryotic TFs to uniquely recognize specific
sites in genomic DNA (Wunderlich and Mirny 2009). We also find that co-binding TF pairs
frequently utilize shape-based binding, providing a mechanism beyond tethering to explain
co-binding in regions that lack one or both sequence-motifs. Finally, TF’s in crystal
structures generally contact nucleotide bases at sequence-specific binding sites and the
DNA backbone at non-sequence-specific sites (Aishima and Wolberger 2003, von Hippel
2004, Romanuka, Folkers et al. 2009). Our results suggest that shape-specific sites contain
preferential “pockets” - defined by shape-motifs - where a TF can stabilize and interact
with the DNA backbone. It is also plausible that such stabilization is facilitated by enhanced
electrostatic potential at the location of shape-motif occurrences (Rohs, Jin et al. 2010).
Importantly, these new insights would have been missed if we had only searched for shape
patterns within the context of sequence-motifs.

An important methodological contribution of our manuscript is ShapeMF, a de novo shape-
motif discovery algorithm. ShapeMF enabled us to pursue the hypothesis that some TFs
have intrinsic preferences for shape-motifs and such preferences can be discovered
without taking sequence information into account. It is challenging to design such an
algorithm since it requires discovering variable-length shape-patterns de novo from
unaligned sequences with the criterion that the discovered shape-motifs are comparable to
sequence motifs in terms of discriminating bound from unbound regions. Our solution was
to implement Gibbs sampling with a notion of similarity between the shapes of two DNA
sequences that is appropriate for quantitative features, rather than the discrete four-letter
nucleotide alphabet. We considered several alternative solutions that have been used on
related problems. For example, we might have discretized shape features and then directly
applied de novo sequence motif algorithms, as in (Greenbaum, Parker et al. 2007).
However, it was not clear how to appropriately bin and/or smooth shape features, or how
to characterize the background distribution for these features. Time series “shapelet”
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discovery algorithms are relevant to our problem (Ye and Keogh 2009, Grabocka, Schilling
et al. 2014, Hou, Kwok et al. 2016), but their efficacy has been shown for datasets where
discriminative shapelets appear very frequently (so that sampling a very small subset of
the data would suffice to yield shape-motifs) or where the constituent time series are
aligned. These scenarios do not hold for TF occupancy data, so shapelet algorithms would
likely require a computationally intensive brute-force scheme. In contrast, ShapeMF does
not (a) discretize data, (b) use any empirical background distribution of shape features, nor
(c) assume that the given peaks/windows are aligned.

The focus of our study was to systematically test if DNA shape provides signals of
“intrinsic” TF-DNA binding specificity (Stormo and Zhao 2010) and if these are
independent of nucleotide sequence. We therefore did not adopt the approach of
developing an optimal, holistic classifier of bound versus unbound regions. State of the art
approaches to this classification problem perform well and can score a given sequence for
its affinity. But a method such as ShapeMF is needed to discover the specificity signal that
characterizes a TF (Setty and Leslie 2015). Adding shape-motifs to discriminative
classifiers of TF bound regions does have potential to improve accuracy, since we found
that many peaks with shape-motifs lack sequence-motifs and unbound regions with
sequence-motifs can lack shape-motifs.

The intrinsic binding specificity of shape-motifs should be comprehensively studied in
vitro. We conducted an initial evaluation using HT-SELEX and gcPBM data and found
consistent evidence for in vitro binding. However, current in vitro data have some
limitations for evaluating shape-motifs and disentangling the contributions of shape versus
nucleotide recognition. Critically, existing oligonucleotide libraries do not contain sufficient
coverage of shape-motifs. For example, 86% of the HT-SELEX oligonucleotides we analyzed
are 20 bps or shorter (Jolma, Yan et al. 2013, Yang, Orenstein et al. 2017), and universal
PBMs (uPBMs) that are designed to compactly cover all k-mers typically have values of k=8
or 10 bp (Berger and Bulyk 2009). Relatedly, HT-SELEX and uPBM oligonucleotides do not
fully capture genomic context that may be important to shape-specific binding. These
limitations could be overcome with improvements in the throughput of these technologies
to accommodate more, longer sequences or by designing gcPBM libraries to contain
oligonucleotides with better representation of shape-motif containing genomic regions,
including more regions that contain shape-motifs but no sequence-motifs. It will be
important to quantify binding affinities for many TFs and shape-motifs with these and
other emerging technologies (e.g., microfluidics).

Several other future directions are suggested from our results. One goal is to quantify the
amount of information that each TF utilizes from the shape domain and how specific this
utilization of DNA shape is to different contexts, including chromatin domains, co-binding,
and subsets of target genes. Another important direction will be to re-analyze in vitro DNA-
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binding data to assess whether high-affinity sequences are enriched for shape-based
binding. Additionally, the mechanisms of shape-based binding suggested by our results
should be evaluated in light of all available TF-DNA structures. It will also be interesting to
determine the extent to which shape-based binding is an alternative explanation to
tethering. In terms of methodology, we could likely improve the performance of ShapeMF
by adding more shape features and/or analyzing these jointly rather than individually. Our
current analysis suggests that multivariate analysis of shape-features would require careful
algorithm design since a TF may not have a motif for every feature and the motifs may
differ in size and location. Finally, the notion that shape-based TF binding affinity could be
conserved without sequence conservation opens the door to a whole new view of
regulatory evolution and the opportunity to develop shape aware measures of DNA change
and its functional impact on human disease that has at its basis abnormal TF function.

Data and Methods
The ShapeMF tool for de novo shape motif discovery from shape-data

Definitions and notation. Let S = {s;}!_, denote a set of peaks of a TF T. Let ¢ = {i;}),;
denote the corresponding shape-data for a feature F (roll, helical twist, propeller twist, or
minor groove width in the current GBshape-based implementation). Thus each y; is a
sequence of real numbers y; ; denoting the value of feature F at position j in peaks;. A
shape pattern of length [ is a l-length sequence P = ((my,dy))%_, of 2-tuples of real
numbers. We say that P occurs in peaks; if there is al-length sequence window W; =
(wi,j)j.ftli_l starting at position ¢; in the shape-data i; such that m;_; ; — dj_, 41 <

J
l)[)i,j—ti+1 < mj_ti+1 + dj—ti+1 for t; S] <t + -1

Algorithm. ShapeMF uses a two-step approach to first compute a shape pattern P from the
shape-data of positive peaks in a training dataset of matched positive and negative control
peaks and then modify the pattern to one that maximizes F-score between the positive and
control peaks in the training data. Finally, the modified pattern is called a motif if its
Bonferroni-corrected hypergeometric p-value, computed on a separate validation dataset
of matched positive and control peaks, is significant.

Step 1. From the shape-data y of positive peaks in the training data, we first compute a set
of windows W (one window W; in each ;) such that the sum of pairwise Euclidean
distances between the windows, ie, D = iny Euclidean(Wx,Wy), is minimized. We use
Gibbs sampling to compute such a set of windows. In particular, we start by selecting W;’s
randomly. To select a new window from ; to replace W, letV;; = (gbi'j)f:,lc'l denote the
[l -length window in ; that starts at position k , and let
D) = Yyzy+i Euclidean(W, W) + ¥, Euclidean(W; V;;) denote the new value of D if
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Vi replaces W; in the current set of windows. We then sample a window V; ;. from ; with

exp (=D

probability ”‘)/Zk exp (=D; ) and update W; with the sampled V;;. We iterate
L

through the ¥;’s in the order they appear in ¥, and for each y;, we update the window W;
following the above steps. We continue to repeat this iterative updating until convergence
in the value of D. In our implementation, we decide that the value of D has converged if it
does not change in two successive iterations, or if the improvement in the value of D is
negligible for ten consecutive iterations. We assume that the improvement is negligible
when the current and the previous values of D satisfies: Dy, (1 — €) < Deyrrent < Dprevs

where e = 1075.

Step 2. We next compute a pattern P = ((my,dy))k_, from the set W of windows
computed above. Let the window W; start at the position t; in ;. We then take m; =
mean ({Y; ¢, +k-1}i=1) and dy = a X standard_deviation ({{;¢,+x-1}i=1) , Where a is a
constant whose optimum value is computed as follows. We try each value of a in the range
[0.1,2], in increments of 0.1, and compute the corresponding pattern P, from W. We
quantify the goodness of each P, as a discriminator between the positive and control peaks
of the training data by its F; ;3-score. Note that the F; /;-score here is a more conservative
objective than used typically in classification settings, yet we wanted to weigh precision
much higher than recall so that the number of false positives remains low. We then choose
P to be the pattern argmax, (F; /3(Pg))-

Motif identification. Using an independent validation set of positive and control peaks,
patterns are tested for enrichment in positive peaks, as is done in other discriminative
motif finding tools (Bailey 2011). Let nj and np denote the number of validation positive
and control peaks, respectively, where pattern P has an occurrence. We say that P is a
motif of feature F (or a ‘F-motif’) for TF T if a hypergeometric test parameterized by
2N,N,n} + np,and nj yields a significant p-value after Bonferroni correction. We use a
Bonferroni corrected p-value threshold of 1075, Shape-motifs P that meet this criterion are
retained for further analysis, and others are discarded.

Finding variable-length motifs. The above steps 1 and 2 compute a motif for a given
length [. In our analysis we have considered all values of [ between 5 and 30. For
computational efficiency, we first compute motifs for values of [ that are multiples of 5. For
all other values of [, we take the starting positions t;’s of the motifs computed for length
[Z/SJ as our initial guess for starting positions and search for motifs within the positions

ti—landti+l.

Calling redundant motifs. In the last step, we eliminate redundant motifs. We first
partition all motifs according to their lengths: two motifs of lengths [; and [, are put in the
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same partition if lll/SJ = llZ/SJ. For two motifs P4 and P, if P; has lower false positive

rate than P, on validation data and the occurrences of P; “cover” at least 75% of the
occurrences of P,, then we assume that P, is redundant and discard P,. An occurrence of
P4 covers an occurrence of P, if the occurrence of P4 overlaps with at least 75% length of
the occurrence of P,. This strategy to remove redundant motifs is akin to the one utilized in
(Beer and Tavazoie 2004).

Data

We downloaded uniformly processed ChIP-Seq datasets (narrowPeak format) from the
ENCODE Downloads section at UCSC (http://genome.ucsc.edu/ENCODE/downloads.html)
and genome-wide shape-data (bigwig format) from the FTP interface of the GBshape
database (http://rohsdb.cmb.usc.edu/GBshape/). We used only the ChIP-Seq datasets with
quality=good and treatment=None. We also discarded the histone deacetylase
(HDAC) datasets from consideration, since our focus here was on TFs.

We followed the strategy of Setty and Leslie (Setty and Leslie 2015) to create training and
validation data comprising positive and control peaks from each ChIP-Seq dataset. For
positive peaks, we took 100 base pair (bp) windows centered at the peak summits. For
negative control peaks, we took 100-bp non-peak windows located 100 bp upstream of the
positive peaks. Negative control peaks that intersect with positive peaks were discarded
along with the corresponding downstream positive peak. For learning motifs, we used the
top 2000 positive peaks (ranked by the signalvalue field) and their associated control
peaks, or all positive-control peak pairs if less than 2000 remain. We then randomly
shuffled the positive peaks and split them into equal halves (and likewise for control peaks)
to obtain our training and validation data.

We used bwtool (Pohl and Beato 2014) to extract shape profiles of the positive and
control peaks from the bigwig files.

Identifying promoter-proximal and distal regions

We followed the strategy of Setty and Leslie (Setty and Leslie 2015) to identify promoter-
proximal and -distal regions. From UCSC table browser (https://genome.ucsc.edu/cgi-
bin/hgTables), we collected the coordinates (hg19) of RefSeq genes (group=genes and
gene predictions, track=refseq genes, table=refgene,
region=genome). We then select promoter-proximal regions as the 2-kilobase regions
flanking each gene, and the distal regions as the windows spanning 10-kb to 1-Mb regions
flanking each gene.
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Sequence motif analysis

We applied the tool gkm-SVM (Ghandi, Lee et al. 2014) to compute the sequence motifs
that could discriminate between the positive and the control peaks in each training data
set. We note that gkm-SVM outputs the scores of all 10-mers as predicted by a support
vector machine (svm) trained to discriminate between the positive and the control peaks.
Thus, gkm-SVM does not directly provide a description of a TF’s specificity. To overcome
this issue, the gkm-SVM package includes an algorithm that iteratively learns a specified
number of sequence motifs from the svm scores. We used this algorithm to learn five motifs
for each ChIP-seq dataset. Note that, in the original work featuring gkm-SVM (Ghandi, Lee
et al. 2014), the authors used three motifs to describe specificity of TFs. By utilizing five
motifs, we in fact allowed redundancy and presumably weak (low information content)
motifs to be included in our analysis in order to ensure that we have a broad sequence-
based definition of TF binding sites. We then used the tool £imo (Grant, Bailey et al. 2011)
to identify all occurrences of these motifs in the positive peaks.

As a second source of sequence-motif hits, we took the genome-wide annotations for
occurrences of sequence-motifs curated by Kheradpour and Kellis (Kheradpour and Kellis
2014). In their curated collection, Kheradpour and Kellis used all motifs from available
motif libraries and also motifs from several de novo motif finders.

Co-binding regions for a given pair of TFs

For two TFs f; and f,, we first identify the peaks §; of f; that intersects with a peak of f,,
and likewise the peaks S, of f, that intersects with a peak of f;. We then merge the genomic
regions denoted by §; and S, to obtain the regions where f; and f, co-bind.

Calling shape-zingers

A shape-motif P of a TF f; is also a motif for a TF f, if P; can discriminate the positive
peaks (top 2000 or all if there are less than 2000 positive peaks) of f, from control peaks
with a hypergeometric p-value < 1071°, A TF f; is a shape-zinger if one or more of its
motifs are motifs for at least 30% TFs with a shape-motif in the same cell-line. We chose
the fraction 30% following Hunt and Wasserman (Worsley Hunt and Wasserman 2014)
who reported sequence-zingers to be enriched in 30-60% datasets.

Analysis of spacing bias between motif pairs

We followed the strategy of Ng et al. (Ng, Schutte et al. 2014) for analysis of biased spacing
between a given pair of motifs. For the given motif pairs, we first compute the distances
between their non-overlapping neighboring (adjacent) occurrences. We arbitrarily decide
one motif as primary and the other as secondary. A distance between the primary-


https://doi.org/10.1101/143677

bioRxiv preprint doi: https://doi.org/10.1101/143677; this version posted May 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

secondary motif pair is positive if the primary-motif occurs upstream of the secondary-
motif, zero if they occur at the same location, and it is negative otherwise. We test each
distance between -50 to +50 bps, and call a distance to be significant if the binomial p-value
(after Bonferroni correction) is significant (< 1075).

Shape-motif analysis for TF families

We took the classification of TFs into families according to their DNA-binding domains
from TFClass (Wingender, Schoeps et al. 2013). For each TF in a family, we first selected
the sets of peaks that do not overlap with the peaks of any other TF in the same family. We
then used ShapeMF on the remaining sets of peaks to identify the shape motifs of each TF.
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Figure Legends

Figure 1. Overview of ShapeMF. (A) Shape-motif discovery involves comparing TF-bound
regions (positives; solid lines) to flanking non-bound regions (negatives; dashed lines). For
each region (different colors) and each shape feature (MGW, HelT, Roll, ProT), ShapeMF
extracts the profile of quantitative feature values across the region. The Gibbs sampler then
identifies a set of short windows (5 to <30 bp) from the profiles of positive sequences that
have similar patterns of the shape feature. In the second step, this initial set of positive
region windows is refined so that the resulting windows share a shape pattern that has the
maximum accuracy to discriminate between positives and negatives (Methods). The range
of feature values from this refined set of windows defines the shape-motif. For visualization
purposes, we also generate sequence logos from the sequences underlying the occurrences
of a shape-motif and the range of feature values in the 50-bp regions flanking up- and
downstream its occurrences (both shown below the shape-motif). (B) Difference in the
approach of identifying a shape-motif occurrence vs. a sequence-motif occurrence. A shape-
motif occurs in a sequence if it contains a window whose feature values at every position fit
within the ranges defined by the shape-motif. A sequence-motif occurs in a sequence if it
contains a window that is significantly similar to the multinomial model defined by the
sequence-motif.

Figure 2. Most TFs have a shape-motif in their ChIP-seq peaks. (A) Heatmap of negative-
log1o transformed Bonferroni corrected p-values for the four types of shape-motifs of each
TF. White cells indicate no significant motif. ‘K’ or ‘G’ after a TF’'s name denotes K562 or
Gm12878 cells, respectively. (B) Numbers of TFs with each of the four types of shape-
motifs. (C) Length distribution of shape-motifs. (D) Boxplots of relative distances of
sequence-, shape-, and overlapping-sites from ChIP-seq peak-summits.

Figure 3. Shape-motifs are common and occur independently of sequence-motifs. (A) The
proportion of ChIP-seq peaks that are shape-only, common, and sequence-only for each TF
and cell line. (B) Shape-only peaks comprise a considerable fraction of genome-wide peaks
for many TFs. (C) For most TFs, shape-motifs can be discovered from the peaks that lack a
sequence motif. (D) Most (~65%) of these shape-motifs can discriminate between top
peaks and their flanking non-peaks, and many (~50%) are indeed similar to the shape-
motifs discovered from top peaks. (E) Shape-only peaks are generally as abundant as
sequence-based (sequence-only and common) peaks in different types of regulatory
regions.

Figure 4. (A-F) Different scenarios of shape- and sequence-motif co-occurrence found
enriched in datasets from the K562 cell-line (see Fig. S4 for the same information from the
Gm12878 cell-line). Each scenario is shown with a schematic and an example from our
analysis. A schematic uses a cartoon DNA double helix (from http://veleta.rosety.com), a
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sequence ACTGACA, and a hypothetical shape pattern to show that a shape-motif can
completely contain a sequence-motif (A), a sequence-motif can completely contain a shape-
motif (B,C), a shape-motif can overlap with a sequence-motif and flank up- or downstream
(D,E), and shape- and sequence-motifs can co-occur with some inter-site spacing (F). Each
schematic is accompanied by a real example that includes the sequence-motif (the first of
the five sequence-motifs computed by gkmSVM; our analysis uses all five gkmSVM
sequence-motifs), the shape-motif, and the inter-site distance that we found enriched in
our analysis. We also show the sequence-logo created from sequences underlying the
shape-motif, and the range of shape-feature values in the flanking 50-bp regions (up- and
downstream) of the shape-site. (G-]) Examples where a shape-motif encodes the binding
location of a TF’s dimerization partner.

Figure 5. (A) Co-binding TF pairs often utilize shape-specific binding. For each TF pair (fi,
f2), the cell at row f; and column f; of the heatmap shows whether f; binds more shape-
specifically or sequence-specifically with f; in the regions where they co-bind in K562
(Gm12878 in Fig. S6). Whether fi’s binding is more shape-specific or sequence-specific
(“binding mode”) in the fi-f2 co-binding regions is defined as the number of shape-only
peaks being more than that of sequence-based (sequence-only and common) peaks in their
co-binding regions. To show whether a TF’s genome-wide binding is more shape-specific or
sequence-specific, we use colored bars (following the same scale as in the heatmap)
adjacent to the row and the column corresponding to that TF. The colored bars for a TF
show whether its genome-wide peaks are more shape-only or sequence-based. The binding
mode of a TF in a co-binding region may alter depending on its partner: both (B) or one (C)
TF may alter binding mode. (D) Schematic comparing the tethering model with a model of
TF co-binding where one or more TFs bind by recognizing DNA shape. (E-G) Shape-motifs
of NKX2-5 and TBXS5. For each shape-motif, we show the logo created from its underlying
sequences and the range of shape-feature values in the flanking 50-bp regions of shape-
sites (as in Fig. 4). (H) Occurrences of TBX5 and NKX2-5 shape-motifs in a 22 bp DNA
sequence (from mouse Nppa promoter) where the two TFs are known to bind. Crystal
structure of the ternary complex comprising TBX5, NKX2-5, and DNA is from our previous
study.

Figure 6. Shape-motifs suggest models for genomic occupancy of (A) MAX homodimer and
(B) MYC-MAX heterodimer. The HelT-, MGW-, and ProT-motifs enriched under (C) MAX
ChIP-Seq peaks vs. negative controls and (D) MYC vs. MYC-unbound MAX-peaks. For each
shape motif, we show the logo created from its underlying sequences and flanking 50-bp
regions (as in Fig 4). HelT values in the MYC-MAX motif (left panel in D) differ significantly
from the MAX HelT motif (left panel in C) in positions 1 (Kolgomorov-Smirnov test p-value
< 0.05), 2 (p-value<0.005), 4 (p-value < 0.005), and 5 (p-value < 0.01).
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Figure 7. Shape-zinger TFs (nodes) and the fraction (color-coded) of other ChIP-Seq
datasets where their shape-motifs are enriched in. Shape-zingers are the TFs with shape-
motifs enriched in the largest numbers (at least 30%, see Methods) of other TF’s ChIP-seq
datasets. Enrichment was calculated in the top 2000 peaks vs. non-peaks (Methods). TFs
corresponding to nodes with a filled circle were previously reported as sequence-zingers.
For brevity, edges connecting shape-zinger pairs are omitted.

Figure 8. bZIP TFs have similar sequence-motifs but unique shape-motifs. Shape-motifs for
five bZIP proteins NRF1, JUND, JUNB, CEBPB, and FOSL1 are shown (H, M, and P denote
motifs for HelT, MGW, and ProT, respectively). A feature is not mentioned for a TF if the TF
does not have a shape-motif for that feature. For each TF, the first of its five gkmSVM motifs
is shown to aid comparison with the logos created from sequences underlying the TF’s
shape-motifs.
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Supplementary Figure Legends

Supplementary Figure 1. Fractions of top 500, 1000, 2000, 5000, and all peaks of a TF’s
ChIP-Seq dataset that contain an occurrence of the TF’s sequence-motif (orange circle) and
shape-motif (green-circle). Data plotted for TFs assayed in (A) K562 and (B) Gm12878 cell-
lines.

Supplementary Figure 2. Histograms showing number of motifs of the four different
features having different values of Information Content per Position (ICP). The ICP statistic
for a shape-motif is derived from the sequences underlying the occurrences of the shape-
motif (Methods).

Supplementary Figure 3. Scatterplot showing a monotonically increasing relationship
between the fraction of overlapping sites of a TF and the mean information content derived
from sequence-logos underlying its shape-motifs. Each circle denotes a TF and the mean
information content is the mean of the information contents of its different shape-motifs.
Data shown for TFs in (A) K562 and (B) Gm12878 cell-lines.

Supplementary Figure 4. Different scenarios of shape- and sequence-motif co-occurrence
found enriched in datasets from the Gm12878 cell-line.

Supplementary Figure 5. Histograms showing number of co-binding TF-pairs (fi, f2) for
different fractions of peaks of fi lacking a sequence-motif of fi (left panel) or containing a
shape-motif of f; (right panel) in (A) K562 and (B) Gm12878 cell-lines.

Supplementary Figure 6. Heatmaps similar to Figure 5 showing results of our co-binding
analysis on TF ChIP-Seq data in Gm12878 cell-line. (A) Co-binding TF pairs often utilizing
shape-specific binding. The binding mode of a TF in a co-binding region may alter
depending on its partner: both (B) or one (C) TF may alter binding mode.

Supplementary Figure 7. Heatmaps similar to Figure 5 showing that a TF generally
maintains its genomewide binding mode when co-binding with other TFs in (A) K562 and
(B) Gm12878 cell-lines.

Supplementary Figure 8. Significantly enriched inter-site distances between (A) any
types of motif-pairs and (B) shape-sequence or shape-shape motif-pairs. Instances from
K562 and Gm12878 cell-lines were combined in each panel.

Supplementary Figure 9. Moving average plot (window size = 250) showing
monotonically decreasing relationship between rank of MYC peaks and their % of overlap
(bps) with MAX peaks.
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Supplementary Figure 10. Histograms of the numbers of TFs whose shape-motifs are
enriched in different fractions of ChIP-Seq datasets in (A) K562 and (B) Gm12878 cell-lines.
Shape-zingers are defined as the TFs with enrichment in at least 30% datasets (Methods).

Supplementary Figure 11. Shape-motifs of bZIP and bHLH proteins (for which ChIP-Seq
assays were performed by ENCODE in the K562 cell-line and we could find a shape-motif)
showing that TFs within the same family extensively utilize different shape-motifs (H, M,
and P denote motifs for HelT, MGW, and ProT, respectively), and/or combinations of
different shape-features to recognize their target binding sites. A feature is not mentioned
for a TF if the TF does not have a shape-motif for that feature. Seven of 13 bZIP TFs and 4 of
7 bHLH TFs were found to have a shape-motif in this analysis.

Supplementary Figure 12. Scatterplot showing fraction of ChIP-peaks of a TF with its
shape-motifs vs. fraction of the TF's HT-SELEX oligonucleotides with its shape-motifs.
Green/red data points indicate TFs with mean-length of shape-motifs smaller/longer than
15 bps.
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Figure 5
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Supplementary Table 1: Fraction (%) of peaks without occurrence of any sequence motif

TF Cell line Top 500 peaks Top 1000 peaks Top 2000 peaks Top 5000 peaks All peaks

ARID3A K562 53.4 53.0 53.75 55.16 57.61
ATF1 K562 18.2 22.3 29.5 46.34 66.46
ATF2 Gm12878 45.8 46.4 47.7 51.82 63.55
ATF3 K562 42.4 34.0 26.95 25.3 33.87
BACH1 K562 5.6 8.0 11.75 24.01
BATF Gm12878 22.8 25.9 29.05 33.32 47.74
BCL11A  Gm12878 40.8 43.9 44.6 48.52 55.09
BCL3 Gm12878 54.0 57.4 59.65 62.1 64.61
BCL3 K562 69.6 72.1 75.67
BCLAF1  Gml12878 32.0 40.9 50.85 58.18 60.03
BCLAF1 K562 50.2 57.1 64.7 70.48
BDP1 K562 97.8 98.07
BHLHE40 Gm12878 20.2 24.6 28.9 38.72 55.46
BHLHE40 K562 9.6 13.5 20.7 29.56 51.59
BRCA1 Gm12878 43.8 47.91
CBX3 K562 64.2 66.8 69.1 72.04 74.96
CCNT?2 K562 53.6 58.5 65.7 72.32 78.07
CEBPB K562 27.2 27.9 31.05 34.86 41.84
CHD1 Gm12878 46.8 53.1 56.75 61.94 62.99
CHD1 K562 34.0 33.5 33.1 36.62 41.53
CHD2 Gm12878 10.4 19.8 27.7 40.34 55.72
CHD2 K562 4.4 14.9 23.65 39.32 49.22
CTCF Gm12878 2.2 2.3 2.25 2.6 8.65
CTCF K562 1.2 2.6 3.25 3.52 11.14
CTCFL K562 3.4 3.2 4.0 5.9 8.31
E2F4 Gm12878 25.6 26.8 30.5 39.8
E2F4 K562 14.8 17.0 20.5 28.66 34.75
E2F6 K562 7.0 10.9 12.45 17.32 32.65
EBF1 Gm12878 6.6 8.4 11.35 16.74 37.77
EGR1 Gm12878 3.0 3.7 4.95 7.56 16.44
EGRI1 K562 0.6 0.6 1.15 2.42 11.61
ELF1 Gm12878 6.4 6.4 8.4 14.24 40.28
ELF1 K562 2.8 3.2 3.95 7.5 27.71
ELK1 Gm12878 8.8 11.8 18.95 42.04 44.99
EP300 Gm12878 57.4 55.1 52.35 54.54 54.78
EP300 K562 40.2 40.7 41.85 45.78 59.04
ETS1 Gm12878 29.8 34.5 39.1 45.0
ETS1 K562 26.4 31.2 32.8 37.16 40.91
EZH2 Gm12878 60.8 61.3 63.85 65.05

FOS K562 17.0 16.7 15.55 13.44 15.24
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TF Cell line Top 500 peaks Top 1000 peaks Top 2000 peaks Top 5000 peaks All peaks
FOSL1 K562 3.4 4.8 5.6 10.76 21.06
FOXM1 Gm12878 47.0 47.7 49.75 54.18 65.49
GABPA Gm12878 5.8 6.7 8.8 21.04 27.93
GABPA K562 3.6 4.8 9.05 24.1 46.84
GATA1 K562 29.6 32.1 35.6 41.88
GATA2 K562 354 38.1 39.95 46.06 51.32
GTF2B K562 48.4 47.3 45.75 47.23
HMGN3 K562 24.6 23.3 23.95 24.94 32.8
1IKZF1 Gm12878 55.2 56.1 57.95 62.2 65.61

IRF1 K562 9.2 9.3 10.4 16.1 31.03
IRF4 Gm12878 22.6 27.8 30.5 35.14 51.37
JUNB K562 10.0 10.9 13.3 20.68 35.24
JUND K562 5.2 5.7 8.05 16.04 47.21

JUN K562 4.0 5.4 7.75 12.66 21.28
KAP1 K562 56.2 59.7 61.9 68.0 68.76
KDM5B K562 49.2 47.7 45.15 46.48 52.59
MAFF K562 3.0 6.6 9.1 14.94 30.39
MAFK K562 3.8 7.6 9.9 15.58 31.96

MAX Gm12878 11.2 14.9 23.5 38.08 54.08
MAX K562 15.6 16.4 19.8 27.14 55.04
MAZ Gm12878 7.0 7.4 9.55 14.32 31.28
MAZ K562 6.4 7.0 8.0 10.46 24.93
MEF2A Gm12878 28.4 34.2 40.85 54.26 71.07
MEF2A K562 30.8 35.4 42.6 59.44 61.5
MEF2C Gm12878 28.8 33.9 41.0 51.54 60.36
MTA3 Gm12878 49.0 49.2 52.35 58.52 65.81
MXT1 Gm12878 33.0 34.7 40.4 53.4 69.23
MXTI1 K562 19.2 23.5 33.55 49.46 54.84
MYC K562 9.8 12.3 15.9 22.74 32.71
NFATC1  Gm12878 52.4 55.6 59.45 64.76 69.57
NFE2 K562 5.8 7.1 9.55 9.9
NFIC Gm12878 41.2 41.7 41.95 43.24 55.98
NFYA Gm12878 22.0 23.8 28.03
NFYA K562 15.0 15.0 15.1 21.26
NFYB Gm12878 10.2 10.5 12.7 18.58 32.62
NFYB K562 7.8 8.0 8.8 10.46 14.63
NR2C2 Gm12878 34.0 54.7 60.25
NR2F2 K562 36.0 39.2 41.7 45.62 57.11
NRF1 Gm12878 0.0 0.2 0.65 7.8 11.47
NRF1 K562 0.4 0.5 1.5 9.88
PAX5 Gm12878 26.0 29.5 35.4 41.5 55.05

PBX3 Gm12878 11.0 14.6 22.75 37.62 49.26



https://doi.org/10.1101/143677

bioRxiv preprint doi: https://doi.org/10.1101/143677; this version posted May 29, 2017. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

TF Cell line Top 500 peaks Top 1000 peaks Top 2000 peaks Top 5000 peaks All peaks
PHFS8 K562 20.2 20.8 21.6 22.36 28.06
PML Gm12878 50.2 47.3 47.75 50.14 61.3
PML K562 52.4 52.4 57.95 68.18 78.59

POLR2A  Gm12878 49.8 46.9 45.6 47.18 51.31
POLR2A K562 47.8 45.0 42.1 41.8 48.37
POU2F2 Gm12878 30.2 32.0 36.8 49.76 69.71
RAD21 Gm12878 5.8 5.0 4.95 4.76 13.96
RAD21 K562 3.2 3.3 3.3 4.98 13.03
RBBP5 K562 17.4 15.4 15.4 17.86 28.41
RCORI1 K562 56.0 57.4 63.0 71.9 74.12
RELA Gm12878 11.4 17.0 21.85 34.72 55.88
REST Gm12878 0.0 0.1 0.45 12.46 21.68
REST K562 0.0 0.1 1.1 21.04 45.93
RFX5 Gm12878 15.4 18.5 25.55 45.43
RFX5 K562 28.4 40.2 49.9 51.34
RUNX3 Gm12878 17.8 19.6 22.35 28.42 58.11
RXRA Gm12878 36.8 34.6 36.44
SAP30 K562 32.0 32.7 34.55 36.16 38.88
SETDB1 K562 65.6 63.6 60.2 56.13
SIN3A Gm12878 37.2 37.1 40.9 46.48 52.61
SIN3AK20 K562 27.2 29.1 28.95 31.52 374
SIRT6 K562 41.2 48.5 54.6 55.4

SIX5 Gm12878 11.0 13.4 22.5 41.21
SIX5 K562 11.2 16.7 26.7 45.52
SMC3 Gm12878 5.4 5.9 6.2 6.74 18.63
SMC3 K562 4.2 4.1 4.55 5.98 12.26

SP1 Gm12878 10.0 13.0 22.1 40.08 61.79

SP1 K562 11.4 15.0 17.85 26.0 30.61

SP2 K562 12.0 14.5 19.9 25.8
SPI1 Gm12878 3.0 4.3 5.8 8.66 19.0
SPI1 K562 3.8 4.7 6.8 9.62 20.36
SRF K562 25.4 29.1 32.95 44.54
STAT1 K562 9.2 12.8 27.05 30.28
STAT?2 K562 11.6 25.9 40.46

STAT5A  Gm12878 54.6 56.2 60.75 68.2 70.94
STAT5A K562 29.8 31.8 35.3 42.04 52.04
TAF1 Gm12878 30.6 31.5 31.15 37.68 51.08
TAF1 K562 27.0 26.5 27.45 30.74 43.74
TAF7 K562 76.0 67.9 63.95 62.77
TAL1 K562 24.8 28.1 30.25 34.22 48.8
TBL1XR1 Gml2878 47.0 48.6 51.65 56.44 63.16
TBL1XR1 K562 47.6 51.2 53.6 57.54 57.59
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TF Cell line Top 500 peaks Top 1000 peaks Top 2000 peaks Top 5000 peaks All peaks
TBP Gm12878 60.4 62.2 65.5 70.0 75.99
TBP K562 46.6 46.6 45.65 49.9 58.29
TCF12 Gm12878 9.8 15.0 16.5 21.3 36.95
TCF3 Gm12878 15.2 16.4 19.1 24.08 35.78
TEAD4 K562 39.6 39.0 42.25 46.84 67.59
THAP1 K562 12.8 17.4 21.55 24.76
TRIM28 K562 494 50.4 54.05 61.92 72.26
UBTF K562 9.8 9.6 9.95 16.84 19.43
USF1 Gm12878 0.6 2.7 4.75 11.82 22.38
USF1 K562 11.6 17.1 23.75 31.18 42.67
USF2 Gm12878 2.0 3.6 6.95 14.76 26.45
USF2 K562 2.4 2.8 5.8 14.27
WRNIP1  Gm12878 57.4 61.6 62.15 64.52 65.28
YY1 Gm12878 4.6 4.7 6.95 20.24 56.47
YY1 K562 3.0 2.7 3.45 12.34 36.81
ZBTB33  Gml12878 6.4 16.4 32.1 34.14
ZBTB33 K562 9.6 15.8 28.45 36.65
ZBTB7A K562 5.4 5.9 7.0 10.78 20.11
ZEB1 Gm12878 8.0 12.6 16.55 23.72
ZNF143 Gm12878 2.4 5.4 16.45 42.8 65.56
ZNF143 K562 1.6 3.2 14.05 41.42 69.0
ZNF263 K562 4.2 6.3 10.75 16.98
ZNF274 K562 40.8 55.7 68.85
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Supplementary Table 2: Average number of sequence-, shape-, and overlapping-sites per peak

TF Cell line Sequence-sites Shape-sites Overlapping-sites
ARID3A K562 1.850983 4.011307 2.038847
ATF1 K562 2.116156 1.178377 4.960402
ATF2 Gm12878 1.661939 1.273406 2.721612
ATF3 K562 3.033527 2.009117 3.816035
BACH1 K562 3.325033 1.028633 4.468291
BATF Gm12878 2.128514 1.196855 3.909628
BCL11A  Gml12878 2.476075 1.820723 2.466671
BCL3 Gm12878 2.417045 2.748787 2.378821
BCLAF1  Gml2878 1.597341 2.606249 1.843890
BHLHE40 Gm12878 2.546575 1.097337 5.951323
BHLHE40 K562 2.760358 1.031258 5.888942
BRCA1 Gm12878 1.077586 1.070833 1.025000
CBX3 K562 1.562367 3.590288 1.512876
CCNT?2 K562 2.900970 2.273263 1.234176
CEBPB K562 2.175771 1.330146 2.097579
CHD2 K562 2.696203 2.265794 3.522910
CTCF Gm12878 3.436919 1.267716 5.005814
CTCF K562 3.764529 1.393798 4.494983
CTCFL K562 2.981050 1.579345 3.601432
E2F4 K562 3.076991 2.288074 3.251491
E2F6 K562 2.595805 1.739135 2.896812
EBF1 Gm12878 2.182432 1.459677 3.384931
EGR1 Gm12878 3.426606 1.179414 5.034096
EGR1 K562 4.093689 1.239442 4.443457
ELF1 Gm12878 2.928476 1.851005 3.061573
ELF1 K562 2.719348 1.315760 2.617989
ELK1 Gm12878 2.652687 1.448126 3.697882
EP300 Gm12878 2.098999 2.271837 2.248865
EP300 K562 2.476136 3.983849 2.577470
ETS1 Gm12878 2.725357 2.434259 2.539986
ETS1 K562 1.896573 3.165377 2.102642
FOS K562 4.417042 1.514894 5.020009
FOSL1 K562 3.245138 1.644859 3.978272
FOXM1 Gm12878 1.508929 1.255067 2.982677
GABPA  Gml12878 3.643373 1.434904 4.034830
GABPA K562 2.979454 1.101957 3.000306
GATA1 K562 3.135582 2.863236 3.288367
GATA2 K562 3.094256 2.775937 3.028172
HMGN3 K562 2.449555 1.555199 3.874708

IRF1 K562 3.067660 1.254019 4.311335
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TF Cell line Sequence-sites Shape-sites Overlapping-sites
IRF4 Gm12878 2.258181 1.295021 3.245764
JUN K562 3.816679 1.820437 4.696599

JUNB K562 3.238352 1.875949 3.854695
JUND K562 2.448237 1.894558 2.814551
MAFF K562 2.107170 1.030609 2.281654
MAFK K562 1.986234 1.037483 2.077616
MAX Gm12878 2.142541 1.897633 4.317953
MAX K562 2.536787 1.589831 3.926057
MAZ Gm12878 2.737835 1.331350 4.165066
MAZ K562 2.213455 1.381204 3.914225
MEF2A Gm12878 1.961067 1.268266 1.200000
MEF2A K562 2.155431 1.634840 1.383333
MEF2C Gm12878 1.772852 1.264671 1.509739
MTA3 Gm12878 1.146839 1.553568 2.371668
MXI1 Gm12878 2.446319 1.051337 4.309701
MXI1 K562 2.779145 1.968308 3.921905
MYC K562 2.130208 2.156751 3.461987
NFATC1  Gm12878 1.988894 3.680381 2.921167
NFE2 K562 3.365909 1.304368 3.288228
NFIC Gm12878 1.459487 1.348810 2.859092
NFYA Gm12878 4.085633 1.097403 4.026087
NFYB Gm12878 4.442175 1.688961 4.170677
NFYB K562 4.085709 1.425311 4.518740
NR2F2 K562 2.094563 2.484291 2.046898
NRF1 Gm12878 4.154159 1.490836 6.250297
NRF1 K562 4.096960 1.719672 6.604682
PAX5 Gm12878 1.778102 2.138147 1.996103
PBX3 Gm12878 2.409104 1.267372 2.907345
PHFS8 K562 1.746489 2.622913 3.178094
PML K562 3.196313 2.115961 3.093802
POLR2A  Gm12878 1.635739 4.181538 2.132422
POLR2A K562 1.307531 3.081256 1.271011
POU2F2 Gm12878 4.509253 1.261058 5.444853
RAD21 Gm12878 3.433969 1.400006 4.776081
RAD21 K562 3.686156 1.279022 4.771104
RBBP5 K562 2.515934 1.686058 5.463606
RCORI1 K562 3.086114 3.380000 2.727582
RELA Gm12878 2.256219 1.924554 2.601801
REST Gm12878 3.500144 1.258964 5.137623
REST K562 2.735634 1.477112 3.993125
RFX5 Gm12878 2.921343 1.518903 2.040150

REFX5 K562 2.310762 1.575659 2.848262
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TF Cell line Sequence-sites Shape-sites Overlapping-sites
RUNX3 Gm12878 3.337189 1.282730 3.338013
SAP30 K562 1.469083 5.175806 2.737982
SETDBI1 K562 1.761349 2.211158 3.122543
SIN3AK20 K562 1.994061 1.319902 2.951697
SIRTG6 K562 2.796984 1.835714 2.962085
SIX5 Gm12878 3.567405 1.817408 2.742913
SMC3 Gm12878 3.375284 1.205541 4.510937
SMC3 K562 3.363107 1.116697 5.227886
SP2 K562 1.759151 2.542544 2.244420
SPI1 Gm12878 2.005668 1.046024 2.456784
SPI1 K562 1.922722 1.108044 2.000695
SRF K562 3.189021 1.734824 2.465772
STAT1 K562 3.004299 1.633984 3.255127
STAT5A  Gm12878 1.230483 4.038239 3.325025
STAT5A K562 2.591910 4.634488 2.749937
TAF1 Gm12878 2.665145 1.084440 2.681424
TAF1 K562 2.296463 1.202235 3.220945
TAF7 K562 2.407362 2.288889 2.504979
TAL1 K562 3.085925 1.855027 3.001542
TBL1XR1 K562 3.305104 4.528447 3.115244
TCF12 Gm12878 2.388021 3.442253 2.953016
TCF3 Gm12878 2.631579 2.928512 3.024879
TEAD4 K562 3.022547 2.658947 2.996171
THAP1 K562 2.364377 1.625373 3.284175
TRIM28 K562 3.013383 3.545075 2.930823
UBTF K562 1.933504 1.668977 2.939831
USF1 Gm12878 2.264898 1.058475 3.749663
USF1 K562 1.981631 1.473624 2.437491
USF2 Gm12878 3.125816 1.039030 5.797151
USF2 K562 2.679178 1.404502 5.555013
YY1 Gm12878 2.354101 1.032558 3.325312
YY1 K562 2.681844 1.042067 3.044849
ZBTB33  Gml2878 3.754370 1.041958 6.364008
ZBTB33 K562 2.355086 1.595287 4.826633
ZBTB7A K562 2.477973 1.730208 3.130002
ZEB1 Gm12878 3.468019 1.365584 3.651928
ZNF143 Gm12878 2.480012 1.263070 1.468606
ZNF143 K562 2.142286 1.059000 2.744661
ZNF263 K562 4.109995 1.230136 4.833759
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Supplementary Table 3: Information content (bits) for each type of motif of each TF

TF Cell line HelT motif MGW motif ProT motif Roll motif
ATF1 K562 4.354304 5.813853
ATF?2 Gm12878 3.739719 3.706825
ATF3 K562 3.686794 5.597207 4.679672
BACHI1 K562 8.401840 8.373654 4.629956
BATF Gm12878 4.755129 4.831843
BCL11A Gm12878 2.731374 2.331119
BCL3 Gm12878 8.307989 4.415979 8.087002 13.915730
BCLAF1  Gml2878 6.153377 5.784666
BHLHE40 Gm12878 6.659689 6.043686
BHLHEA40 K562 4.831120 6.158475
BRCA1 Gm12878 7.902666 13.303756
CBX3 K562 3.974170 2.058881
CCNT2 K562 13.223148 11.681911 8.210620
CEBPB K562 3.033718 2.300033
CHD2 K562 5.157121 8.678947 7.214341
CTCF Gm12878 9.591501 6.342796 10.569503
CTCF K562 8.657654 8.240361 11.524574
CTCFL K562 11.342471 14.267542 11.094728
E2F4 K562 7.629851 12.680834 12.811067
E2F6 K562 8.058094 10.192821 11.383686
EBF1 Gm12878 7.546488 8.776658 3.714710 8.257570
EGRI1 Gm12878 8.707555 14.324367 12.780700 11.083092
EGR1 K562 8.566762 14.611101 10.949566 10.856076
ELF1 Gm12878 5.410424 8.677957 7.525383
ELF1 K562 6.040370 9.723409 9.366509
ELK1 Gm12878 5.746806 6.420904 7.473470
EP300 Gm12878 3.162812 2.687594
EP300 K562 3.287761 2.046333
ETS1 Gm12878 8.301907 6.676335
ETS1 K562 10.002779 7.620823
FOS K562 5.182979 4.617328 7.777137
FOSL1 K562 5.021982 5.388716 8.386084
FOXM1 Gm12878 4.213639 3.916519
GABPA Gm12878 5.636910 8.110776 9.203928
GABPA K562 5.335118 8.716376 8.357448
GATA1 K562 4.458784 3.010830
GATA2 K562 3.702154 2.937098
HMGN3 K562 14.511307 12.863219 8.898824
IRF1 K562 5.878582 7.743200 12.554550
IRF4 Gm12878 4.088219 4.161863
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TF Cell line HelT motif MGW motif ProT motif Roll motif

JUN K562 3.888448 5.250780 5.300358

JUNB K562 5.128315 3.345063 5.411392

JUND K562 4.050870 4.431581 5.952647

MAFF K562 6.562588 6.107544 8.285775 7.070965
MAFK K562 6.510408 7.551979 9.655213 10.579278

MAX Gm12878 5.598401 8.576249 8.068755

MAX K562 5.315556 8.767118 8.989175

MAZ Gm12878 7.873606 11.101825 13.699716 10.163128

MAZ K562 7.908911 12.827615 12.629814 10.002484
MEF2A  Gml12878 2.680824

MEF2A K562 2.094583

MEF2C Gml12878 4.263320 4.305974

MTA3 Gm12878 2.676849 4.681152

MXI1 Gm12878 5.534359

MXI1 K562 4.396907 10.588809 4.277373

MYC K562 6.051838 9.564069 7.372048 5.091212
NFATC1 Gml12878 3.754768 5.802839

NFE2 K562 3.061157 4.814266 3.505833

NFIC Gm12878 3.927508 5.102922

NFYA Gm12878 4.589229

NFYB Gm12878 5.594612

NFYB K562 3.359020 7.754133

NR2F2 K562 2.257454

NRF1 Gm12878 11.949359 13.625259 13.717602

NRF1 K562 10.288648 11.391690 12.420220

PAX5 Gm12878 3.373766 5.922113 3.578923

PBX3 Gm12878 4.540342 4.359496

PHEFS K562 11.945955

PML K562 2.488596
POLR2A Gm12878 4.701124
POLR2A K562 6.291600 4.655549 4.853058
POU2F2 Gml2878 3.639135

RAD21  Gml2878 5.435081 3.938752 9.532026
RAD21 K562 8.654341 6.573681 10.820522
RBBP5 K562 11.892422 8.139989

RCORI1 K562 5.947349 3.099629

RELA Gm12878 2.811867 6.753642

REST Gm12878 7.511681 7.408559 8.465631 10.018286
REST K562 6.879823 8.100623 8.063087 8.775688

RFX5 Gm12878 2.541426 3.712873

RFX5 K562 2.805591 3.482983

RUNX3 Gm12878 3.491183 3.087217
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TF Cell line HelT motif MGW motif ProT motif Roll motif
SAP30 K562 7.878489
SETDBI1 K562 8.650117 6.412054
SIN3AK20 K562 5.404872 8.604263 8.733767
SIRT6 K562 1.964513
SIX5 Gm12878 5.358556
SMC3 Gm12878 4.986087 7.022509 5.397144 10.118401
SMC3 K562 5.406092 9.008039 6.745234 10.366183
SP2 K562 7.612506 9.026121
SPI1 Gm12878 6.526468 7.895665 6.451772
SPI1 K562 7.134858 8.053192 7.799134
SRF K562 4.160145
STAT1 K562 4.624593 7.933305
STAT5A  Gm12878 3.997081
STATHA K562 3.488723 1.399948
TAF1 Gm12878 8.279398
TAF1 K562 9.316957
TAF7 K562 5.370406
TAL1 K562 2.184837
TBL1XR1 K562 5.677345 3.181479
TCF12 Gm12878 7.657051 4.972183 5.183052
TCF3 Gm12878 8.015065 5.357886
TEAD4 K562 3.876757 1.975382
THAP1 K562 8.715861 8.673127
TRIM28 K562 3.201460 2.129453
UBTF K562 10.112320 11.750788 7.112115
USF1 Gm12878 7.276225 7.753492
USF1 K562 5.924492 8.185294 8.175397
USF2 Gm12878 6.325652 7.796670
USF2 K562 5.404733 5.701908 7.890269
YY1 Gm12878 8.853913
YY1 K562 9.869987
ZBTB33 Gm12878 5.170867
ZBTB33 K562 5.630235 8.807290 5.942027
ZBTBTA K562 7.356040 12.470241 14.281782 9.150920
ZEB1 Gm12878 4.603663 8.050429
ZNF143 Gm12878 9.192158
ZNF143 K562 7.489105 9.983317
ZNF263 K562 10.278232 9.203515 9.407070
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